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Abstract: We applied the model-guided fieldwork framework to the Caribbean mongoose rabies
system by parametrizing a spatially-explicit, individual-based model, and by performing an un-
certainty analysis designed to identify parameters for which additional empirical data are most
needed. Our analysis revealed important variation in output variables characterizing rabies dynam-
ics, namely rabies persistence, exposure level, spatiotemporal distribution, and prevalence. Among
epidemiological parameters, rabies transmission rate was the most influential, followed by rabies
mortality and location, and size of the initial infection. The most influential landscape parameters
included habitat-specific carrying capacities, landscape heterogeneity, and the level of resistance
to dispersal associated with topography. Movement variables, including juvenile dispersal, adult
fine-scale movement distances, and home range size, as well as life history traits such as age of
independence, birth seasonality, and age- and sex-specific mortality were other important drivers of
rabies dynamics. We discuss results in the context of mongoose ecology and its influence on disease
transmission dynamics. Finally, we suggest empirical approaches and study design specificities that
would provide optimal contributing data addressing the knowledge gaps identified by our approach,
and would increase our potential to use epidemiological models to guide mongoose rabies control
and management in the Caribbean.

Keywords: rabies; individual-based model; small Indian mongoose; Urva auropunctata; model-guided
fieldwork; epidemiological model

1. Introduction

Small Indian mongooses (Urva auropunctata) were introduced from Asia to 29 Caribbean
islands during the 19th century, primarily to control rodent populations on sugar planta-
tions [1,2]. This opportunistic carnivore rapidly became invasive in Caribbean ecosystems,
where it caused substantial damage to native fauna [3]. Moreover, in Puerto Rico, Cuba,
Grenada, and the Dominican Republic, mongooses are the primary reservoir for canine
rabies [4–6]. The first rabies outbreak in the Western hemisphere attributed to the small
Indian mongoose was reported in Puerto Rico in 1950 [7]. Mongooses are now responsible
for >45% of reported rabies cases in Puerto Rico [8], and during 2005–2008, 97% (n = 151)
of specimens submitted after biting tested positive for rabies [9]. This species therefore
represents a significant and persistent public health threat.

Phylogenetic studies revealed that rabies virus from mongooses in Puerto Rico, Cuba,
and Grenada are derived from independent introductions of canine rabies virus [5,10–12].
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The contrast between the restricted distribution of rabies virus in small Indian mongooses
and the wide geographic distribution of this reservoir species within the Caribbean has
tentatively been attributed to the historical absence of the virus in local dog populations,
and to low mongoose densities on some islands (e.g., Trinidad) that might have prevented
initial viral spill-over or viral persistence within mongoose populations [13]. However,
these hypotheses remain untested and, to date, no study has examined the ecological
conditions required for mongoose rabies persistence in the Caribbean. This represents
an important knowledge gap because developing effective control strategies for wildlife
diseases relies on understanding the disease ecology and the transmission dynamics within
reservoir species [14].

Epidemiological modeling of disease–host systems offers an opportunity to increase
our understanding of disease systems [15], can simulate and optimize disease control
strategies [16–19], and provides a basis to estimate and forecast spatiotemporal risks to pub-
lic health [20]. As landscape heterogeneity and animal behavior can significantly affect dis-
ease dynamics in wildlife populations [21–25], individual-based, spatially explicit models
are increasingly used in epidemiological studies. However, small changes in parametriza-
tion of such models can result in significant variation in model outcomes [19,26,27]. There-
fore, uncertainty or lack of available data regarding important model parameters in a
system can significantly impact the accuracy of model predictions.

The model-guided fieldwork (MGF) framework [28] provides guidelines for wildlife
disease ecology research by promoting collaboration between biologists and modelers
to ensure that empirical studies collect information on important model parameters and
that models are data-driven and appropriate to the study system. The MGF framework
prompts scientists to use model sensitivity analysis to inform the design of field studies,
addressing aspects of the system that are poorly understood and focusing data collection
effort on highly sensitive parameters. Although traditional sensitivity analysis explores
the entire parameter space, local sensitivity analyses (hereafter referred to as uncertainty
analyses [29]), in which parameter ranges are determined from previous knowledge (e.g.,
restricted to parameter sets and ranges for which available data are scarce or uncertain)
can be useful [30,31].

Recent research on mongoose rabies in the Caribbean has focused on obtaining empirical
estimates of small Indian mongoose ecology, such as population density estimates, serosur-
veys investigating rabies exposure, and home range size estimates [3,6,32–34]. In addition,
some oral vaccines have been demonstrated to protect mongooses against rabies [35,36], and
field studies showed that placebo baits were consumed by mongooses [37–39]. This work
has helped better characterize the mongoose rabies system and propose potential control
strategies. Nevertheless, several key ecological processes driving mongoose rabies dy-
namics remain to be described, and uncertainty bounds on some studied variables remain
large. Specifically, better baseline data on habitat-specific mongoose movement, popula-
tion dynamics, and spatial distribution is needed [33]. Applying the MGF framework to
the mongoose rabies system by integrating available empirical data into epidemiological
and statistical models could help identify the biological, ecological and epidemiological
processes that are most important in driving rabies dynamics. The MGF framework pro-
motes modeling as a tool in the iterative process of generating hypotheses, gathering
empirical evidence, and refining hypotheses. The use of uncertainty analysis to guide
ecological study design aimed at acquiring the necessary field data to improve models of
mongoose rabies could thus increase our ability to use these models to simulate rabies
control strategies, including vaccination and population reduction. Such simulations could
in turn inform the design of optimized control studies (e.g., localized oral rabies vacci-
nation, trap–vaccinate–release, or depopulation) that would provide validation data for
the models.

In this study, we applied the MGF framework to develop an epidemiological model
consolidating existing data on mongoose rabies ecology in order to guide future field
studies and inform ongoing mongoose rabies management efforts. Specifically, we aimed



Viruses 2021, 13, 323 3 of 27

to: (1) parametrize a spatially-explicit, individual-based model (IBM) using the data
currently available on the mongoose rabies system, (2) use uncertainty analysis to identify
parameters for which additional empirical data are needed (i.e., parameters to which
the model is most sensitive), and (3) provide testable predictions about mongoose rabies
ecology in the Caribbean.

2. Materials and Methods
2.1. The Ontario Rabies Model (ORM)

The Ontario Rabies Model (ORM) is a spatially-explicit IBM designed to investi-
gate the effects of animal biology, infectious disease epidemiology, disease control strate-
gies (e.g., vaccination, population reduction) and landscape characteristics on rabies
dynamics. The model has been previously validated and used for modeling raccoon
rabies in Canada [40,41]. The ORM structure and process are extensively described else-
where [18,40,42], and some details are included in Appendix A.

The ORM structure and process are extensively described elsewhere [18,40,42]. Briefly,
throughout their lifetime, simulated individuals are characterized by an identity number,
sex, and parental identity. For each discrete model time step of one week, individuals are
further characterized by their age, location, offspring identities, disease status (susceptible,
incubating or infectious) and the identities of individuals with whom they were in contact.
Individuals that recover from a rabies infection remain susceptible.

Demographic model processes are stochastic. Male and female mating pairs are
formed at random from individuals concurrently located in the same 1km2 cell (area
of the landscape characterized by a carrying capacity and a resistance to incoming and
outgoing movements), and females have age-specific probabilities of producing a litter.
Breeding can occur either once or twice a year, based on user-defined seasonal birth
peaks. Offspring remain with their mother until the user-defined age of independence.
Individuals are subjected to weekly age- and sex-specific natural mortality prior to resource-
limiting mortality (i.e., when a cell exceeds its carrying capacity) and rabies-induced
mortality. Animals are allowed to move from their cell once per year within a given
age- and sex-specific range of weeks. Individual dispersal distances (number of cells) are
drawn stochastically from age- and sex-specific distributions, while movement direction is
determined randomly. Dispersal is completed within a one-week time step, with animals
moving directly to their destination cell without any interaction with animals located in
cells along their route. Incubating animals have a weekly chance of becoming infectious
based on a user-defined incubation period distribution. On a weekly basis, infectious
animals can transmit rabies to susceptible individuals with which they enter into contact,
based on a user-defined proportion. Individuals are considered to be in contact with
all other animals in their cell, as well as with a proportion of animals located in the six
adjacent cells according to the extent of their home range overlap with neighboring cells.
No disease-control strategy was implemented in this study.

Mongoose density and spatial distribution in their various disease states across the
landscape result from the processes of reproduction, mortality, and dispersal operating
on individuals. Similarly, spatial distribution of disease mortality and incidence emerge
from the inter-individual disease transmission and infection processes operating on the
susceptible animals. Model input includes a landscape, an initial georeferenced mongoose
population, and a set of biological and epidemiological parameters. Information required
to parametrize the model includes landscape attributes, species life history traits, and
behavior (i.e., movement and intraspecific contacts) and rabies epidemiology processes
(Table 1). There is substantial heterogeneity in the empirical data available to inform these
different input parameters (Table 1).
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Table 1. Parameterization of the Ontario Rabies Model (ORM): fixed values (light cells) and range of parameter variation
(shaded cells) included in the uncertainty analysis. Parameter values in uncertainty analysis simulations were selected
within their range using a uniform distribution unless otherwise stated.

Parameter Initial Value
(Population Growth) Value Reference

Biological parameters

Habitat-specific carrying
capacities (animals/km2)

Semi-wooded: 80
Heavily wooded: 50

Grassland: 30
Wetlands: 10
Developed: 4

Baseline: semi-wooded range:
33–124 animals/km2.

Coefficient ranges:
-Wooded: 0.1–1.52

-Heavily wooded: 0.43–1.087
-Grassland: 0.1–0.43

-Wetlands: 10
-Developed: 4

Mean densities presented in
[33], relative difference

between habitats from [32].
No available data to inform

coefficient values for
developed areas and

wetlands.

Elevation-related resistance to
movement

Resistance to movement when
cell elevation ≥300 m: 0%

Resistance to movement when
cell elevation ≥300 m range:

0–99%.

Small Indian mongooses
mostly stay at elevations <300

m [43]
Age of independence

(mongoose becomes juvenile,
no longer dependent on

maternal care)

22 weeks Range: 17.5–26.3 weeks [44,45]

Age of adulthood (mongoose
no longer juvenile, i.e.,

sexually mature)
22 weeks

Range: 1.1–42.6 weeks after
age of independence [44]

Age- and sex-specific average
annual mortality (%)

0 year: 35.9 (M); 60.1 (F)
1 year: 86.4 (M); 80.9 (F)
2 years: 58.8 (M); 84.6 (F)
3 years: 43.9 (M); NA (F)

For animals aged <4 years,
selection from normal

distribution where mean=
initial age- and sex-specific

mortality rate and SD = 0.05 ×
mortality rate

For animals aged ≥4 years,
selection from uniform

distribution, range: 40-95

Derived from population age
distributions in [44]

Gestation period 7 weeks 7 weeks [46]

Distribution of birthing date mean = week 27 (first week of
July), SD = 2 weeks

1st birth peak: mean = week
27 (first week of July), SD = 2

weeks
2nd birth peak (if present):

week 1 (first week of January),
SD = 2 weeks

Derived from birth
distribution in [44]

Number of annual birth peaks 1 2 if maternal care period
allows it, 1 otherwise [44]

Prevent mating of siblings? No No No published data suggesting
such a mechanism

Female juvenile birth
probability 50 50 [47]

Female adult birth probability 100 100 [47]
Average litter size +/−

variance 4 +/− 4 4 +/− 4 [44,48]

Litter M:F sex ratio 1:1 1:1 [44]
Weeks when dispersal is

permitted Week 19 (2nd week of May) Week 19 (2nd week of May) [49]
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Table 1. Cont.

Parameter Initial Value
(Population Growth) Value Reference

Age- and sex-specific
dispersal distance

For both sexes and all ages:
50% probability of moving 1

cell;
50% probability of moving 2

cells

Gamma distribution with:
Juveniles: Mu range: 1–10;

scale range: 0.1–10
Adult females: Mu = 1, scale

range: 0.1–10
Adult males: Female

movement distribution × 1.46

Derived from [50,51]

Probability of interaction with
animals from neighboring

cells

For both sexes: 22% (constant
throughout the year)

Probability obtained based on
home range sizes ranging
from 0.01 km2–0.5 km2 for
females. Multiplying factor

for male home range:
2.05–2.48.

[51]

Epidemiological parameters

Distribution of rabies
incubation period NA

1 week: 25%
2 weeks: 25%
3 weeks: 25%
4 weeks: 25%

Computed from empirical
data presented in [7]

Duration of rabies infection
period NA 2 weeks Computed from empirical

data presented in [7]
Rabies transmission

coefficient (probability of
transmission given a contact

between infectious and
susceptible individuals)

NA Range: 1–100% No published data

Rabies-induced mortality NA Range: 1–100% No published data

Initial infection location NA 3 adjacent cells randomly
selected on landscape

No published data; rabies
introduction in islands

considered isolated events

Initial infection prevalence NA Range: 50–100%
No published data; rabies

introduction in islands
considered isolated events

Time of initial infection NA 1st week of 5th year of
simulation

Rabies introduced following
time required for population

size to adjust to landscape
carrying capacities

2.1.1. Landscape

The baseline landscape (Figure 1) was built by partitioning the main island of Puerto
Rico (9104 km2) into 1 km2 hexagonal cells using the ORM_Landscape plugin in QGIS
2.18.20 [52]. This cell size represents the order of magnitude of maximal mongoose home
range estimations [34]. We chose to model mongoose rabies on Puerto Rico because rabies
is endemic in the mongoose population on this island, and most recent available empirical
data on mongoose ecology is from this island (habitat-specific densities [6,33], rabies-virus
serology [6], home ranges [34]). Five habitat types (semi-wooded, heavily wooded, open
grassland, wetlands, and developed or barren land) were defined on the island based
on resampling of the USGS National Land Cover Database 2001 [53] (Appendix A). The
proportion of those five habitat types in each hexagonal cell was determined using the
Zonal statistic plugin in QGIS. Individual cell carrying capacities for the baseline landscape
were calculated as the sum of the product of the proportion of the cell covered by each
habitat type and its associated habitat-specific carrying capacity (Table 1). Areas where
elevation from sea level was ≥300 m (Figure 1b) were considered as potential barriers to
mongoose dispersal [43] using a partial resistance to animal movement (Table 1).
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mating pair and grown for 150 model years, which allowed population abundance on the 
landscape to stabilize. The resulting population was then used as the starting population 
for uniquely parametrized model simulations. This ensured that all simulations started 
with the same conditions before the unique parametrization of each model simulation 
changed model dynamics. At the beginning of each simulation trial, the model was run 
for five years prior to rabies introduction to allow population levels to adapt to the new 
cell carrying capacities associated with the trial. 

On the first week of the fifth model year of the simulation, 95% of animals from three 
randomly selected, adjacent cells were infected with rabies. This represented 22.4 ± 0.7 
animals/cell initially infected. The model was then run for a period of 25 model years to 
allow enough time for rabies to spread through the landscape and be regulated by disease 
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Figure 1. Experimental landscape of 203 × 134 one-km2 hexagonal cells representing the Puerto Rico main island. (a) Cell
mongoose carrying capacities are the sum of the product of the proportion of the cell covered by each habitat type (derived
from the USGS National Land Cover Database 2001 [53]) and its associated habitat-specific carrying capacity (Table 1).
(b) Areas where elevation was ≥300 m (dark cells) were considered as potential barriers to mongoose dispersal.

2.1.2. Initial Population

A mongoose population was generated on the baseline landscape initiated by a single
mating pair and grown for 150 model years, which allowed population abundance on the
landscape to stabilize. The resulting population was then used as the starting population
for uniquely parametrized model simulations. This ensured that all simulations started
with the same conditions before the unique parametrization of each model simulation
changed model dynamics. At the beginning of each simulation trial, the model was run for
five years prior to rabies introduction to allow population levels to adapt to the new cell
carrying capacities associated with the trial.

On the first week of the fifth model year of the simulation, 95% of animals from three
randomly selected, adjacent cells were infected with rabies. This represented 22.4 ± 0.7
animals/cell initially infected. The model was then run for a period of 25 model years to
allow enough time for rabies to spread through the landscape and be regulated by disease
dynamics associated with the trial characteristics (Figure 2).
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Figure 2. Conceptual workflow of Ontario Rabies Model (ORM) simulations and uncertainty analysis performed in this study.

2.1.3. Input Parameters

Values for biological and epidemiological input parameters were determined based
on published empirical data for the small Indian mongoose in the Caribbean. Parameters
for which sufficient knowledge was available from the literature were defined as fixed
parameters and assigned a constant value across all simulations (Table 1). Parameters
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for which significant uncertainty remains in current published studies were selected for
uncertainty analysis. Ten model parameters were included in the uncertainty analysis:
habitat-specific carrying capacities, effect of elevation on mongoose dispersal, age of
independence and adulthood, age- and sex-specific annual mortality rates and dispersal
distances, home range size, rabies transmission coefficient, rabies-induced mortality, and
location and prevalence of initial rabies infection. These parameters represent the variables
for which the effect of uncertainty from the literature on simulated rabies dynamics was
assessed in this study.

2.1.4. Parameter Value Sampling

For each variable parameter (n = 21), a probability distribution function (PDF) was
determined based on data from reviewed literature, and a value was sampled from that
PDF for each model simulation (Tables 1 and 2). This procedure was repeated to generate a
total of 500 unique parameter sets by Monte Carlo sampling. To account for stochasticity in
model processes and outcomes, each parameter set was iterated five times using different
starting seeds, for a total of 2500 model runs. Preliminary simulations indicated that five
iterations were sufficient to capture the range of variation in model output attributable to
stochasticity (Varstochasticity). Specifically,

Varstochasticity =
CViter
CVsim

(1)

where CViter and CVsim represent the coefficient of variation (CV) calculated among itera-
tions of a same model parametrization and across all simulations, respectively. Varstochasticity
was <0.15 for both duration of the rabies outbreak and time for the outbreak to cross half
the length of the landscape.

2.1.5. Output Variables

Outputs from the ORM were modelled as functions of simulation variable input parame-
ters to assess landscape, biological, and epidemiological factors affecting the outcome of the
epidemiological model. Six variables describing different aspects of the disease response to
the model parametrization were extracted from the simulation output (Table 2).

Table 2. Model output parameters used as response variables in the uncertainty analysis.

Variables Type of Variable Description Distribution No. var 1(P) No. Models n Varstochasticity

Persistence Logical (binary)

Whether rabies persisted (1) or
not (0) from initial infection

through the end of the
25-years simulation.

Multinomial
logistic

regression
(package nnet

[54])

20 131,072 2500 0.1173 2

%exposed Proportion

Proportion of the total
population that was exposed
to rabies and recovered from
the infection at the end of the
25-years simulation (overall

indicator of outbreak severity)

Binomial 22 1,262,144 1614 0.3099

TimeToCross Latency time

Time (weeks) since initial
infection for the disease to

extend to half the length of the
study area (measures the

severity of the initial outbreak)

Gamma 23 1,408,579 2282 0.0842

MaxInfect Positive integer
(count)

Maximal number of rabies
cases that occurred during any
week of the simulation (overall
indicator of outbreak severity)

Negative
binomial 21 131,072 2499 0.0993
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Table 2. Cont.

Variables Type of Variable Description Distribution No. var
1(P)

No.
Models n Varstochasticity

InfectY1 Positive integer
(count)

Total number of rabies
cases one year after the

initial infection.

Negative
binomial 22 262,144 2499 0.0998

InfectSpatVM Positive numeric

Mean: variance ratio for
the number of infected
animals per cell (spatial

measure of diseased
population dynamics)

Gamma 25 262,144 1573 0.1388

1 Number of significant variables retained from the p-value > 0.2 criteria; 2 Computed for outbreak duration in years as variation coefficients
could not be calculated for the logical persistence variable.

2.2. Uncertainty Analysis

Thirty-four input variables describing the various aspects of the ORM parametrization
were calculated (Table 3). Values directly sampled for model parametrization could not
be used for this purpose because they would not have represented the model processes
by themselves. For example, the average habitat carrying capacity (Kmean, Table 3) and
carrying capacity coefficient of variation (Kcv) over the landscape emerged from the
baseline K value used for the semi-wooded habitat, in combination with all coefficients
used for the other habitat types during model parametrization, and represent attributes of
model input parameters that are susceptible to directly influence rabies dynamics during
simulation. The input variables integrated as fixed effects (Table 3) in the model selection
detailed below were chosen because they described an emerging biological, behavioral, or
epidemiological process that varied across simulations run in this study.

Table 3. Variables considered as potential fixed effects in the model selection procedure aimed at identifying the ORM input
parameters that are most influential for model output.

Variable Description

Landscape-related variables

Kmean Average cell carrying capacity on the landscape
Kcv Coefficient of variation of cell carrying capacities over the landscape

Resist_elev
Resistance to incoming and outgoing movement (%) among cells where elevation ≥300 m above sea level,

representing the impermeability index of the barrier to mongoose dispersal associated with landscape
elevation

K_init_infect Sum of the carrying capacities from the three cells where the initial rabies infection occurred

Animal movement variables

YOY_Max_Mvt Young of the year maximum annual movement distance allowed
Adult_Max_Mvt Adult maximum annual movement distance allowed
YOY_mvt_0pc

YOY_mvt_25pc
YOY_mvt_50pc
YOY_mvt_75pc
YOY_mvt_90pc

Young of the year 0th, 25th, 50th, 75th, and 90th percentiles of annual movement distance allowed

Adult_mvt_25pc
Adult_mvt_50pc
Adult_mvt_75pc
Adult_mvt_90pc

Adult 0th, 25th, 50th, 75th, and 90th percentiles of annual movement distance allowed

Prob_OHC_M
Prob_OHC_F

Sex-specific weekly probability of being outside home cell (i.e., interacting with individuals from a
neighboring cell)
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Table 3. Cont.

Variable Description

Demographic variables

Nb_birth_peaks Number of annual birth peaks

Age_ind Age (weeks) at which young of the year become independent from their mother and undergo demographic
processes independently

YOYM_mortality
1yrM_mortality
2yrM_mortality
3yrM_mortality
4yrM_mortality
YOYF_mortality
1yrF_mortality
2yrF_mortality
3yrF_mortality
4yrF_mortality

Sex- and age-specific annual mortality rates for animals aged <1, 1, 2, 3, and 4 years old

Epidemiological variables

Rab_spread_rate Probability of an individual transmitting rabies when interacting with a conspecific
Rab_mortality Rabies-induced mortality rate
Init_infect_x
Init_infect_y

Vertical (y) and horizontal (x) distance (no. of cells) from the landscape center point where the initial rabies
infection occurred

N_init_infect No. of animals infected by the initial rabies infection

Model Selection

We fitted generalized additive models (GAM) to the response variables using distribu-
tion families relevant to the variable considered (Table 2; mgcv package [55]). Fixed effects
(n = 33) considered for all six models represented ORM input parameters that were varied
across simulations (Table 3). Running individual GAMs for each possible combination of
fixed effects would have resulted in erroneous models because (1) some of the covariates
were uninformative for the response variable considered, (2) some fixed effects were corre-
lated with one another, and (3) this would have led to candidate model sets comprising
>8.5 billion models. Therefore, we adopted a sequential explanatory modeling approach
allowing for unsupported variables to be eliminated.

The first step aimed at identifying covariates exerting some degree of influence on
model output parameters using the null hypothesis testing approach [56]. Each fixed-
effect variable was introduced as a linear term in univariate models, and only those
having coefficient p-values <0.2 were retained in the fixed effect list for further steps [56].
This allowed the elimination of uninformative covariates, while conservatively keeping
covariates displaying some degree of statistical support.

In a second step, we selected whether covariates were linearly or non-linearly related
to the response variable. We fitted each retained fixed effect as a smooth term using thin
plate regression splines as the smoothing basis and a maximal basis dimension of five in
single variable GAMs. By definition, effective degrees of freedom (edf) equal one when
the model penalizes a smooth term to a first-order linear relationship [55], fixed effects
resulting in rounded smooth terms with edf ≤1 and >1 are considered to be linearly and
non-linearly correlated to the response variable, respectively. Fixed effects linearly related
to the response variable were thereafter introduced as linear terms rather than smooth
terms in the GAMs, optimizing computational time and allowing for the estimation of their
regression coefficient. Non-linear effects were reintroduced as smooth terms in further
steps, with their basis dimension limited to their edf+1 from univariate models to avoid
overfitting of smooth terms in multivariate models.

Because interdependence among explanatory covariates hampers model selection and
regression parameter estimations [57–59], our third step consisted of detecting collinearity
between pairs of covariates. Pairwise Pearson coefficients were computed for each pairwise
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combination of fixed-effect variables, and variable pairs with coefficients >0.6 were consid-
ered as significantly correlated. The aim of the present study was not to build models to
be used for inference, but rather to identify the most influential variables shaping disease
dynamics in an epidemiological model. Thus, we did not combine intercorrelated variables
by principal component analysis (PCA), but opted to design our candidate model set such
that only independent covariates were introduced together into multivariate models.

In a fifth step, we performed model selection using a sequential, information-theoretic
approach [60]. The candidate set of GAMs included all possible combinations of uncorre-
lated fixed effects. No interaction term was included at this step to avoid exponentially
increasing the size of the candidate model set by fitting interactions among variables not
represented in top ranked models. To be considered as significantly improving a model, a
given variable had to reduce the Akaike information criterion (AIC) by at least two points
compared to the simpler model excluding the variable [60]. The model with the lowest
AIC in which all covariates significantly improved the fit was retained as the top model of
the candidate set [61]. This model-selection procedure was repeated independently for all
six response variables investigated.

In a sixth step, fixed effect combinations ecologically or epidemiologically susceptible
to interfering with one another were considered as potential interaction terms. These were
restricted to the following: mongoose densities (Kmean and Kcv) and rabies transmission
(Rab_spread_rate); movement distances, location of initial infection (Init_infect_x and
Init_infect_y), and resistance to movement associated with elevation (Resist_elev); young-
of-the-year (YOY) movement distances and age of independence; probability of being
outside the home cell (Prob_OHC_M and Prob_OHC_F), Rab_spread_rate, and size of
initial outbreak (N_init_infect); YOY natural mortality and the number of annual birth
peaks; and sex- and age-specific natural mortalities and rabies-induced mortality.

For each response variable, a second set of candidate models was built, which con-
tained the top ranked model from step 5 to which all potential interaction terms among
fixed effects represented in the model were added. This candidate model set also con-
tained all combinations of nested models resulting from this “top ranked + all interactions”
model. Interactions among linear terms were introduced as regular linear interactions (i.e.,
x1 × x2), while interactions between a smooth term and a linear term were introduced
using the ‘by’ argument when defining the smooth in the GAM formulae. Lastly, inter-
actions among smooth terms were represented using tensor product interactions (the te
function from the mgcv package), where dimensions of the different bases (k argument in
te function) were set to their respective smooth term k+1 value from the model without
interactions [55]. As described above, the model with the lowest AIC in which all covariates
and interaction terms significantly improved the fit was retained as the top model for each
answer variable.

Data formatting and analysis was performed in the R environment [62]. Results are
presented as means± standard errors (SE), unless otherwise stated. Statistical significance
was set at p < 0.05.

3. Results

An epidemiological model adequately representing the mongoose rabies system is
minimally expected to allow rabies to persist over time on the landscape, and result in a
proportion of exposed animals no higher than what is observed in the field (i.e, rabies-
virus-neutralizing antibodies (RVNA) seroprevalence <40%; [5,6,63]), combined with a low
rabies infection prevalence. Those conditions were met in 906 (36.2%) of the simulations
in this study. Among those 906 simulations, other output variables describing the rabies
outbreak were highly variable (Figure 3) and most of this variation was attributable to
model parametrization rather than to inter-iteration stochasticity (Table 2).
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Duration of rabies outbreaks varied from zero to 24 years (mean = 19.4 ± 0.1, n = 2500).
We defined “rabies persistence” as the occurrence of new rabies cases during every year
of the 24-year-long simulation. Rabies persistence was observed in 1577 (63.1%) of the
simulations. In simulations where rabies persisted, the proportion of populated cells
hosting at least one rabid mongoose at the end of the simulation ranged from 0.01 to 36.82%
(mean = 7.34 ± 0.09%, n = 1577), while the proportion of the total population that had
been exposed to rabies in the course of their lifetime measured at the end of the simulation
ranged from 0 to 94.9% (mean = 34.7 ± 6%, n = 1614). When the rabies outbreak expanded
to at least 50% of the length of the study area, it took between 1 and 506 weeks to do
so (mean = 175.3 ± 0.9 weeks, n = 2282). While the maximum weekly number of rabies
cases (MaxInfect) ranged between 2 and 266 210 (mean = 45 552 ± 959, n = 2499), the
number of cases one year after the initial infection (InfectY1) varied between 0 and 127 419
(mean = 22 213 ± 371, n = 2499). Finally, the spatial variance:mean ratio of infected animals
(InfectSpatVM) ranged between 1.7 and 175.9 (mean = 49.6 ± 0.7). Since all six output
variables displayed considerable variation, they were each used as response variables in
GLMs with the aim of identifying which model input parameters contributed most to
this variation.

The model selection procedure used in this study resulted in the selection of a single
best model for each of the response variables (Table 4). All output variables examined
were best explained by a combination of at least five response variables, including at least
one movement, demographic, and epidemiological variable (Table 4). In addition, the
best model describing the probability of rabies persisting in the population (Persistence),
maximal weekly rabies incidence (MaxInfect), number of cases one year after the initial
infection (InfectY1), the spatial variance:mean ratio of infected animals (InfectSpatVM) and
the proportion of cells containing infected animals (%cell_infect) also included at least one
landscape variable (Table 4).
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Table 4. Response (model output) and predictor (model input) variables used in the uncertainty analysis. Plus (+), minus (−),
and nl indicates that the predictor was represented in the top-ranked model retained from the model selection procedure,
and positively, negatively, or non-linearly correlated to the response variable, respectively. The asterisk represent an
interaction between variables.

Response
Variables Persistence %Exposed TimeTo Cross InfectY1 MaxInfect Infect

SpatVM

Landscape
variables

Kmean nl nl nl
Kcv nl +

K_init_infect
Resistance_in/out nl nl

Animal
movement
variables

YOY_mvt_0pc
YOY_mvt_25pc
YOY_mvt_50pc
YOY_mvt_75pc
YOY_mvt_90pc − + +
YOY_Max_mvt nl +
Adult_mvt_25pc + + +
Adult_mvt_50pc
Adult_mvt_75pc + nl
Adult_mvt_90pc +
Adult_Max_Mvt
Prob_OHC_M −
Prob_OHC_F + nl

Demographic
variables

Nb_birth_peaks + + −
Age_ind − nl nl + - nl

YOYM_mortality − −
1yrM_mortality nl nl
2yrM_mortality
3yrM_mortality + nl
4yrM_mortality nl
YOYF_mortality nl nl − −
1yrF_mortality nl nl −
2yrF_mortality
3yrF_mortality +
4yrF_mortality −

Epidemiological
variables

Rab_spread_rate − nl nl nl nl
Rab_mortality nl nl
Init_infect_y + nl
Init_infect_x nl nl
N_init_infect + nl nl

Interaction
terms none

YOY_mvt_90pc*
Age_ind

4yrM_mortality*
YOYF_mortality*
1yrF_mortality

*
Rab_mortality

Prob_OHC_F*
N_init_infect none

Adult_mvt_75pc*
Resis-

tance_in/out
YOY_mvt_90pc*

Age_ind

Kmean*
Rab_spread_rate

The probability of rabies persisting in the population throughout the 25-year simula-
tion was favored by intermediate habitat carrying capacities (Kmean) and intermediate
resistance to movement associated with elevation, as well as high spatial heterogeneity
in local (i.e, inter-cell) mongoose densities (Kcv; Figure 4). Moreover, rabies persistence
was more probable when the initial infection occurred away from the island center on the
North–South axis (Appendix C). Low female natural mortality, rabies-induced mortality,
and rabies transmission rates facilitated rabies persistence (Figure 4, Appendix C). Rabies
persistence also increased with distances moved by most sedentary mongooses on the
landscape (ADL_movt_25pc; Appendix C). In contrast, large-scale movement by YOY
(YOY_mvt_90pc) and delayed age of independence negatively affected rabies persistence
(Appendix C).
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The time for the outbreak to cross half the length of the study area (TimeToCross)
decreased with increasing distance moved by less mobile animals on the landscape
(ADL_movt_25pc; Appendix C), suggesting that movement, even by most sedentary
mongooses, facilitated transmission and played an important role in rabies spatial dynam-
ics. Rapid progression of the rabies outbreak across the landscape was also favored by early
ages of independence and low male yearling mortality (Figure 5), indicating that YOY and
yearling mongooses were major contributors to rabies spread on the landscape. The rabies
outbreak wave front travelled exponentially faster across the island as rabies transmission
rates increased from zero to approximately 40% but further increases in rabies transmission
rate had little impact (Figure 5). The severity of the initial infection (n_init_infect) was posi-
tively correlated with the speed of the rabies spatial spread, an effect that was influenced
by local inter-specific contact rates among female mongooses (Prob_OHC_F). Finally, the
rabies outbreak travelled faster across the island when the initial infection took place at a
minimal distance from the island’s geographic center (>50 km; Figure 5), but not so close
to the island coasts as to allow spatial spread in both directions on the East–West axis.

The maximal weekly rabies prevalence (MaxInfect) reached during the 25-year simula-
tions was positively correlated with both adult and YOY dispersal distances, as well as the
number of annual birth peaks, but negatively correlated with YOY and yearling mortality
and age of independence (Appendix C). Increasing numbers of cases introduced as the
initial infection (n_init_infect) lead to greater maximal weekly prevalence, but this effect
plateaued at approximately 175 cases (Figure 6). The only landscape variable represented in
the MaxInfect best model was the inter-cell resistance to movement associated with eleva-
tion (Resist_elev), with intermediate resistance values allowing greater infection prevalence.
In contrast, rabies prevalence one year after rabies introduction on the landscape (InfectY1)
was positively correlated with the average landscape carrying capacity (Kmean) and highly
dependent on the location of the initial infection (Figure 7). InfectY1 also increased with
greater distances traveled by less-mobile mongooses on the landscape (ADL_movt_25pc),
low female YOY mortality, and delayed age of independence (Appendix C). Lastly, increas-
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ing rabies transmission rate from 0 to approximately 50% resulted in higher InfectY1, but
this effect plateaued at greater transmission rates (Figure 7).
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Figure 6. Effects of variation in model parameter values on the maximal number of infectious animals on the landscape at
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the GAM. Only smooth terms are shown.

The InfectSpatVM is defined as the mean number of rabies cases per cell divided by
inter-cell variance. High levels of InfectSpatVM therefore represent high rabies prevalence
over the landscape, as well as low spatial heterogeneity. This variable was positively
affected by the average cell carrying capacity across the landscape (Kmean), as well as
high rabies transmission rates, delayed offspring independence, and high female YOY
survival. InfectSpatVM was also greater in simulations where there was only one birth
peak annually, compared to two birth peaks. Surprisingly, InfectSpatVM was positively
correlated with the level of spatial heterogeneity in mongoose densities over the landscape
(Kcv). This suggests that high heterogeneity in mongoose densities over the landscape
increases average rabies prevalence to a point where this effect overrides the increased
spatial heterogeneity in rabies cases per cell.

The proportion of exposed animals (i.e., that were infected by rabies and recovered) on
the landscape by the end of the 25-year simulation (%exposed) depended on a combination
of animal movement variables, including inter-specific contact rates (Prob_OHC), as well
as demographic and epidemiological variables (Appendix C). Notably, rabies-induced
mortality alone explained 75.2% of the deviance in the %exposed models (Figure 8). Inclu-
sion of additional covariates, especially terms interacting with rabies-induced mortality,
resulted in a model with an explained deviance of 89.7%. No landscape variable was
retained in the top ranked models for %exposed, indicating that disease characteristics
and, to a lesser extent, animal behavior and life history outweigh any potential influence of
spatial distribution of mongooses on individual probability of exposure to rabies.



Viruses 2021, 13, 323 16 of 27

Viruses 2021, 13, x FOR PEER REVIEW 17 of 28 
 

 

with the level of spatial heterogeneity in mongoose densities over the landscape (Kcv). 
This suggests that high heterogeneity in mongoose densities over the landscape increases 
average rabies prevalence to a point where this effect overrides the increased spatial het-
erogeneity in rabies cases per cell. 

The proportion of exposed animals (i.e., that were infected by rabies and recovered) 
on the landscape by the end of the 25-year simulation (%exposed) depended on a combi-
nation of animal movement variables, including inter-specific contact rates (Prob_OHC), 
as well as demographic and epidemiological variables (Appendix C). Notably, rabies-induced 
mortality alone explained 75.2% of the deviance in the %exposed models (Figure 8). Inclusion 
of additional covariates, especially terms interacting with rabies-induced mortality, re-
sulted in a model with an explained deviance of 89.7%. No landscape variable was re-
tained in the top ranked models for %exposed, indicating that disease characteristics and, 
to a lesser extent, animal behavior and life history outweigh any potential influence of 
spatial distribution of mongooses on individual probability of exposure to rabies. 

 
Figure 8. Effect of rabies mortality rate on the proportion of the mongoose population exposed to 
rabies 24 years after rabies introduction in the mongoose reservoir. Black and gray lines represent 
predicted values and 95% confidence intervals from the top-ranked model retained for the %Ex-
posed output variable (see Appendix B for details). 

4. Discussion 
In this study, we parametrized a spatially-explicit individual-based model for the 

mongoose rabies system. Our epidemiological model is a valuable tool for rabies manage-
ment, providing a platform to compare the potential outcomes of different infectious dis-
ease control methods including vaccination, population reduction and fertility control 
[42]. However, our ability to simulate rabies control strategies is currently limited by un-
certainties related to model parametrization. We thus performed an uncertainty analysis 
designed to examine the implications of current knowledge gaps related to mongoose 
ecology, behavior, and rabies dynamics. Our analysis revealed important variation in six 
output variables considered, which was markedly greater among simulations than within 
iterations. This indicates that variation in model output is mostly attributable to the pa-
rameter ranges, rather than to stochasticity inherent to the model. Moreover, certain sim-
ulations led to unrealistic results (e.g., rabies not persisting), highlighting the need to re-
fine model parametrization. Future empirical studies providing data on key drivers of 
mongoose rabies dynamics identified in this study would thus increase the value of epi-
demiological modeling as a tool supporting mongoose rabies control and management. 

Figure 8. Effect of rabies mortality rate on the proportion of the mongoose population exposed to
rabies 24 years after rabies introduction in the mongoose reservoir. Black and gray lines represent
predicted values and 95% confidence intervals from the top-ranked model retained for the %Exposed
output variable (see Appendix B for details).

4. Discussion

In this study, we parametrized a spatially-explicit individual-based model for the
mongoose rabies system. Our epidemiological model is a valuable tool for rabies man-
agement, providing a platform to compare the potential outcomes of different infectious
disease control methods including vaccination, population reduction and fertility con-
trol [42]. However, our ability to simulate rabies control strategies is currently limited by
uncertainties related to model parametrization. We thus performed an uncertainty analysis
designed to examine the implications of current knowledge gaps related to mongoose
ecology, behavior, and rabies dynamics. Our analysis revealed important variation in
six output variables considered, which was markedly greater among simulations than
within iterations. This indicates that variation in model output is mostly attributable to
the parameter ranges, rather than to stochasticity inherent to the model. Moreover, certain
simulations led to unrealistic results (e.g., rabies not persisting), highlighting the need
to refine model parametrization. Future empirical studies providing data on key drivers
of mongoose rabies dynamics identified in this study would thus increase the value of
epidemiological modeling as a tool supporting mongoose rabies control and management.
To this effect, in Table 5 we provide specific recommendations regarding empirical ap-
proaches and study design specificities (variables to measure, sampling design) that would
provide optimal contributing data to increase our current knowledge of the mongoose
rabies system by addressing the most influential parameters on rabies dynamics identified
by the uncertainty analysis described in the study.

4.1. Landscape Variables

Landscape variables were retained in regression analyses modeling rabies persistence,
total number of cases one year after the initial infection (InfectY1), and InfectSpatVM
(Table 4). Among landscape variables, the average habitat carrying capacity was the
most frequently retained, followed by inter-habitat density variation and resistance to
movement associated with elevation. Interestingly, mongoose carrying capacity at the
location of the initial rabies outbreak was not retained in any models. This suggests that the
distribution of mongooses at the landscape scale has a greater influence on rabies dynamics
than fine-scale habitat characteristics of the location of rabies introduction. Thus, reliable
habitat-specific mongoose densities combined with island land cover data from rabies-free
Caribbean islands may be sufficient to investigate probability of rabies persistence and
spatial dynamics in the mongoose reservoir if rabies was introduced. In our study, a broad
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range of island-wide mongoose averaged densities (0.13–0.74 animals/hectare) enabled
rabies persistence. This is consistent with the theory that rabies persistence in Puerto Rico
is possible across the range of mongoose densities previously reported [33].

Cell carrying capacities used in this study were derived directly from habitat-specific
mongoose density estimates from field studies in the Caribbean, ranging from 0.19 to
9.0 mongooses/hectare [32,33,48,64–66]. This difference in reported mongoose densities is
attributable to (1) differences among Caribbean islands associated with island biogeography,
(2) habitat-specific differences in resource availability, and (3) differences in experimental
design and analysis methods among published studies. Standardized density estimation
methods that account for differences across the various habitat types characterizing the
Caribbean landscape would eliminate this third source of variation in mongoose density,
thus refining island- and habitat-specific mongoose density estimates and increasing our
modeling capacity for the mongoose rabies system.

Resistance to movement associated with elevation affected both probability of rabies
persistence and the maximal weekly prevalence during the outbreak. To our knowledge, no
study has directly investigated the importance of elevation as a barrier to mongoose move-
ment. One study in Southeast Asia reported that although some small Indian mongooses
were observed at elevations up to 1200 m, most remained below 300 m [43]. However, small
Indian mongooses in Southeast Asia are sympatric with the crab-eating and short-tailed
mongooses, and distribution and niche patterns could partly result from inter-specific com-
petition [43]. As small Indian mongooses are the only small carnivore species occurring in
the Caribbean, they might not be under the same ecological pressures and could potentially
exploit suboptimal habitats such as elevations >300 m more commonly.

Although some Caribbean islands are relatively flat, others are characterized by
rugged terrain and towering volcanic mountain ranges. In Puerto Rico, the highest peak
rises to 1338 m and is part of La Cordillera Central, which occupies >30% of the main island.
Mongooses do occur in mountainous rainforests in the Caribbean, at densities similar or
lower to those observed in costal habitats [33,66–68]. Despite the widespread distribution
of the species, it is conceivable that the landscape on some Caribbean islands could shape
mongoose dispersal movement and home ranges. Accordingly, decades after introduction
of rabies into the wildlife reservoir in Puerto Rico, geographical segregation of virus strains
persists, suggesting a restrictive effect of La Cordillera on virus spatial distribution [11].

Mongoose rabies was reported in Dominican Republic (DR) but not in neighboring
Haiti [69], although these countries share a land boundary. Whether this is representative of
the epidemiological situation on Hispaniola Island, or a result of under-reporting of rabies
cases [69] and of the challenges experienced during trapping efforts targeting the Haitian
mongoose population [70] is not known. Mongoose densities in Haiti are likely lower
than those in DR due to extensive deforestation, and potentially insufficient to support
rabies persistence. Alternatively, five of the six peaks exceeding 2000 m in the Caribbean
are located on Hispaniola, and the central mountain range spans from northwestern
Haiti to the south coast of DR. Studies examining the influence of elevation on mongoose
movement and dispersal could provide valuable insights into the role of island topography
on mongoose rabies dynamics in the Caribbean, and allow the use of epidemiological
models to investigate the probability of rabies outbreaks occurring in a specific region
spreading across the island landscape and associated topographic barriers.
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Table 5. Model-guided fieldwork framework applied to the mongoose rabies system in the Caribbean: suggested empirical approaches and study design specificities (variables to measure,
sampling design) that would provide optimal contributing data to increase our current knowledge of the mongoose rabies system by addressing the most influential parameters on rabies
dynamics identified by the uncertainty analysis described in this study.

Landscape Variables Movement Variables Demographic Variables Epidemiological
Variables

Habitat-
Specific

Densities
(Kmean, Kcv)

Resistance to
Dispersal

Associated
with Elevation

YOY Dispersal
Adult

Fine-scale
Movement

Home Range
Size

Age of
Independence

Nb Annual
Birth Peaks

Age- and
Sex-Specific

Mortality

Rabies
Transmission

Rate

Capture/Mark/
Recapture

(CMR)

standardized
method

sampling in
different
habitats

sampling across
a topographic

gradient

standardized
method

sampling in
different
habitats

baited
automatic
cameras

monitoring
marked females

(presence of
pups)

female
reproductive
status upon

capture
(nursing,
pregnant)

baited
automatic
cameras

monitoring
marked females

(presence of
pups)

age estimation
(age distribution

curves)
survival

analysis from
CMR data

Telemetry

equipment of
animals in

mountainous
areas

equipment of
YOY

fine-scale
location (e.g.,

GPS data,
automated

passive
integrated

transponder
(PIT) tag
scanning)

sampling in
different
habitats

equipment of
pregnant
females

automated PIT
tag scanning

proximity
function

Genetics

genotype
comparisons of

populations
across

mountainous
landscapes
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4.2. Movement Variables

It is not surprising that YOY movement had greater influence than adult movement
on rabies dynamics in our study, since YOY were allowed to disperse up to ten times
further than adults (Tables 1 and 4). We opted for this differential parametrization among
age groups because, although natal dispersal by YOY small Indian mongoose has not
been described [49], it cannot be excluded given the lack of movement data for YOY mon-
goose [50,51]. The high heterogeneity in social systems among mongoose species advises
caution when inferring life-history and behavioral traits from related species [71]. Accord-
ingly, dispersal is mainly natal in dwarf mongooses [72], while banded mongooses mostly
disperse as young adults aged 1–3 years [73]. Fieldwork studies designed to characterize
natal dispersal in small Indian mongooses would allow refining the parametrization of
juvenile dispersal, and correspondingly enhance our capacity to reliably model rabies
dynamics in this species.

Extreme (i.e., 90th percentile and/or maximum) YOY movements were important
predictors for rabies persistence, %Exposed, TimeToCross and MaxInfect. This suggests
that long-distance juvenile dispersal events, even if uncommon, can have a major impact
on rabies dynamics. In contrast, movement distances of most sedentary adult animals
(25th distance percentile) were retained in more models than distances moved by highly
mobile adults (e.g., 90th percentile and maximum; Table 4). These results suggest age-class
specific roles in rabies dynamics, with YOY propagating the virus over long distances
and generating new outbreaks on the landscape during the epidemic phase, and adults
driving the local transmission and progression of the disease wave front. Interestingly, this
effect is similar to the vampire bat rabies system, where sex-biased dispersal results in a
disproportionate role of males in spatial spread of rabies between isolated populations [74].

Probability of being outside home cell (Prob_OHC) was positively correlated with
the proportion of the mongoose population exposed to the virus, and interacted with the
initial number of infected animals to determine spatial spread. This variable is derived
from the ratio between mongoose home range sizes and the size of cells forming the
virtual landscape. Mongoose home range estimates in the Caribbean vary greatly among
studies, from 1 ha to >50 ha [34,64,75,76]. Home ranges are 1.2 to 9.8 larger for males
than females [34]. Among these studies, methodologies used for home range estimation,
study duration, and habitat types varied considerably, making comparisons difficult.
Standardization of estimation methods and study site selection accounting for the different
Caribbean habitat types would therefore increase the accuracy and precision of mongoose
rabies dynamics simulations.

4.3. Demographic Variables

Among demographic variables, the age of juvenile independence was retained in top
ranked models for all six output variables, indicating that it influenced spatiotemporal dis-
tribution of rabies cases throughout the outbreak. Generally, early offspring independence
resulted in higher probabilities of rabies persistence, faster progression of the outbreak over
the landscape, and higher prevalence in the population. In our epidemiological model,
females that were infected with rabies automatically infected their dependent offspring.
When maternal care duration is extended, young that were infected from maternal expo-
sure have higher chances of going through the incubation and infectious periods during
their dependent phase. In contrast, when maternal care is short, a greater proportion
of juveniles are released into the general population during the incubation or infectious
phases. As reproduction is synchronous across the landscape, the end of the parental care
period can coincide with a massive release of new susceptible and infectious individu-
als into the population. Some of these animals are highly mobile due to natal dispersal,
allowing rapid spatial spread of the virus. Likewise, a greater number of annual birth
peaks resulted in increased exposure to the virus, higher maximal prevalence, and reduced
spatial heterogeneity in prevalence. This is not surprising, as the number of annual birth
peaks determines the frequency at which a cohort of juvenile mongooses is released into
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the population. Similarly, it was demonstrated that annual birth synchrony, via its effect on
intra-annual population size variation, can drive infectious disease dynamics, especially in
species with high demographic turnover [77].

In captivity, young mongooses follow their mothers until they are four to six months
of age [44]. To our knowledge, no study of free-ranging mongooses has estimated age
of independence. Given the influence of age of independence on every aspect of rabies
dynamics uncovered by our results, we suggest that further research on ontogeny of
parental care and social interactions in this species would be valuable. Similarly, the
possibility for female mongooses to breed twice a year in our model is based on the
observation that a captive individual on St. Croix produced two litters within a four
months interval, and on population reproduction data indicating that two to three birth
peaks occur annually [44]. It remains to be confirmed what proportion of females breed
more than once a year in the wild. Moreover, information on life-history traits, such
as whether survival of her litter influences female breeding activity and maternal care
allocation the following months has not been reported and would be valuable as it is likely
to have impacts on rabies dynamics within the population.

Juvenile and first year mortality rates were also important explanatory variables, with
female mortality retained more often in models than male mortality. The mongoose mating
system is promiscuous and males provide no parental care [44,71]. Given the importance
of recruitment for rabies dynamics detailed above, it is not surprising that female mortality
had greater influence than male mortality on model output. To our knowledge, natural
mortality rates among free-ranging mongooses have not been documented. Baseline
mortality values used to parametrize the model were inferred from an age structure
histogram from a mongoose study in St. Croix [44]. As mortality is likely to vary with
resource availability and intra- and inter-specific interactions, studies designed to monitor
mongoose survival in free-ranging populations from different Caribbean habitats could
improve our understanding of factors driving mongoose demographic dynamics.

4.4. Epidemiological Variables

At least one epidemiological variable was retained in all final regression models,
and the rabies transmission rate (Rabies_prob_spread) was the variable most frequently
retained. In our model, an infected animal interacts with all other animals within its
current cell, as well as with a proportion of individuals in the six adjacent cells [42]. Of
those interactions, a proportion (defined as Rabies_prob_spread) result in rabies trans-
mission. Therefore, the rabies transmission rate in our model represents two processes:
(1) the intra-specific contact rate among mongooses with overlapping home ranges, and
(2) the probability of an infected individual transmitting rabies given a significant contact.
Although it was reported that mongoose home ranges from both sexes extensively over-
lap [34,51], no study has quantified intra-specific contacts rates or rabies transmission rates
upon contacts in a free-ranging population. Such information, although difficult to obtain,
would greatly improve our ability to model mongoose rabies dynamics.

The prevalence and location of the initial rabies outbreak were also determinants
of several disease dynamics variables (Table 4). It may seem counterintuitive that the
rabies outbreak progressed more rapidly over the landscape and had higher probabilities
of persistence when the initial infection was located farther from the center of the island.
However, this might be attributable to the restrictive effect of the central Cordillera range
on rabies transmission, therefore providing additional evidence for the role of elevation
on mongoose rabies dynamics. In Puerto Rico, rabies was present in dogs and farm
animals as early as the 1930s, and abruptly emerged in mongooses in 1950 at different
scattered locations across the island [7]. Molecular evidence indicates that the virus was
independently introduced twice in the mongoose reservoir [11]. However, it is not possible
to identify the location where the initial mongoose infections took place and how many
individuals were initially affected. In the Caribbean, tourism and importation of companion
animals are likely mechanisms of canine rabies introduction [69]. Our study suggests that
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the modeling approach developed here could be applied to assess the risk that a localized
introduction event, occurring at various high-risk areas (e.g., ports, touristic cities, airports),
would result in rabies establishment on different Caribbean islands.

Rabies-induced mortality was an important determinant of disease persistence and of
the proportion of animals exposed on the landscape. Mongoose rabies has been endemic
in Puerto Rico, Dominican Republic, Cuba and Grenada since at least the 1950s [69]. In
this study, a broad set of mongoose demographic and life-history traits resulted in high
probabilities of rabies persistence on the landscape. However, rabies did not persist in any
simulation where rabies-induced mortality was >97%. This indicates that rabies persistence
among mongooses in the Caribbean depends on a certain level of nonlethal exposures, and
is otherwise robust to a range of pathological and ecological assumptions. This conclusion
is similar to that reported by Blackwood et al. [78], where rabies persistence in vampire bats
was primarily determined by frequent (around 90% of the population) immunizing but non-
lethal rabies exposures as well as immigration of infectious individuals from neighboring
populations. In contrast, lower frequencies of non-lethal exposure in mongooses may
facilitate rabies persistence in this rapidly reproducing species.

Although the probability of developing a lethal infection upon exposure is considered
much higher in carnivores than in bats [79], non-lethal exposure in mongoose rabies might
play a crucial role in the disease dynamics. This suggestion is supported by empirical
findings of relatively high prevalence of positive rabies RVNA in apparently healthy, unvac-
cinated mongooses in the Caribbean. RVNA seroprevalence ranging between 19.3–39.3%
were reported in Puerto Rico and Grenada [5,6,63], while prevalence of mongooses positive
for rabies virus was 1.7% [5] and 1.3% [80] in Grenada. In Puerto Rico, Berentsen et al. [6]
detected no active shedding of rabies virus in mongoose saliva (n = 147), despite a RVNA
prevalence of 39.3%. Levels of circulating RVNA from wild-caught mongooses were re-
ported to decrease over time, but persisted >35 months in some individuals [80]. However,
in the absence of appropriate cut-offs and long-term, species-specific studies examining
how long RVNA last in wildlife populations, the proportion of animals seropositive for
RVNA is unlikely to provide an accurate estimate of the prevalence of nonlethal rabies
exposure [81].

4.5. Study Limitations

Individual-based models are faced with a trade-off between computational complexity,
and ecological accuracy. Because mongooses are similar to raccoons in terms of movement
behavior and social system, parametrization of the ORM for the small Indian mongoose was
fairly straightforward. The main limitation was the high degree of uncertainty associated
with several parameters, as represented by the parameter ranges and distributions used in
the uncertainty analysis detailed in this study.

Nevertheless, some assumptions were made in the ORM that might affect model
output. Firstly, the model assumes that animal behaviors are the same year-round, and
that infected and infectious individuals behave like non-infected animals. This is un-
likely to be realistic, as rabid mongooses have been described to undertake unprovoked
attacks towards humans, to display altered circadian activity patterns, and to behave
aberrantly [7,44]. Such virus-induced aggression and behavior is likely to increase intra-
and interspecific contact rates in infectious individuals, and hence rabies transmission.
Moreover, in banded mongooses, dispersing individuals are more frequently involved
in aggressive interactions than individuals in established groups [73]. Quantification of
the influence of individual attributes such as age, movement, and epidemiological status
on mongoose behavior and activity would allow the incorporation of state-specific ani-
mal behavior in the ORM. Secondly, animal movement direction was random over the
landscape. However, mongooses are known to congregate to forage on anthropogenic
food sources and animal carcasses [51] with important potential consequences for rabies
transmission. Further quantification of mongoose fine-scale aggregation around locally
abundant resources could guide the integration of specific movements towards attraction
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points on the landscape, and thus improve capacity to accurately model the mongoose
rabies system.

5. Conclusions

This study suggests that additional knowledge related to mongoose densities, move-
ment, survival, and rabies epidemiology would considerably improve the parametrization
of epidemiological models of mongoose rabies in the Caribbean. The resilience of rabies per-
sistence to a broad combination of landscape, demographic, and life-history traits suggests
that elimination from the mongoose reservoir may be particularly challenging, reinforcing
the need for properly parametrized, reliable epidemiological models. We suggest that using
results from our study to design future ecological fieldwork would provide important data
to increase our capability to model mongoose rabies dynamics, and accordingly improve
our potential to use epidemiological models to simulate mongoose rabies control strategies
and guide management programs across the Caribbean. Knowledge gaps related to the
most influential parameters identified in our study provide useful targets for empirical
studies (Table 5) advancing the field of mongoose rabies research.
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Appendix A

Table A1. Habitat type definitions for the simulation landscape based on resampling of the USGS
National Land Cover Database 2001 [53]. Pixel codes used in resampling were assigned either one of
the five Caribbean terrestrial habitat types considered in this study.

Habitat Type Pixel Codes Used in Resampling Proportion of Puerto Rico Main Island (%)

Semi-wooden 52. Shrub/scrub 2.21
Heavily wooden 42. Evergreen forest 37.80

Open grass

21. Developed, open space
22. Developed, low intensity
71. Grassland/herbaceous

81. Pasture/hay
82. Cultivated crops

36.4

Wetlands 90. Woody wetlands
95. Emergent herbaceous wetlands 2.32

Developed or
barren land

23. Developed, medium intensity
24. Developed, high intensity

31. Barren land (rock/sand/clay)
11. Open water

21.24



Viruses 2021, 13, 323 23 of 27

Appendix B

Table A2. Top Akaike information criterion (AIC) ranked models satisfying the ∆AIC <2 criterion
predicting each of the seven output parameters examined for the uncertainty analysis. Model output
(response) and input (predictor) variables are detailed in Tables 3 and 4, respectively. The asterisk
represent an interaction between variables.

Response Variable Predictors AIC

Persistence

s(Kmean) + s(Kcv) + YOY_mvt_90pc + Adult_mvt_25pc
+ Age_ind + s(YOYF_mortality) + s(1yrF_mortality)

+s(4yrF_mortality) + s(Rab_mortality) + Rab_spread +
Init_infect_y + s(Resistance_in/out)

2946.73

%exposed

YOY_Max_mvt + te(YOY_mvt_90pc, Age_ind) +
Adult_mvt_75pc + Adult_mvt_90pc + Prob_OHR_M +
Prob_OHR_F + Nb_birth_peaks + YOYM_mortality +

s(1yrM_mortality) + 3yrM_mortality + 3yrF_mortality +
te(4yrM_mortality, YOYF_mortality, 1yrF_mortality,
Rab_mortality) + Rab_spread_rate + N_init_infect

19542698

TimeToCross
YOY_Max_Mvt + s(Age_ind) + s(1yrM_mortality) +

s(Rab_spread_rate) + s(N_init_infect, by = Prob_OHR_F) +
s(Init_infect_x)

6250585815

MaxInfect

YOY_mvt_90pc + Adult_mvt_25pc + Age_ind +
Nb_birth_peaks + s(3yrM_mortality) + YOYF_mortality +
1yrF_mortality + s(N_init_infect) + s(Resistance_in/out,

by= Adult_mvt_75pc) + YOY_mvt_90pc* Age_ind

58277

InfectY1 s(Kmean) + s(Init_infect_y) + s(Init_infect_x) + Age_Ind +
s(Rab_spread_rate) + YOYF_mortality + Adult_mvt_25pc 53425

InfectSpatVM te(Kmean, Rab_spread_rate) + Kcv + s(Age_ind) +
Nb_birth_peaks + YOYM_mortality 11968

Appendix C

Table 3. Parameter estimates and statistics for the top-ranked model predicting the six output variables extracted from the
Ontario Rabies Model (ORM) 25 simulated years after rabies introduction. The asterisk represent an interaction between
variables.

Response
Variable (Model

Output Variables)

Fixed Effects
(Model Input

Variables)

β (Linear terms)
or Edf (Smooth

Terms)

β SE (Linear
Terms)

Z Value (Linear
Terms) or χ2

(Smooth Terms)
p-Value

Time to cross

s(Rab_spread_rate) 2.995 - 12143.8 <0.0001
s(N_init_infect, by
= Prob_OHR_F) 2.942 - 912.1 <0.0001

s(Init_infect_x) 1.959 - 510.5 <0.0001
s(Age_ind) 1.889 - 219.6 <0.0001

s(M_motality_1yr) 1.452 - 139.2 <0.0001
YOYF_Max_mvt 4.39e-5 0.0000 19.18 <0.0001

Intercept 0.015 0.0005 28.39 <0.0001

Persistence

s(Rab_mortality) 2.970 - 165.240 <0.0001
s(Kcv) 2.946 - 41.836 <0.0001

s(F_mortality_1yr) 1.964 - 29.173 <0.0001
s(Kmean) 1.919 - 16.715 0.0004

s(YOYF_mortality) 1.656 - 23.476 <0.0001
ADLF_mvt_25pc 1.015 0.3148 3.213 0.0013

Age_ind -0.061 0.0184 −3.329 0.0009
YOYF_movt_90pc -0.045 0.0104 −4.326 <0.0001

Init_infect_x 0.010 0.0027 3.592 0.0003
F_mortality_4yrs -0.007 0.0029 −2.341 0.0192
Rab_prop_spread -0.005 0.0016 −2.897 0.0038

Intercept 2.824 0.4918 5.741 <0.0001
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Table 3. Cont.

Response
Variable (Model

Output Variables)

Fixed Effects
(Model Input

Variables)

β (Linear terms)
or Edf (Smooth

Terms)

β SE (Linear
Terms)

Z Value (Linear
Terms) or χ2

(Smooth Terms)
p-Value

%exposed

te(4yrM_mortality,
YOYF_mortality,
1yrF_mortality,
Rab_mortality)

190.982 - 94435503 <0.0001

te(YOY_mvt_90pc,
Age_ind) 23.998 - 994543 <0.0001

s(Rab_prop_spread) 3.000 - 947939 <0.0001
s(M_mortality_1yr) 1.998 - 138348 <0.0001
YOYF_max_movt 0.025 0.0001 251.84 <0.0001
ADLF_mvt_75pc 0.110 0.0005 201.12 <0.0001
ADLF_mvt_90pc 0.023 0.0004 53.49 <0.0001

Prob_OHR_M −0.007 0.0001 −67.27 <0.0001
Prob_OHR_F 0.037 0.0003 148.62 <0.0001

Nb_birth_peaks 0.400 0.0010 397.74 <0.0001
YOYM_mortality −0.013 0.0009 −135.04 <0.0001
3yrM_mortality 0.009 0.0000 95.49 <0.0001
3yrF_mortality 0.001 0.0000 59.22 <0.0001
N_init_infect 0.001 0.0000 154.22 <0.0001

Intercept −3.947 0.0195 −202.36 <0.0001

MaxInfect

s(3yrM_mortality) 2.605 - 20.16 <0.0001
s(N_init_infect) 2.556 - 161.05 <0.0001

s(Resistance_in/out,
by=

Adult_mvt_75pc)
2.971 - 37.70 <0.0001

Nb_birth_peaks 0.319 0.0780 4.087 <0.0001
ADL_mvt_25pc 0.314 0.1292 2.433 0.0150

YOYF_movt_90pc 0.080 0.0435 1.844 0.0651
YOYM_mortality −0.036 0.0076 −4.650 <0.0001
F_motality_1yr −0.013 0.0055 −2.388 0.0169

YOY_mvt_90pc*
Age_ind −0.004 0.0020 −2.141 0.0322

Age_ind –0.002 0.0243 –0.101 0.9195
Intercept 13.589 0.8470 16.045 <0.0001

InfectY1

Rab_spread_rate 2.924 - 383.830 <0.0001
s(Kmean) 1.991 - 1537.866 <0.0001

s(Init_infect_y) 1.972 - 383.033 <0.0001
s(Init_infect_x) 1.805 - 6.834 0.051
ADL_mvt_25pc 0.241 0.0864 2.793 0.0052

Age_Ind 0.0906 0.0061 14.813 <0.0001
YOYF_mortality –0.0224 0.0052 –4.332 <0.0001

Intercept 9.116 0.3450 26.422 <0.0001

SpatMV

te(Kmean,
Rab_spread_rate) 8.941 - 578.3 <0.0001

s(Age_Ind) 2.949 - 466.8 <0.0001
Kcv 1.195 0.0745 16.033 <0.0001

Nb_birth_peaks –0.138 0.0331 –4.175 <0.0001
YOYM_motality –0.007 0.0029 –2.457 0.0141

Intercept 3.634 0.1213 29.960 <0.0001
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