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Abstract: Cytokine storm syndrome in patients with COVID-19 is mediated by pro-inflammatory
cytokines resulting in acute lung injury and multiorgan failure. Elevation in serum ferritin and
D-dimer is observed in COVID-19 patients. To determine prognostic values of optimal serum
cutoff with trajectory plots for both serum ferritin and D-dimer in COVID-19 patients with invasive
ventilator dependence and in-hospital mortality. We used retrospective longitudinal data from the
Cerner COVID-19 de-identified cohort. COVID-19 infected patients with valid repeated values of
serum ferritin and D-dimer during hospitalization were used in mixed-effects logistic-regression
models. Among 52,411 patients, 28.5% (14,958) had valid serum ferritin and 28.6% (15,005) D-dimer
laboratory results. Optimal cutoffs of ferritin (714 ng/mL) and D-dimer (2.1 mg/L) revealed AUCs
≥ 0.99 for in-hospital mortality. Optimal cutoffs for ferritin (502 ng/mL) and D-dimer (2.0 mg/L)
revealed AUCs ≥ 0.99 for invasive ventilator dependence. Optimal cutoffs for in-house mortality,
among females, were lower in serum ferritin (433 ng/mL) and D-dimer (1.9 mg/L) compared to
males (740 ng/mL and 2.5 mg/L, respectively). Optimal cutoffs for invasive ventilator dependence,
among females, were lower in ferritin (270 ng/mL) and D-dimer (1.3 mg/L) compared to males
(860 ng/mL and 2.3 mg/L, respectively). Optimal prognostic cutoffs for serum ferritin and D-dimer
require considering the entire trajectory of laboratory values during the disease course. Females have
an overall lower optimal cutoff for both serum ferritin and D-dimer. The presented research allows
health professionals to predict clinical outcomes and appropriate allocation of resources during the
COVID-19 pandemic, especially early recognition of COVID-19 patients needing higher levels of care.
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1. Introduction

The novel coronavirus (SARS-CoV-2) is associated with high morbidity and mortality,
especially among those with underlying health conditions. COVID-19 is an infectious
disease that is caused by a novel enveloped RNA virus, resulting in severe pneumonia [1].
Elevated serum ferritin and D-dimer levels are found in patients with cytokine storm
syndrome (CSS) due to COVID-19 infection [2,3]. This article seeks to identify optimal
serum cutoff levels for ferritin and D-dimer with trajectory plots of repeated values obtained
during hospitalization as biomarkers for COVID-19 related invasive ventilator dependence
(IVD) and in-hospital mortality. No optimal serum biomarker exists for COVID-19 infection.

Serum ferritin is an iron storage protein with the primary role of regulating cellular
oxygen metabolism. Ferritin is composed of two different subunits, H and L. Previous
studies have suggested H-ferritin acts as an immune modulatory molecule with both
proinflammatory and immunosuppressive functions [4]. Increased ferritin levels could be
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indicative of a strong inflammatory reaction related to viral entry into the human body
and its impact on iron metabolism [4]. According to Eloseily et al., an elevated ferritin
value (e.g., >700 ng/mL) should alert clinicians to additional diagnostic work-up so that
therapeutic approaches can be considered without significant delay. Early institution of
treatment for CSS has been proven to lead to better patient outcomes [5]. Elevated ferritin
serum levels have been found to significantly correlate with disease severity in COVID-19
infected patients [6]. A prior study found that, compared to moderate cases of COVID-19,
severe cases had higher ferritin levels [7].

Several recent studies have also found associations between D-dimer levels and the
severity of COVID-19 infection and mortality [2]. D-dimer is a degradation product of
cross-linked fibrin, indicating increased thrombin generation and fibrin dissolution by
plasmin. High D-dimer levels are common in acutely ill individuals with a number of
infectious and inflammatory diseases [8]. Studies have indicated that the coagulation
system is active in critically ill patients, and D-dimer levels correlate with activation of
the proinflammatory cytokine cascade leading to CSS [9]. It is believed that coagulation
abnormalities related to elevated levels of D-dimer cause venous thromboembolism, which
may contribute to respiratory deterioration related to COVID-19 infection [10].

Most of these studies show significant elevation in serum ferritin and D-dimer in
COVID-19 infected patients, yet they fail to identify an optimal serum cutoff level that can
reliably predict the development of CSS resulting in acute lung injury with IVD and in-
hospital mortality. Optimal serum cutoff level for ferritin and D-dimer along with trajectory
plots will help with allocation of hospital resources based on individual clinical course.

2. Materials and Methods
2.1. Settings

We used data from the Cerner COVID-19 de-identified data cohort, which is a subset
of the entire Cerner Real-World Data cohort. “Cerner Real-World Data is extracted from the
EMR of hospitals in which Cerner has a data use agreement. Encounters may include pharmacy,
clinical and microbiology laboratory, admission, and billing information from affiliated patient care
locations. All admissions, medication orders and dispensing, laboratory orders and specimens are
date and time stamped, providing a temporal relationship between treatment patters and clinical
information. Cerner Corporation has established Health Insurance Portability and Accountability
Act-compliant operating policies to establish deidentification for Cerner Real-World Data” [11].

Only patients with a confirmed COVID-19 diagnosis or recent positive lab test from
January through June 2020 and valid ferritin or fibrin D-dimer laboratory results were in-
cluded. These values were identified by Logical Observation Identifiers Names and Codes
(LOINC) codes (Supplemental Table S1) and were considered valid if they were associated
with encounters showing a diagnosis or recent positive lab test of COVID-19. Additionally,
an independent dataset from July to September 2020 was used for validation analyses. The
University of Utah Institutional Review Board (IRB #136696) has determined that this study
does not meet the definitions of Human Subjects Research for using secondary data with
no intervention or interaction with an individual, and for not having identifiable private
information in the data.

2.2. Measurements

The outcomes of interest involved two different indications of clinical complications in
COVID-19 patients: IVD, and in-hospital mortality. IVD was a binary indication (yes or no)
representing whether a patient ever had a diagnosis, procedure, or encounter result that sig-
nified reliance on an invasive ventilator. The list of codes is found in Supplemental Table S2.
These were kept separate from indications of less severe ventilator dependence such as
continuous positive airway pressure (CPAP) and bilevel positive airway pressure (BiPAP)
machines. In-hospital mortality was a binary indication (yes or no) of whether a patient
died at hospital discharge.
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The predictors of interest were ferritin and fibrin D-dimer lab results. These values
were continuous, and all ferritin results were converted to be on the same unit-of-measure
scale of nanograms per milliliter (ng/mL). All D-dimer results were converted to be
on the same scale of milligrams, fibrinogen equivalent units, per liters (mg {FEU}/L).
Measurements were sorted by date to provide a trajectory of results across the patient’s
hospital stay.

Other predictors included gender and an indication of comorbidity based on the weighted
Charlson comorbidity index (CCI) [12]. The CCI measures patient comorbidity by calculating
a risk-assessment score based on ICD-10 diagnosis codes (Supplemental Table S3) that are
associated with 17 chronic diseases. These specific diseases are listed in Table 1 [13]. With
access to disease histories of patients as far back as January 1, 2015, the CCI considered
all registered disease codes that fell in this time frame, using which to provide an index
by categorizing numerical scores into the following categories: 0, 1–2, 3–4, and ≥5 [14].
The level of “0” is indicative of no disease burden, whereas “≥5” is indicative of maximal
disease burden. Other demographic and clinical characteristics were included for descrip-
tive analysis, including a continuous predictor (age in years), and categorical predictors
(gender, race/ethnicity, insurance, and zip-code region).

Table 1. Clinical characteristics among COVID-19 patients with valid ferritin and D-dimer laboratory measurements.

Characteristic Total n (% 1) Ferritin n (% 1) D-Dimer n (% 1)

Total 4 52,411 (100.00) 14,958 (28.5) 15,005 (28.6)

Charlson weighted comorbidity index

0 24,713 (47.2) 4801 (32.1) 5033 (33.5)
1–2 15,065 (28.7) 5413 (36.2) 5170 (34.5)
3–4 5112 (9.8) 2067 (13.8) 2058 (13.7)
≥5 7521 (14.1) 2677 (17.9) 2744 (18.3)

Chronic diseases 2

Myocardial infarction 2624 (5.0) 1015 (6.8) 1121 (7.5)
Congestive heart failure 6333 (12.1) 2292 (15.3) 2351 (15.7)
Peripheral vascular disease 4019 (7.7) 1325 (8.9) 1335 (8.9)
Cerebrovascular disease 3999 (7.6) 1542 (10.3) 1577 (10.5)
Dementia 4303 (8.2) 1760 (11.8) 1788 (11.9)
Chronic pulmonary disease 10,815 (20.6) 3205 (21.4) 3162 (21.1)
Rheumatic disease 1112 (2.1) 351 (2.3) 340 (2.3)
Peptic ulcer disease 863 (1.6) 208 (1.4) 243 (1.6)
Mild liver disease 3368 (6.4) 1021 (6.8) 1012 (6.7)
Diabetes without chronic complication 13,606 (26.0) 5646 (37.7) 5442 (36.3)
Diabetes with chronic complication 4152 (7.9) 1531 (10.2) 1623 (10.8)
Hemiplegia or paraplegia 1144 (2.2) 417 (2.8) 445 (3.0)
Renal disease 9913 (18.9) 3798 (25.4) 3963 (26.4)
Any malignancy, including lymphoma and leukemia,

2878 (5.5) 880 (5.9) 958 (6.4)except malignant neoplasm of the skin
Moderate or severe liver disease 550 (1.0) 174 (1.2) 180 (1.2)
Metastatic solid tumor 667 (1.3) 194 (1.3) 185 (1.2)
HIV/AIDS 377 (0.7) 136 (0.9) 127 (0.8)

Clinical complications

Hospitalized 27,774 (53.0) 13,366 (89.4) 12,864 (85.7)
Invasive ventilator dependence (IVD) 6150 (11.7) 3828 (25.6) 3713 (24.7)
In-hospital mortality among ventilator dependent 2665 (43.3 3) 1701 (44.4 3) 1671 (45.0 3)
In-hospital mortality 4502 (8.6) 2480 (16.6) 2523 (16.8)
Ventilator dependence among in-hospital deceased 2665 (59.2 3) 1701 (68.6 3) 1671 (66.2 3)

1 n (column %’s); 2 Identified by ICD-10 codes and extend as far back as 1 January 2015 for patients (these are the diseases that make up the
Charlson comorbidity index); 3 Percentages out of described denominator; 4 n (row %’s).

2.3. Statistical Analysis

Categorical variables were presented with frequencies and percentages, while con-
tinuous variables were presented with medians and interquartile ranges (IQR = Q1–Q3).
Primary analyses were conducted separately for the ferritin and D-dimer cohorts. In each
cohort, mixed-effects logistic regression models were fit with the respective laboratory
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values (ferritin or D-dimer) as a predictor, and the patient identifier as a random effect to
allow modeling the trajectory of laboratory results within patients. For each patient, we
have considered their trajectory of values instead of a single measurement, such as most
recent or maximal measurement, to improve models’ predictability power. Lab values
were transformed to the log-scale for violating normality. Results were presented back on
their original scale by exponentiation.

Assuming each patient as a cluster with correlated observations, we used logistic
random-effects models [15] to calculate sensitivities and specificities, which in turn helped
us identify the optimal cutoff level of the continuous predictor (ferritin or D-dimer lab)
that discriminated those with the response of interest (ventilator dependent or in-hospital
deceased) from those without the response of interest (non-ventilator dependent or alive).
The optimal cutoff was found by either maximizing the Youden index or minimizing
the Euclidean distance of sensitivity and specificity [16]. The predictive ability of the
cutoff level was assessed by using the receiver operating characteristic (ROC) curve and
calculating the area under the curve (AUC). AUC measures of 0.5 are poor, and measures
of 1 are perfect. Odds ratios (ORs) with 95% confidence intervals (CIs) were reported
alongside the intraclass correlations (ICCs). Here, ICC is the proportion of total variance in
the outcome that is explained by the clustering of similar laboratory results within each
patient. To assess differences between levels of gender and comorbidity, the same modeling
techniques were repeated by stratifying ferritin and D-dimer cohorts by gender as well as
by CCI groups (0, 1–2, 3–4, ≥5).

To assess the generalizability of the results, cross-validations (CVs) were conducted
where 20% of patients (and their repeated measurements) from the complete dataset were
randomly sampled to be the testing set, and the remaining 80% of patients were retained
as the training set. Models were fit on the training set and obtained optimal cutoffs were
used to predict outcomes for the testing set. The mean percentage of correct classifications
(MPCC) with corresponding standard errors (SE) were reported. Additionally, for valida-
tion purposes, optimal cutoff results were tested and reported on a completely independent
dataset comprised of patient encounters from July to September 2020. Models applied
the same optimal cutoff levels, which were calculated from the previous analysis, to these
data. Percentages of correct classification (PCC) were reported. All of these validation
analyses were conducted separately for the two predictors (ferritin and D-dimer) and the
two outcomes (IVD and in-hospital mortality).

To investigate the difference in lab-level trajectory over time between patients even-
tually dying and patients remaining alive, mixed-effects exponential regression models
were constructed. The predictor was the interaction between elapsed time (time in days
since each patient’s first appointment) and a binary indication of death. This provided a
lab-level trend over time for those who died as well as for those who remained alive. To
account for the inherent differences between each patient, repeated lab measurements were
clustered within each patient. Exponentiated coefficients, relating to the percentage change
in lab value, with 95% CIs were calculated, along with coefficient of determination (R2)
values to estimate the percent of variation in ferritin and D-dimer lab levels as explained
by the model predictors. Figures were constructed by using model-predicted ferritin and
D-dimer levels from a sample of patients. Lab levels were plotted against time for each
patient and stratified by death status.

As a final sensitivity analysis, the optimal cutoff modeling schema was conducted
again under two scenarios: (1) without clustering on each patient, and (2) using only the
maximum lab result per patient. This was conducted to compare results with that from
the full repeated patient lab measurements with the random effect. All statistical tests
were two-sided at a significance level of 5% and were conducted using R version 3.6.1 (R
Foundation for Statistical Computing).
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3. Results
3.1. Descriptive Statistics

There were 52,411 unique patients infected with COVID-19, and of whom 28.5%
(n = 14,958) had a valid ferritin lab result and 28.6% (n = 15,005) had a valid D-dimer
lab result. The median (Q1–Q3) age in years was 61 (49–73) for patients with ferritin
results, and 61 (47–73) for patients with D-dimer results (Table 2). Both the ferritin and
D-dimer groups had higher percentages of males (ferritin: 53.9% (n = 8059); D-dimer:
52.9% (n = 7945)). Most patients were from the eastern United States (Table 2). About
17.9% (n = 2677) of ferritin patients and 18.3% (n = 2744) of D-dimer patients had CCI ≥ 5.
Ferritin and D-dimer patients saw, respectively, 25.6% and 24.7% dependent on invasive
ventilators, and of those on ventilators, 44.4% and 45.0% died in the hospital (Table 1).

Table 2. Demographic characteristics among COVID-19 patients with valid ferritin and D-dimer laboratory measurements.

Characteristic Total n (% 5) Ferritin 1 n (% 5) D-Dimer 2 n (% 5)

Total 3 52,411 (100.00) 14,958 (28.5) 15,005 (28.6)

Median Age (Years) 4 53 (35–68) 61 (49–73) 61 (47–73)

Gender

Female 26,512 (50.6) 6862 (45.9) 7021 (46.8)
Male 25,800 (49.2) 8059 (53.9) 7945 (52.9)
Other/Unknown 99 (0.2) 37 (0.2) 39 (0.3)

Race/Ethnicity

Non-Hispanic American Indian or Alaska Native 1070 (2.0) 384 (2.6) 386 (2.6)
Non-Hispanic Asian or Pacific Islander 1447 (2.8) 427 (2.9) 443 (3.0)
Non-Hispanic Black or African American 10,667 (20.4) 3723 (24.9) 3945 (26.3)
Non-Hispanic White 15,048 (28.7) 4396 (29.4) 4744 (31.6)
Non-Hispanic Multiracial/Other/Unknown 5754 (11.0) 2092 (14.0) 2271 (15.1)
Hispanic or Latino 18,425 (35.2) 3936 (26.3) 3216 (21.4)

Health insurance

Private 18,015 (34.4) 4640 (31.0) 4515 (30.1)
Government/Miscellaneous 1853 (3.5) 509 (3.4) 583 (3.9)
Medicaid 8597 (16.4) 2103 (14.1) 2206 (14.7)
Medicare 11,791 (22.5) 4927 (32.9) 5061 (33.7)
Self-Pay 4906 (9.4) 784 (5.2) 757 (5.0)
Missing 7249 (13.8) 1995 (13.3) 1883 (12.5)

Region of admission 6

0 6210 (11.8) 2618 (17.5) 2926 (19.5)
1 5593 (10.7) 2213 (14.8) 2476 (16.5)
2 8139 (15.5) 3067 (20.5) 3391 (22.6)
3 9867 (18.8) 2040 (13.6) 1389 (9.3)
4 2701 (5.2) 1092 (7.3) 1255 (8.4)
5 337 (0.6) 81 (0.5) 101 (0.7)
6 1551 (3.0) 382 (2.6) 455 (3.0)
7 3116 (5.9) 806 (5.4) 463 (3.1)
8 3321 (6.3) 881 (5.9) 965 (6.4)
9 9012 (17.2) 1691 (11.3) 1526 (10.2)
Missing 2564 (4.9) 87 (0.6) 58 (0.4)

1 Has a valid ferritin lab from a COVID-19 encounter; 2 has a valid D-dimer lab from a COVID-19 encounter; 3 Unique patients, % is row
percentage out of total COVID-19 patients (n = 52,411); 4 Median (Q1–Q3); 5 n (column %’s); 6 0 (Connecticut, Massachusetts, Maine, New
Hampshire, New Jersey, Rhode Island, Vermont), 1 (Delaware, New York, Pennsylvania), 2 (DC, Maryland, North Carolina, South Carolina,
Virginia, West Virginia), 3 (Alabama, Florida, Georgia, Mississippi, Tennessee), 4 (Indiana, Kentucky, Michigan, Ohio), 5 (Iowa, Minnesota,
Montana, North Dakota, South Dakota, Wisconsin), 6 (Illinois, Kansas, Missouri, Nebraska), 7 (Arkansas, Louisiana, Oklahoma, Texas),
8 (Arizona, Colorado, Idaho, New Mexico, Nevada, Utah, Wyoming), 9 (Alaska, California, Hawaii, Oregon, Washington).

3.2. Optimal Cutoffs

Optimal cutoffs of ferritin (714.3 ng/mL) and D-dimer (2.1 mg/L) revealed AUCs ≥ 0.99
for in-hospital mortality. Patients with a ferritin ≥714.3 ng/mL had 3.7 (95% CI: 2.8–4.8)
higher odds of in-hospital mortality compared to those with a lower ferritin value (Table 3).
Figure 1 provides visualizing on how the optimal cutoff is chosen on the ROC curve.
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Similarly, optimal cutoffs for ferritin (501.6 ng/mL) and D-dimer (2.0 mg/L) revealed
AUCs ≥ 0.99 for IVD. Specifically, patients with a ferritin value of ≥501.6 had 3.4 (95%
CI: 2.8–4.2) higher odds of IVD compared to those below this cutoff, while patients with
D-dimer ≥ 2.0 had 6.4 (95% CI: 5.1–8.1) higher odds of IVD compared to those below.
Optimal cutoffs for in-house mortality, among females, were lower in serum ferritin
(433.3 ng/mL) and D-dimer (1.9 mg/L) compared to males (740.0 ng/mL and 2.5 mg/L,
respectively). Table 3 also shows that optimal cutoffs for IVD, among females, were lower
in ferritin (270.0 ng/mL) and D-dimer (1.3 mg/L) compared to males (860.4 ng/mL and
2.3 mg/L, respectively).

Table 3. Biomarker optimal cut-offs for complications in COVID-19 patients, overall and stratified by gender and Charlson
weighted comorbidity index (CCI).

Category In-Hospital Mortality InvasiveVentilator Dependence (IVD)

Median (IQR) Cutoff 1 OR 4 (95% CI) AUC n 5 ICC 6 Cutoff OR 4 (95% CI) AUC n 5 ICC 6

Ferritin 654 (325–1153) 2 714.3 3.7 (2.8, 4.8) 0.997 74,758 0.956 501.6 3.4 (2.8, 4.2) 0.996 74,758 0.955

Gender

Female 413 (202–787) 433.3 5.1 (3.2, 8.1) 0.996 29,981 0.951 270.0 3.0 (2.0, 4.4) 0.998 29,981 0.961
Male 845 (473–1458) 740.0 3.4 (2.4, 4.8) 0.998 44,597 0.961 860.4 3.4 (2.5, 4.6) 0.998 44,597 0.967

Charlson Index

0 653 (323–1180) 610.0 3.8 (1.9, 7.8) 0.994 21,252 0.952 462.2 3.4 (2.1, 5.7) 0.999 21,252 0.961
1–2 641 (334–1148) 1039.5 3.7 (2.2, 6.2) 0.998 28,235 0.959 906.9 4.0 (2.6, 6.4) 0.998 28,235 0.966
3–4 625 (317–1270) 1613.9 8.3 (3.5, 19.4) 0.998 11,799 0.963 1194.7 2.4 (1.1, 5.0) 0.997 11,799 0.968
≥5 710 (318–1456) 786.4 3.5 (2.1, 5.7) 0.996 13,472 0.955 677.9 3.3 (2.0, 5.3) 0.995 13,472 0.962

D-dimer 1.7 (0.8–4.0) 2.1 3 6.8 (5.3, 8.8) 0.997 79,643 0.953 2.0 6.4 (5.1, 8.1) 0.998 79,643 0.958

Gender

Female 1.5 (0.8–3.6) 1.9 5.9 (4.0, 8.7) 0.996 32,121 0.948 1.3 5.4 (3.8, 7.7) 0.998 32,121 0.955
Male 1.8 (0.9–4.3) 2.5 7.0 (5.0, 9.9) 0.997 47,387 0.957 2.3 7.9 (5.7, 11.0) 0.999 47,387 0.961

Charlson Index

0 1.3 (0.7–3.3) 6.5 7.1 (3.3, 15.0) 0.997 22,078 0.950 1.4 5.2 (3.4, 8.0) 0.999 22,078 0.950
1–2 1.7 (0.8–3.9) 1.4 8.8 (5.3, 14.7) 0.998 28,975 0.957 1.8 10.5 (6.9, 16.1) 0.999 28,975 0.959
3–4 1.8 (0.9–4.5) 2.6 5.5 (2.9, 10.6) 0.999 12,654 0.961 2.6 6.2 (3.2, 11.9) 0.997 12,654 0.964
≥5 2.1 (1.1–4.5) 1.3 7.2 (4.2, 12.3) 0.998 15,936 0.961 1.9 4.8 (3.1, 7.5) 0.997 15,936 0.964

1 Labs above this value flagged as having outcome, labs below flagged as not having outcome; 2 Ferritin: ng/mL; 3 D-dimer: mg {FEU}/L;
4 Odds of outcome for those with log(lab) greater than or equal to log(cutoff) compared to those below log(cutoff); 5 Unique lab indications;
6 Intraclass Correlation.

There were also differences across the CCI. For ferritin, the optimal cutoff started low
at index “0”, increased across indices “1–2” and “3–4” and then decreased in index “≥5”,
for both in-hospital mortality and IVD. For D-dimer, patients with a CCI of “0” had the
highest cutoff level (6.5) for in-hospital mortality, but this cutoff decreased for the other
comorbidity indices. Patients with a CCI of “0” had the lowest D-dimer cutoff for IVD (1.4),
and the cutoff fluctuated over the other indices. ICCs were reported for all models, all of
which were above 0.94, indicating high correlations of lab results among the same subjects
(Table 3).

3.3. Validation

Firstly, CV was conducted over 100 iterations, each time providing the PCC to be
able to distinguish outcomes from non-outcomes, and the average PCC (MPCCs with SEs)
were reported in Table 4. All models, under all scenarios, reported excellent classification
ability with PCCs and MPCCs all reporting 0.996 and higher, with very little variation.
Secondly, the results of testing the optimal cutoffs on the independent September data
refresh, including data from July until September 2020, also indicated excellent performance
with all PCCs of 0.999 (rightmost column of Table 4).
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Figure 1. Receiver operating characteristic (ROC) for the optimal cutoff of ferritin (ng/mL) in
predicting in-hospital mortality.

Table 4. Cross-validation diagnostics of ferritin and D-dimer optimal cutoffs in predicting in-hospital mortality and invasive
ventilator dependence.

Outcome Predictor PCC 1 for the
Complete Set 4

MPCC 2 (SE 3) for
the Training Set 5

MPCC (SE) for the
Test Set 6

PCC for the
Independent Set 7

In-Hospital
Mortality

Ferritin 0.997 0.999 (3.59 × 10−7) 0.996 (3.57 × 10−5) 0.999
D-Dimer 0.997 0.999 (4.55 × 10−7) 0.997 (3.45 × 10−5) 0.999

Invasive Ventilator
Dependence

Ferritin 0.996 0.999 (4.33 × 10−7) 0.997 (2.42 × 10−5) 0.999
D-Dimer 0.998 0.999 (4.21 × 10−7) 0.998 (2.04 × 10−5) 0.999

1 Percentage correctly classified; 2 Mean percentage correctly classified (100 iterations); 3 Standard error; 4 Data from January through June
2020; 5 80% of the data from January through June 2020; 6 80% of the data from January through June 2020; 7 Data for validation from July
until September 2020, sample sizes for: ferritin (encounter, n = 98,050; unique patients, n = 29,236) D-dimer (encounter, n = 128,340; unique
patients, n = 35,932).

3.4. Trajectories of Measurements

Table 5 reports the percentage change in ferritin and D-dimer lab levels across time
(10-day increments) for those who died and those who remained alive, while clustering
repeated lab measurements on each patient. Ferritin significantly decreased over time for
those who remained alive (eβ̂ (95% CI): 0.85 (0.84, 0.86)), yet significantly increased over
time for those who eventually died (eβ̂ (95% CI): 1.04 (1.03, 1.05)). D-dimer also significantly
decreased over time for those alive (eβ̂ (95% CI): 0.93 (0.92, 0.94)) and significantly increased
over time for those who died (eβ̂ (95% CI): 1.14 (1.13, 1.16)). The models predicted 88% of
the variation in ferritin and 74% in D-dimer levels. Figure 2A,B illustrate the trends seen in
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Table 5. Both ferritin and D-dimer levels consistently decreased over time for patients who
remained alive, while increasing over time for patients who eventually died.

Table 5. Associations of elapsed time and death status with ferritin and D-dimer levels.

Ferritin D-Dimer

eβ̂2 (95% CI) R2 eβ̂2 (95% CI) R2

Elapsed time 1 by death status 0.88 0.74

Alive 0.85 (0.84, 0.86) 0.93 (0.92, 0.94)
Deceased 1.04 (1.03, 1.05) 1.14 (1.13, 1.16)

1 Time (for every 10 days) since first appointment; 2 Exponentiated coefficients (mixed-effect exponential regression model clustering
on patients) relating to percentage change in expected ferritin/D-dimer level across each one-unit increase of the predictor (interaction
between elapsed time and death status).

Figure 2. (A) Individual trajectories of ferritin levels over time in COVID-19 patients by death status. (B) Individual
trajectories of D-dimer levels over time in COVID-19 patients by death status.
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3.5. Sensitivity Analysis

Sensitivity analyses in Supplemental Tables S4 and S5 show the optimal cutoffs deter-
mined in the absence of clustering on each patient, or only using the maximum lab value
per patient. Both scenarios show comparable cutoffs; however, the classification ability of
all models was extremely reduced, with AUCs ranging from 0.59 to 0.74.

4. Discussion

Due to limited hospital resources, it is critical to understand threshold patterns of
serum biomarkers that can predict CSS, which would aid in judicious allocation of resources,
bridging the time for the development of an effective vaccine and medical treatment. Here,
we identified optimal cutoffs of serum ferritin and D-dimer levels in COVID-19 patients
that predict in-hospital mortality and IVD. These cutoffs, for some CCI categories, seem to
be comparable to values obtained from initial retrospective studies in Wuhan, China. In a
study of 21 patients, Chen et al. found 11 patients with severe COVID-19 infection to have
a serum ferritin higher than 800 µg/L [17]. In another retrospective study of 191 patients at
the Jinyintan Hospital and Wuhan Pulmonary Hospital, a serum level of >300 µg/L was
present in 96% of non-survivors [18].

In this study, female patients with COVID-19 have an overall lower optimal serum
ferritin and D-dimer cutoff for in-hospital mortality and IVD compared to males. The
ratio between genders was almost 1:3 (or 270.0: 860.4) for IVD, which is higher than that
among healthy adults, where females have a lower serum ferritin range (12–150 ng/mL)
compared to males (12–300 ng/mL) [19]. When examining the trajectory of repeated ferritin
and D-dimer levels on subsequent days of illness, we found persistently elevated, time-
spaced repeated measurements of ferritin and D-dimer to be highly predictive of patients
developing CSS, with imminent need of ventilation, and eventual in-hospital death. We
uncovered two distinct trajectory patterns, each representing mortality or survival. The
first trajectory pattern consists of rapid elevation, in which repeated serum levels of ferritin
and D-dimer continue to increase over time, a pattern that highly correlates with mortality.
The second trajectory pattern witnesses decreasing or unchanged subsequent levels of
ferritin and D-dimer, which highly correlates with survival. Among patients with low
initial ferritin and D-dimer values, but increasing subsequent time-spaced repeated values,
there is a high chance of developing CSS, needing invasive ventilation, and experiencing
in-hospital mortality. However, patients with high initial ferritin and D-dimer levels, and
stable or decreasing subsequent time-spaced repeated values, have a low probability for
developing CSS, needing ventilation, and experiencing death. This might indicate distinct
biological and physiological feedback mechanisms during SARS-CoV-2 infections among
certain susceptible patient groups, since genetic susceptibility factors could contribute to
CSS development [20].

Among COVID-19 patients, older age and comorbidities such as diabetes or hyper-
tension are predictors of increased COVID-19 related morbidity and mortality [21]. We
hypothesized that COVID-19 patients without any comorbidities would possess high
serum ferritin and D-dimer levels because they have adequate cardiac and pulmonary
reserves and would require a strong COVID-19 related CSS to develop respiratory distress
resulting in ventilation and in-hospital mortality. Conversely, in patients with increasing
comorbidities, we predicted that a modest increase in serum ferritin and D-dimer due to
COVID-19 would result in multiorgan failure, owing to pre-existing limited cardiopul-
monary and immune reserves. However, we did not find a clear pattern for optimal
cutoff in relation to CCI. As hypothesized, serum ferritin and D-dimer should have the
highest optimal cutoff in patients with no comorbidities. However, in our study using
CCI, patients with no comorbidities had the lowest serum ferritin and D-dimer optimal
cutoff for IVD, and the lowest serum ferritin cutoff for in-house mortality. This finding
may represent additional unknown factors (e.g., male sex, blood type A, and other genetic
and exposure susceptibility factors, including the triggering of a previous viral infection),
or immune responses toward CSS that result in mortality and IVD in relation to COVID-19
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infection [20,22]. Furthermore, individuals with no comorbidities likely activate thrombotic
responses early after SARS-CoV-2 infection [23], which demonstrates the importance of
D-dimer tests being conducted early after admission, especially among younger, generally
healthy patients.

Another important finding of our study is that optimal ferritin and D-dimer cutoffs
alone are not sufficient information, but must be paired with knowledge of the trajectory of
repeated ferritin and D-dimer levels drawn on subsequent days of illness for COVID-19
patients. ICCs indicated exceptionally high correlation of lab values within each patient
(ICC ≈ 0.96), and either ignoring this aspect or collapsing down to one value per patient
would eliminate this valuable information. The information lost is demonstrated by the
stark difference in AUCs between Table 3 (AUC ≈ 0.99) and Supplemental Tables S4 and S5
(AUC ≈ 0.60–0.75). The increase in AUC when considering the entire trajectory of values
could partly be due to the increase in the number of observations [15]. Our findings in
Supplemental Tables S4 and S5 are supported by a recent study published in August 2020
on 942 patients from a large New York City health system [24]. Using a single measurement,
the authors obtained poor to fair accuracy (AUC ≈ 0.60–0.75) for ferritin as a biomarker
when they collapsed repeated measurements down. We demonstrated in our study, using
logistic random-effects modeling, that considering the entire trajectory of measurements
optimizes the accuracy of ferritin as a biomarker (see Table 3 versus Supplemental Tables
S4 and S5). Using such methodology, we assumed that sensitivity and specificity were
centered around a common mean across the patients (clusters) with some level of variability.
Further details on using logistic random-effects models to adjust for correlations between
subjects’ measurements when calculating sensitivity and specificity have been shown
elsewhere [15].

Our optimal cutoffs for ferritin (714.3 ng/mL for in-hospital mortality with AUC = 0.997;
and 501.6 for IVD with AUC = 0.996), and D-dimer (2.1 ng/mL for in-hospital mortality
with AUC = 0.997; and 2.0 for IVD with AUC = 0.998) were validated by using CV on a
testing set, and by using an independent large cohort (Table 4), demonstrating substan-
tial performance.

4.1. Limitations

One of the main limitations of studying serum ferritin and D-dimer is working with
non-standardized data from blood samples, which lack uniform measurement units due
to the variability of various lab tests (see Supplemental Table S1). Furthermore, patients
entered this cohort at different timepoints, when experimental treatments and guidelines
for COVID-19 care had been changing rapidly, which might have induced some resid-
ual confounding.

4.2. Recommendations

In line with the identification protocol of acute coronary syndrome, which uses time-
spaced troponin I levels, we propose a similar approach to classify COVID-19 infection. We
recommend the development of a standardized protocol with identification of appropriate
time gap between repeated values for ferritin and D-dimer in COVID-19 patients. We
hypothesize that at least three repeated values of ferritin and D-dimer, spaced over 8 to 24
h, will help identify the appropriate trajectory pattern, similar to serum troponin collection
during acute coronary syndrome. The ferritin and D-dimer pneumogram should consider
the start point of COVID-19 infection as the development of a fever.

5. Conclusions

With many countries experiencing a second or possible third wave of COVID-19,
appropriate allocation of health care resources is pivotal in avoiding overcrowding of
hospitals and minimizing burden on health care systems. Knowledge and application of
ferritin and D-dimer trajectory patterns, in addition to optimal cutoffs, will help allocate
valuable resources and make better predictions about disease progression. Time-spaced
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repeated measurements of serum ferritin and D-dimer will identify patients with high
risk of developing CSS who will require intensive care resources. Whether at home, in
primary care centers, or temporary COVID-19 hospitals, cytokine trajectory-based care can
be performed safely without transfer to a tertiary care center for patients with stable or
decreasing serum ferritin and D-dimer trajectories. Ultimately, serum ferritin and D-dimer
trajectory plots will provide improved confidence to providers working in remote areas
and temporary COVID-19 hospitals in predicting transfer of COVID-19 patients to tertiary
care hospitals.
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