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Abstract: Understanding the amount of virus shed at the flock level by birds infected with low
pathogenicity avian influenza virus (LPAIV) over time can help inform the type and timing of
activities performed in response to a confirmed LPAIV-positive premises. To this end, we developed
a mathematical model which allows us to estimate viral shedding by 10,000 turkey toms raised in
commercial turkey production in the United States, and infected by H7 LPAIV strains. We simulated
the amount of virus shed orally and from the cloaca over time, as well as the amount of virus in
manure. In addition, we simulated the threshold cycle value (Ct) of pooled oropharyngeal swabs
from birds in the infected flock tested by real-time reverse transcription polymerase chain reaction.
The simulation model predicted that little to no shedding would occur once the highest threshold of
seroconversion was reached. Substantial amounts of virus in manure (median 1.5× 108 and 5.8× 109;
50% egg infectious dose) were predicted at the peak. Lastly, the model results suggested that higher
Ct values, indicating less viral shedding, are more likely to be observed later in the infection process
as the flock approaches recovery.

Keywords: avian influenza; epidemiology; mathematical modeling; outbreak management; poultry

1. Introduction

Low pathogenicity avian influenza (LPAI) can cause reduced egg production and
weight gain in infected birds, cause increased flock mortality, and impact the trade of
poultry and poultry products [1]. H5 and H7 LPAI virus (LPAIV) strains are of special
concern, as they have been known to mutate into highly pathogenic avian influenza (HPAI),
a devastating virus that can cause close to 100% mortality in an infected flock. Historically,
LPAI outbreak responses in the United States (U.S.) have used one of three strategies:
depopulation (on-site destruction of the birds on infected premises), controlled marketing
(maintaining birds on premises with heightened biosecurity until birds recover and are
sent to processing), and, though less common in the U.S., vaccination [1,2].

LPAIV has been documented to be spread by activities and movements of people,
especially due to direct contact with infected manure [1]. As such, heightened levels of
activity on a confirmed LPAI-infected premises can increase risk of virus transmission.
Halvorson, (2008) stresses the need to “do no harm” following detection of LPAI, and
provides case reports where depopulation was implicated in virus spread [1,3,4]. In order to
“do no harm,” the outbreak response must be carefully considered prior to any action taken.
The decision of whether to depopulate, do controlled marketing, or vaccinate depends
on many factors, including flock production considerations, local and regional outbreak
status, and biosecurity. This is a decision that must be carefully discussed between state
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and industry partners, and is most easily reached when each has a well-thought-out LPAI
outbreak plan.

An important tool for outbreak response is diagnostic testing by real-time reverse
transcription polymerase chain reaction (rRT-PCR), which can be used for detection and
monitoring of avian influenza virus in infected flocks [5]. Pooled samples of oropharyngeal
(OP) swabs from 11 birds tested by rRT-PCR are a common suggestion for surveillance.
Spackman et al. (2013) explain that 11 OP swabs from a flock of 10,000 or more birds
has been determined to be sufficient to achieve the National Poultry Improvement Plan
target of detecting 25% infection prevalence with 95% confidence [6]. The threshold cycle
(Ct) value derived from rRT-PCR testing can indicate the amount of virus in the sample.
Higher Ct values are associated with lower amounts of virus, and for most laboratories,
Ct values < 40 are considered positive [7]. Birds infected with LPAIV typically shed lower
amounts of virus as they approach recovery, and have weak-positive or negative LPAIV
rRT-PCR results with Ct values that are often between 35 and 40 [8,9].

Though it is understood that the individual birds in an infected poultry house shed
large amounts of virus, to our knowledge, no attempt has been made to quantify this
amount for LPAIV-infected poultry flocks. Only rarely has the amount of virus shed by an
infected flock been modeled for avian diseases in general [10]. Therefore, we developed
mathematical models to analyze flock shedding dynamics. The model was developed based
on largescale commercial turkey houses in the U.S., and H7 LPAIV strains. We simulated
the amount of oral and cloacal viral shedding with a stochastic disease transmission model
for a poultry house containing 10,000 turkey toms.

Viral shedding was simulated at the individual bird level, and allowed to vary over
time, diverging from the assumption in classical epidemiological models of constant
shedding during the infectious period [11]. The viral shedding model was extended to
(1) approximate the amount of virus in manure over time, and (2) estimate the likelihood
of observing higher (>30 and ≤40) and lower (≤30) threshold cycle (Ct) values following
testing of 11 OP swabs sampled from turkeys in the house by rRT-PCR. This was done to
investigate whether having LPAIV rRT-PCR results with Ct values approaching 40 could
be used as a flock-level indicator that a previously positive flock is nearing recovery. The
models were developed to provide insight into the transmission risk that infected flocks
pose following LPAIV exposure, and to inform appropriate outbreak response strategies in
order to minimize the risk of LPAI spread to other flocks.

2. Materials and Methods
2.1. Simulation of Virus Shedding over Time in a Turkey Flock

We simulated the amount of LPAIV shed in a house of turkey toms via oral and cloacal
routes over time using an individual-based stochastic disease transmission model. The
transmission model consisted of (1) a compartmental component that tracked the number of
birds in the following disease states: susceptible, latently infected, infectious, seroconverted,
dead, or recovered per simulation time step (set to 0.01 days); (2) a component that
simulated the amount of virus shed from oral and cloacal routes by infected birds per
simulation time step; and (3) a component that simulated the amount of infectious virus
in manure.

2.2. Simulation of Disease State Transitions

Specific methodology and parameterization of the compartmental component was
implemented as described in [12]. The outbreak was assumed to begin with a single latently
infected bird. The transition of turkeys from the susceptible to the latently infected state was
simulated from a binomial distribution where the probability of infection depended on the
adequate contact rate (transmission rate parameter), and proportion of infectious and alive
(susceptible, latently infected, infectious, and recovered) birds. Random numbers were
generated from distributions modeling the length of the latent, and infectious periods for
each infected bird that determined the transition times out of the latent and infectious states.
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Birds transition from the infectious state into either the recovered or dead state according
to a binomial distribution. The number of infected turkeys that seroconvert, i.e., develop
detectable antibodies, was also simulated from a binomial distribution. The transition of
infected birds into the seroconverted state was determined by a random number generated
from a distribution modeling the time between infection and seroconversion. A summary
of the algorithm is given by Algorithm 1.

Algorithm 1: Algorithm to simulate the number of birds in different disease states

1 Initialize a latently infected bird

2
Create arrays for the number of birds per time step in the disease states latently infected,
infectious, seroconverted, recovered, and dead

3 for all simulation time steps do
4 Simulate the number of birds infected during the previous time step
5 for all newly infected birds do
6 Simulate the number of time steps the bird is in the latent period
7 Simulate the number of time steps the bird is in the infectious period
8 Simulate whether the bird dies or recovers
9 Simulate whether or not the bird seroconverts

10 if the bird seroconverts then
11 Simulate the number of time steps until the bird seroconverts
12 end
13 Update disease state arrays
14 end
15 end

The length of the latent and infectious periods, and time to seroconversion were
all assumed to be gamma distributed. The shape and scale parameters of the gamma
distributions were estimated using a maximum likelihood estimation approach from data
obtained from experimental inoculations of turkeys in controlled settings [8,9,13–20]. The
experiments used to estimate the latent and infectious period distributions involved H5
and H7 LPAIV strains [8,9,13–16]. The experiments used to estimate the seroconversion
distribution involved H4, H6, H7, and H9 LPAIV strains, due to insufficient H5 and H7
antibody data [17–20]. The proportion of turkeys infected with LPAIV that die was set to 1%
based on mortality observed during the 2018 LPAI H5N2 outbreak in Minnesota [21]. The
proportion of turkeys that seroconvert was set to 99% based on the results of Spackman et al.
(2010) [8]. The adequate contact rate for a simulation iteration was drawn from a uniform
distribution with minimum 0.5, and maximum 4.0, based on the results of Bonney et al.
(2021) [12]. A summary of the transmission model parameters is given in Table 1.

Table 1. Input parameters for the Within House Turkey Tom LPAI Transmission Model.

Parameter Description Distribution/Value References

Adequate contact rate, the parameter that
determines the rate of disease transmission ~Uniform (min = 0.5, max = 4.0) [12]

Latent period length distribution ~Gamma (shape = 2.58, scale = 0.24); mean = 0.63 days,
standard deviation = 0.39 days [9,14,15]

Infectious period length distribution ~Gamma (shape = 4.04, scale = 2.92); mean = 11.78
days, standard deviation = 5.86 days [8,9,13–16]

Time from infection to seroconversion distribution ~Gamma (shape = 3.56, scale = 1.63); mean = 5.80 days,
standard deviation = 3.07 days [17–20]

Proportion of infected birds that die 0.01 [12]
Proportion of infected birds that seroconvert 0.99 [8]

2.3. Simulation of Viral Shedding

Viral shedding from oral and cloacal routes was simulated using experimental data
from two inoculation studies in order to capture potential differences in shedding between
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virus strains [8,9]. A different simulation approach was used for each study, depending on
the data characteristics.

The first method involved selecting data directly from a turkey inoculation experiment
performed by Iqbal et al. (2012) [9]. The data used from this experiment consisted of thirty
turkeys that had been inoculated or placed with birds that had been inoculated with
a H7N1 LPAIV strain collected in 1999 during an outbreak in Italy. Ten turkeys were
inoculated with a dose of 107.4 50% egg infectious dose per milliliter (EID50/ml), whereas
ten naïve turkeys were placed with ten turkeys inoculated with a dose of 103.8 EID50/ml.
The EID50/ml unit of measurement represents the amount of virus that will infect 50%
of inoculated eggs. Buccal and cloacal swabs were collected daily from the turkeys, and
tested by quantitative RT-PCR (qRT-PCR) to obtain the Ct value. The Ct was converted to
log10 EID50/ml using a standard curve [9].

The Iqbal et al. (2012) data were implemented into the transmission model as fol-
lows [9]. First, the data were prepared for use in the model. The amount of buccal and
cloacal shedding per simulation time step was estimated by linear interpolation between
observed data points. Contact turkeys were assumed to be infected one day prior to the first
positive test. In the transmission model, for each infected turkey, the shedding pattern of
an individual bird was selected at random from the data. Once the turkey transitioned into
the infectious period, the selected oral and cloacal shedding pattern per simulation time
period was added to the existing amounts to estimate a total for all the birds in the house.

In the second method, viral shedding was simulated from regression models fit to
turkey inoculation data from Spackman et al. (2010) [8]. Spackman et al. (2010) inoculated
turkeys with twelve North American H7 LPAIVs, where 13 to 15 turkeys were inoculated
per strain [8]. Oropharyngeal (OP) and cloacal swabs were taken 2, 4, 7, 10, and 14 days
post inoculation, and tested by qrRT-PCR. The Ct values were converted to log10 EID50/ml
using standard curves [8].

The experimental data were zero inflated because many birds did not shed virus every
day post inoculation. Therefore, two-part models were fit to the OP and cloacal swab
data to accommodate the intermittent shedding observed in the experiment. In a two-part
model, the observed data is treated as a mixture of the zero and nonzero components [22].
In the context of the Spackman et al. (2010) data, the probability that a bird does not shed at
a given time post inoculation, and the amount of virus that a bird sheds, given the amount
is not zero, were estimated by mixed-effects regression models [8,23].

Several regression models were evaluated, varying by the inclusion of a quadratic
term for the number of days post exposure, and random intercept and slope terms for each
virus strain [24–26]. Models were selected according to the Akaike Information Criterion
(AIC) where differences of less than 2 were not considered significant, per the suggestion
of Burnham and Anderson (2002) [27,28]. Though the amount of virus shed by individual
birds is likely correlated between time points, this information was not available in the data.

The two-part model selected from the cloacal swab data had the following form. The
probability that a bird i inoculated with virus strain j did not shed at time tij was given by:

logit
{

P
(
yij = 0

)}
= β0 + β1tij + β2t2

ij + b0j + b1jtij, (1)

where yij is the log10 EID50/ml observed for bird i inoculated with virus j; β0, β1, and β2
are the fixed effects; b0j is the random intercept, and b1j is the random slope for virus j with
{b0j, b1j} ∼ N(0, D), where D is the variance-covariance matrix. Given bird i inoculated
with virus strain j sheds virus at time tij, the amount in log10 EID50/ml, yij was given by:

yij
∣∣yij >0 = β∗0 + β∗1tij + β∗2t2

ij + b∗0j + b∗1jtij + εij, (2)

where β∗0, β∗1, and β∗2 are the fixed effects; b∗0j is the random intercept, and b∗1j is the random
slope for virus j with {b∗0j, b∗1j} ∼ N(0, D∗), where D∗ is the variance-covariance matrix;
and εij is the random error with εij ∼ N(0, σ2). The two-part model selected from the OP
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swab data was similar, except for the exclusion of the random slope term in Equation (1).
The random slope term was excluded since its inclusion resulted in a higher AIC value as
compared to the model with only a random intercept. Parameters were estimated using the
lme4 and nlme packages in R [29–31]. Further details on the two-part regression models
are given in Appendix A.

The regression equations were implemented into the transmission model by first
randomly selecting a virus strain for the iteration. Once a turkey transitioned into the
infectious state, the amount of virus shed from OP and cloacal routes was simulated from
the appropriate regression equations for each simulation time step until 21 days post
inoculation, by which point, birds would be expected to have stopped shedding [32]. The
algorithm used to simulate oral and cloacal shedding over time by turkeys infected with
LPAIV is summarized by Algorithm 2.

Algorithm 2: Algorithm to simulate the amount of viral shedding from oral and cloacal routes

1
Create arrays for the amount of virus shed by oral and cloacal routes in each simulation time
step

2 for all simulation time steps do
3 for all birds infected in previous simulation time step do
4 if Iqbal et al. (2012) scenario then
5 Randomly select a bird from the experimental data
6 for all data time steps do
7 if simulated bird has transitioned out of latent period and is alive then

8
Update viral shedding arrays at simulation time step + data time step using
the selected experimental data

9 end
10 end
11 end
12 if Spackman et al. (2010) scenario then
13 for all time steps between 0 and 21 days do
14 if bird has transitioned out of latent period and is alive then
15 Simulate using two-part model whether or not bird sheds orally
16 if bird sheds orally then
17 Simulate amount of oral shedding using two-part model
18 Update oral shedding array at simulation time step + day time step
19 end
20 Simulate using two-part model whether or not bird shed from the cloaca
21 if bird sheds from the cloaca then
22 Simulate the amount of cloacal shedding using the two-part model
23 Update cloacal shedding array at simulation time step + day time step
24 end
25 end
26 end
27 end
28 end
29 end

2.4. Simulation of the Amount of Virus in Manure

The log10 EID50/ml of virus shed from cloacal routes simulated for individual birds
based on the Iqbal et al. (2012) and Spackman et al. (2010) data was translated into the
virus titer in manure by multiplying the exponentiated simulated log10 EID50/ml by the
average volume of feces produced in a simulation time period [8,9]. The milliliters of feces
excreted in a simulation time period was approximated based on mean feed consumption
by weight of adult turkey toms between 16 and 20 weeks of age [33]. The weight of feed
was converted to volume of waste produced using a 1:1 conversion ratio for the mass of
waste produced per mass of feed consumed [33], and the feces density derived from [34].
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In addition to the amount of virus present in the manure produced during a given time
period, the virus titer in the cumulative amount of feces produced over time was estimated
as well. This was done for time t by adding the virus titer of feces newly produced in the
simulation time period t to the cumulative amount of virus estimated for time t-1 reduced
by a scaled decay rate. The decay rate was derived from experimental data from Wood
et al. (2010) and Lu et al. (2003), and estimated as the decrease in log10 EID50/ml of virus
in feces per day [35,36]. The rates taken from Lu et al. (2003) involved the decay of a LPAIV
H7N2 strain in feces from a specific pathogen-free chicken stored at 15–20 ◦C, feces from
an industry-raised chicken stored at 28–30 and 15–20 ◦C, and feces sampled directly from a
commercial flock stored at 28–30 ◦C [36]. The selected Wood et al. (2010) scenarios involved
the decay of an HPAIV H5N1 strain in feces stored at 23 ◦C in conditions of low and high
relative humidity [35]. The algorithm used to simulate the amount of LPAIV in manure is
summarized by Algorithm 3.

Algorithm 3: Algorithm to simulate the amount of virus in manure

1 Create an array for the amount of virus in feces produced in a simulation time step
2 Create an array for the cumulative amount of virus in feces in a simulation time step
3 for all simulation time steps do
4 for all birds infected in previous simulation time step do
5 Simulate cloacal shedding for a bird according to Algorithm 2

6
Estimate the amount of virus in feces produced by the bird in the time step
(amount of virus per ml ×ml feces produced)

7 Update the array with the amount of virus produced in a simulation time step
8 end

9
Estimate the cumulative amount of virus in feces in the simulation time step
(cumulative amount from previous time step × decay rate + amount of virus in feces
produced in current time step)

10 Update the array with the cumulative amount of virus in feces in a simulation time step
11 end

2.5. Simulation of Ct Values from OP Swabs Tested by rRT-PCR

The expected Ct value from a pooled sample of OP swabs tested by rRT-PCR was
simulated from the amount of viral shedding from oral routes in individual birds estimated
from the transmission model as an exploratory analysis. In the disease transmission model,
the simulated amount of oral shedding of an individual bird was converted into a Ct
value using a standard curve from Spackman et al. (2010) [8]. The Ct values were then
sorted into groupings of values to estimate the number of birds over time expected to have
certain Ct values. The Ct values were stored in this way to ease computational demands.
The Ct values were grouped as follows: 10–14, 14–18, 18–22, . . . , 34–38, or 38–40. The Ct
value of birds that died due to LPAI was set equal to the value simulated in the time step
immediately prior to death.

The likelihood of observing a Ct value ≤ 30 (i.e., a strong positive), and the likelihood
of observing a Ct value > 30 but ≤40 (i.e., a weak positive) over time following the testing
of a pooled sample of 11 OP swabs by rRT-PCR were estimated using forward simulation.
The application of the testing protocol was simulated at each 0.25 day from the time of
virus exposure until 80 days post exposure for 6000 transmission model iterations. The
likelihoods were determined by the proportion of iterations with simulated Ct values
falling within the desired ranges. The testing protocol consisted of a single pooled sample
of 11 OP swabs. Dead birds were prioritized for sampling. If fewer than 11 birds had died,
samples were taken from live birds until the total of 11 swabs was reached.

To simulate the application of the testing protocol, first daily mortality was estimated
by summing the normal mortality, simulated from industry data using the approach
described in Weaver et al. (2016), and mortality due to LPAI, taken from the transmission
model output [37]. Three sources of positive swabs were considered: birds that died
directly due to LPAI, birds that died while infected (but not due to infection), and infected
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live birds. The number of birds that died while infected, but not due to infection, was
simulated from the normal mortality where the probability a dead bird was infected was
set equal to the infection prevalence in the flock. The number of swabs from infected birds
in the daily mortality was simulated from a hypergeometric distribution. The number
of swabs from infected live birds was simulated from a binomial distribution with the
probability of success equal to the infection prevalence at the time of sampling taken from
transmission model output. If a swab from at least one positive bird was included in the
pooled sample, the test outcome was simulated as a Bernoulli trial with probability of
success equal to the test sensitivity, here set to 0.90 [37,38].

A Ct value was simulated for each positive simulated rRT-PCR result. The amount of
virus in the sample contributed by each swab from a positive bird was estimated by first
simulating the number of swabs belonging to each Ct value range (10–14, 14–18, etc.). This
was simulated from a multinomial distribution where the probabilities were determined by
the number of birds in each category (as simulated from the transmission model) divided
by the total across all categories at the time of sampling. For each swab in a certain Ct value
range, the exact value was simulated from a uniform distribution. The Ct values were
then converted back into log10 EID50/ml using the standard curve. The amount of virus
in the pooled sample was assumed to be additive, that is, the log10 EID50/ml amounts
were exponentiated and summed. In the last step, the sum was converted into a Ct value
with the standard curve from Spackman et al. (2010) [8]. The algorithm is summarized in
Algorithm 4.

Algorithm 4: Algorithm to simulate Ct value of 11 pooled OP samples tested by rRT-PCR

Simulate Ct values of OP swab samples from individual birds:

1
Create arrays to store the number of birds in each simulation time point that if swabbed and tested would have a Ct value
within a certain range (e.g., Ct value between 10 and 14, 14 and 18, etc.)

2 for all simulation time steps do
3 for birds infected in previous simulation time step do
4 Simulate oral shedding for a bird according to Algorithm 2
5 Convert the oral shedding amounts to Ct values using a standard curve
6 Update the Ct value range arrays
7 end
8 end

Simulate selecting birds for OP swabs and testing pooled sample by rRT-PCR:
9 Simulate normal daily mortality
10 Simulate mortality due to LPAIV and infection prevalence over time according to Algorithm 1
11 for all simulation time steps do

12
Simulate the number of birds from the normal daily mortality that died while LPAI-positive based on the infection
prevalence in the flock

13 Simulate the number of swabs taken from LPAI-positive and LPAI-negative dead birds
14 if the total number of dead birds is less than 11 then

15
Simulate the number of swabs taken from LPAI-positive and LPAI-negative living birds based on the infection
prevalence in the flock

16 end
17 if there was at least one swab from a LPAI-positive bird then
18 Simulate the rRT-PCR test outcome
19 if the rRT-PCR test result is positive then
20 for all swabs from LPAI-positive birds do
21 Simulate the Ct range of the swab using the Ct value range arrays
22 Simulate the specific Ct value from between the selected range
23 Convert the Ct value to EID50/ml using a standard curve
24 end
25 Sum the simulated virus amounts of the swabs from LPAI-positive birds
26 Convert the virus amount to a Ct value using a standard curve
27 end
28 end
29 end
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The models were programmed and run using R statistical software, and C program-
ming language [39,40]. The simulations were run for 6000 iterations for a flock size of
10,000 turkey toms.

3. Results

Epidemiological outcomes (seropositivity) estimated from the disease transmission
model are given in Table 2. Median estimates and 95% prediction intervals are given
for the number of days post virus exposure, infection prevalence, and the proportion of
the cumulative oral and cloacal shedding from both datasets reached when the given
seropositive thresholds are first surpassed. The highest seropositive threshold was set to
98% due to variance in the number of birds that seroconvert following infection, which
was given a 99% probability of occurring [8]. As expected, the number of seropositive birds
increased over time, with the 98% seropositive threshold reached 3–6 weeks post virus
exposure. Peak infection prevalence was predicted to occur around 30% seroconversion,
before dropping down to a median of 23% when 98% seropositive birds was first reached.
The shedding by infectious birds when the 98% seropositive threshold was first reached was
at post-peak amounts: the median across all simulation iterations of the average amount of
shedding by infectious birds at the time the 98% seropositive threshold was first reached
was 2.46 log10 EID50/ml for oral shedding, and 3.06 log10 EID50/ml for cloacal shedding
in the Spackman et al. (2010) scenario; whereas in the Iqbal et al. (2012) scenario, the
amount was 1.05 log10 EID50/ml for oral shedding, and 0.22 log10 EID50/ml for cloacal
shedding [8,9]. The amount of virus shed by infectious birds subsequent to this time
accounted for very little of the total: Approximately all shedding from oral and cloacal
routes was predicted to have occurred by the time 98% seroconversion was observed for
both datasets. Peak cloacal shedding was predicted to occur after peak oral shedding, an
effect more pronounced in the Spackman et al. (2010) as compared to the Iqbal et al. (2012)
scenario [8,9].

Table 2. Transmission Model Output by Seroprevalence. Median and 95% prediction interval for the number of days
post virus exposure, infection prevalence in the house, and proportion of oral and cloacal shedding that already occurred,
simulated from the Spackman et al. (2010), and Iqbal et al. (2012) data when certain levels of seroprevalence were first
reached, as estimated from 6000 disease transmission model iterations [8,9].

Seroprevalence
Number of
Days Post

Virus Exposure

Prevalence of
Infectious

Birds

Proportion of
Total Oral
Shedding
Already

Occurred
(Spackman
et al. (2010)

Data [8])

Proportion of
Cloacal

Shedding
Already

Occurred
(Spackman
et al. (2010)

Data [8])

Proportion of
Total Oral
Shedding
Already

Occurred
(Iqbal et al.

(2012) Data [9])

Proportion of
Cloacal

Shedding
Already

Occurred
(Iqbal et al.

(2012) Data [9])

10% 11 (8–22) 0.88
(0.39–0.97) 0.46 (0.23–0.72) 0.02 (0.01–0.06) 0.30 (0.20–0.36) 0.07 (0.03–0.08)

20% 12 (9–24) 0.96
(0.59–0.98) 0.65 (0.40–0.86) 0.05 (0.02–0.13) 0.53 (0.38–0.60) 0.12 (0.10–0.17)

30% 12 (10–25) 0.95
(0.70–0.97) 0.77 (0.53–0.93) 0.09 (0.03–0.20) 0.71 (0.54–0.77) 0.21 (0.18–0.27)

40% 13 (10–27) 0.93
(0.75–0.94) 0.84 (0.63–0.96) 0.13 (0.05–0.28) 0.84 (0.66–0.88) 0.31 (0.28–0.37)

50% 14 (11–28) 0.90
(0.75–0.91) 0.89 (0.71–0.98) 0.20 (0.08–0.38) 0.91 (0.77–0.94) 0.43 (0.39–0.48)

60% 15 (12–29) 0.85
(0.73–0.87) 0.93 (0.78–0.99) 0.29 (0.13–0.49) 0.95 (0.85–0.96) 0.57 (0.53–0.61)

70% 16 (13–30) 0.79
(0.67–0.81) 0.96 (0.85–1.00) 0.41 (0.22–0.62) 0.98 (0.91–0.98) 0.71 (0.68–0.74)

80% 17 (14–32) 0.70
(0.58–0.73) 0.98 (0.91–1.00) 0.58 (0.37–0.77) 0.99 (0.95–0.99) 0.84 (0.81–0.86)

90% 19 (16–35) 0.55
(0.43–0.58) 1.00 (0.96–1.00) 0.81 (0.64–0.93) 1.00 (0.98–1.00) 0.96 (0.93–0.97)

98% 24 (21–42) 0.23
(0.13–0.27) 1.00 (1.00–1.00) 1.00 (0.98–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)
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The median amount of virus in feces over time following virus exposure compared to
the median seroprevalence and infection prevalence is shown in Figure 1 for Spackman
et al. (2010), and Figure 2 for Iqbal et al. (2012) [8,9]. The maximum amount of virus was
an order of magnitude larger in the Spackman et al. (2010) as compared to the Iqbal et al.
(2012) scenario (5.8× 109 EID50 compared to 1.5× 108 EID50). In both cases, the peak
amount of virus was predicted to occur after the peak infection prevalence. This time lag
was more pronounced in the Spackman et al. (2010) data, leading to substantial shedding
occurring when large numbers of birds were predicted to be seroconverted. Virus was
still predicted to be present at the lower levels of infection prevalence early and late in the
infection process, but in amounts that were dwarfed by the amounts observed at the peak,
and, therefore, are not visible in Figure 1 or Figure 2.
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Figure 1. Amount of LPAIV in Feces Simulated from the Spackman et al. (2010) Data. Median total
amount of LPAIV in feces over time simulated for a 10,000 bird turkey tom flock from the Spackman
et al. (2010) data compared to the seroprevalence and infection prevalence in the flock [8]. The
amount of virus is represented by the bars, whereas the seroprevalence and infection prevalence are
represented by the dashed and solid lines, respectively.
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Figure 2. Amount of LPAIV in Feces Simulated from the Iqbal et al. (2012) Data. Median total amount
of LPAIV in feces over time simulated for a 10,000 bird turkey tom flock from the Iqbal et al. (2012)
data compared to the seroprevalence and infection prevalence in the flock [9]. The amount of virus is
represented by the bars, whereas the seroprevalence and infection prevalence are represented by the
dashed and solid lines, respectively.

The likelihood of observing a Ct value of ≤30 and >30 but ≤40 following exposure of
a turkey tom house to LPAIV is given in Figure 3. The likelihood was estimated for a testing
protocol of 11 OP swabs pooled and tested by rRT-PCR. The likelihood of obtaining a Ct
value > 30 was estimated to be highest several weeks after exposure. The peak likelihood
of obtaining a Ct value < 30 was comparably earlier by about 10 days. Ct values below
30 were estimated to have a much higher likelihood, in general. Though the likelihood of
observing a Ct value above 30 was estimated to occur primarily later in the infection, there
was a slightly elevated likelihood predicted approximately seven days post exposure.



Viruses 2021, 13, 2509 11 of 22Viruses 2021, 13, x FOR PEER REVIEW 12 of 23 
 

 

. 

Figure 3. Simulated Likelihood of Observing a High or Low Ct Value from a Pooled Sample of 11 
OP Swabs. The likelihood of observing a Ct value less than or equal to 30, or between 30 and 40 over 
time in a 10,000 bird turkey tom house based on a testing protocol of one pooled sample of 11 OP 
swabs collected from dead birds first, and then live birds as needed. 

4. Discussion 
In this analysis, the amount of virus shed from oral and cloacal routes over time by 

ten thousand turkey toms in a house exposed to LPAIV was simulated from a stochastic 
disease transmission model, parameterized based on largescale production in the U.S., to 
provide insight into the risk of disease spread posed by infected flocks over time. The 
results suggest that oral shedding more closely relates to infection prevalence than cloacal 
shedding, which occurs later in the disease course. This is consistent with the experi-
mental data used from Spackman et al. (2010), and Iqbal et al. (2012), in which peak cloacal 
shedding occurred after peak oral shedding in individual birds [8,9]. See [41] for more 
discussion. 

The disposal of infected birds by controlled marketing or destruction must be care-
fully considered. Transporting actively shedding birds off-farm poses a substantial risk to 
poultry premises located along the route, due to contaminated feathers and feces dropped 
from the truck [42]. Similarly, destruction of actively shedding birds on-site can create 
opportunities to spread infectious material that poses a risk to nearby premises [4]. De-
population activities can bring large amounts of people and equipment onto the premises, 
which may also pose transmission risk [1,3]. 

In this analysis, nearly all shedding was predicted to have occurred by the time the 
highest seropositive threshold was reached (see Table 2). This suggests that a diagnostic 
test result of 100% seropositive serum samples could provide evidence that the flock is at 
or close to recovery. The confidence that a flock is at or near recovery could be further 

Figure 3. Simulated Likelihood of Observing a High or Low Ct Value from a Pooled Sample of 11 OP
Swabs. The likelihood of observing a Ct value less than or equal to 30, or between 30 and 40 over
time in a 10,000 bird turkey tom house based on a testing protocol of one pooled sample of 11 OP
swabs collected from dead birds first, and then live birds as needed.

4. Discussion

In this analysis, the amount of virus shed from oral and cloacal routes over time by ten
thousand turkey toms in a house exposed to LPAIV was simulated from a stochastic disease
transmission model, parameterized based on largescale production in the U.S., to provide
insight into the risk of disease spread posed by infected flocks over time. The results suggest
that oral shedding more closely relates to infection prevalence than cloacal shedding, which
occurs later in the disease course. This is consistent with the experimental data used from
Spackman et al. (2010), and Iqbal et al. (2012), in which peak cloacal shedding occurred
after peak oral shedding in individual birds [8,9]. See [41] for more discussion.

The disposal of infected birds by controlled marketing or destruction must be carefully
considered. Transporting actively shedding birds off-farm poses a substantial risk to poultry
premises located along the route, due to contaminated feathers and feces dropped from the
truck [42]. Similarly, destruction of actively shedding birds on-site can create opportunities
to spread infectious material that poses a risk to nearby premises [4]. Depopulation
activities can bring large amounts of people and equipment onto the premises, which may
also pose transmission risk [1,3].

In this analysis, nearly all shedding was predicted to have occurred by the time the
highest seropositive threshold was reached (see Table 2). This suggests that a diagnostic
test result of 100% seropositive serum samples could provide evidence that the flock is
at or close to recovery. The confidence that a flock is at or near recovery could be further
improved with rRT-PCR testing. In particular, the results in Figure 3 predict that higher Ct
values are more likely at the later stages of infection in the flock.
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Though diagnostic testing can improve confidence that the amount of viral shedding
in an infected flock is low, it should be a part of a more comprehensive strategy that
includes other risk mitigation measures, such as monitoring the flock for clinical signs,
and heightened biosecurity. The analysis provided here could inform a broader risk-based
analysis related to decision-making regarding outbreak response, specifically in relation to
the disposal of the exposed flock(s).

Halvorson (2008) identified that live avian influenza virus generally cannot be detected
two weeks after the peak of clinical signs in past applications of controlled marketing [1].
Assuming the clinical signs peak is highly correlated with the peak of infection prevalence,
this observation is fairly consistent with the predicted amount of virus in feces shown
in Figures 1 and 2. As can also be seen in Figures 1 and 2, the peak amount of virus is
considerable. Knowing the infection status of the flock in relation to the peak amount
of shedding would be advantageous for deciding on the outbreak response, for example
when and how to dispose of the birds. However, detection can occur at any time, and it
can be difficult to know with certainty where the flock is in the infection process initially
following detection.

The spread of LPAIV within a turkey house is an incredibly complex process subject
to numerous variables, including the virus strain, environmental conditions, housing
structure, and production practices. Due to the number of variables involved in LPAIV
spread, the results presented here likely do not represent the diversity of outcomes that
may be observed in the field. The analysis conducted here is meant to be an example or
approximation of the LPAIV spread that may be observed in largescale turkey production
in the U.S. based on available experimental and outbreak data.

The data used in the analysis involved unvaccinated turkeys not infected previously
with LPAIV. Vaccination can reduce the amount and duration of viral shedding, as well
as increase the minimum infectious dose necessary for a bird to become infected [43].
Therefore, the flock-level virus shedding characteristics of vaccinated turkeys or turkeys
exposed to LPAIV in the past would likely be quite different from the results presented here.

To have sufficient data, a variety of sources involving different LPAIV strains were
used. Consequently, this analysis does not capture the behavior of any one virus strain. As
the amount of shedding was simulated based on experimental data involving H7 strains,
the results may be regarded as for a generic H7 virus.

As a result of the variety and limitations of the sources used to parameterize the
simulation model, the biological processes may not be captured perfectly. For example,
though nearly all shedding was predicted to have occurred when the highest threshold
of seroconversion was first achieved, there were still a considerable number of infectious
birds at this time, an estimated median of 23%. In particular, substantial cloacal shedding
was predicted at high levels of seroconversion in the Spackman et al. (2010) scenario [8].
In Table 1, at 80% seroconversion, a median of 58% of the cloacal shedding was estimated
to have occurred, meaning 42% remained. Virus was detected post seroconversion in
Preskenis et al. (2010), a study used to estimate the infectious period length and time to
seroconversion distributions [20]. However, Preskenis et al. (2010), and the other studies
used to estimate parameters for the transmission model, tested for or quantified the amount
of virus using rRT-PCR [20]. Therefore, the model parameters are derived from data on
the presence of virus, as opposed to the presence and viability of the virus. In addition, as
discussed earlier, simulation inputs for the distributions for the length of the infectious and
latent periods, the distribution for the time to seroconversion, and the amount of shedding
over time were estimated independently, from an amalgamation of sources. In reality, these
processes are likely correlated. Sufficient data was not available for joint estimation, but
the associations between the responses to infection may not be captured as a result.

There are also uncertainties related to the estimation of the amount of virus in manure.
A constant decay rate was used for the virus shed in feces in all previous time periods.
However, the decay rate would likely be different between the newly excreted feces on
top, and the buried feces excreted several days prior. For example, Beard et al. (1984)
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found avian influenza virus lasted one day longer in manure placed in vials with a cap
(comparable to buried feces) as compared to vials without a cap (comparable to newly
excreted feces) at 25 ◦C [44].

The amount of virus in feces over time is likely highly variable between flocks due
to the dependence on multiple environmental factors, such as temperature and humid-
ity [35,36]. It should be noted that the results given in Figures 1 and 2 show the median
amounts of virus in feces estimated from the simulation runs. Therefore, Figures 1 and 2
may underrepresent the transmission risk posed by virus in feces for some cases. In the ex-
perience of Kradel (2003), during the 1983-84 LPAI/HPAI H5N2 outbreak in Pennsylvania,
virus isolation was generally not successful 2 weeks after depopulation [3]. However, he
notes that virus was recovered on five farms one month or more after depopulation [3].

Considerable uncertainty surrounds the effect of pooling multiple swabs from positive
birds on the Ct value. Ladman et al. (2012), Arnold et al. (2013), and Spackman et al. (2013)
explored the effect of pooling a single swab from chickens or turkeys inoculated with LPAI
with swabs from uninfected birds on the resulting Ct value [6,45,46]. The results of these
studies suggest pooling may affect the Ct value, but the nature of this effect remains unclear.
Furthermore, no studies were identified at the time of writing that explored the effect of
pooling swabs from more than one infected bird on the Ct value. The assumption made
in the current analysis was that the amount of virus in the sample is additive per swab
from an infected bird, with no diluting effect from swabs from uninfected birds. Although
the uncertainty surrounding the effect of pooling on the Ct value exists, the likelihood of
observing a pooled sample with Ct ≤ 30, or >30 and ≤40 resembled the makeup of the
disease mortality. The estimated proportion of the disease mortality containing birds with
Ct values greater than 30 increased with the number of days post exposure, which suggests
that the likelihood of observing Ct values greater than 30 would follow a similar pattern
under a testing program consisting of individual OP swab samples tested by rRT-PCR.

Though higher Ct values could be more likely later in the infection process, they are
not confined to this time period. For example, a Ct value of 37.7 was observed over 30 days
prior to the last positive test in a barn infected during the 2018 LPAI H5N2 outbreak in
Minnesota [21]. However, Ct values in the thirties were more often observed closer to
when house testing started to yield rRT-PCR negative results on these premises [21]. In
Figure 3, a small bump in the likelihood of observing a Ct value between 30 and 40 was
estimated less than 10 days following exposure. This could be due to the combination of
low prevalence in the flock, and few birds dying from LPAI early in the outbreak, which
would mean detection would occur primarily by collecting a sample from the infected bird,
or two in the daily mortality. The instances where those initially dying birds pass while not
shedding very much virus could account for the higher Ct values estimated at that point in
the outbreak. Overall, the Ct simulation model requires further validation with field data
where infected flocks are monitored prior to marketing.

The virus shedding model has several potential applications for informing risk man-
agement during an LPAI outbreak. For example, the Ct component could improve estimates
for the time of virus introduction from diagnostic test results, especially when few results
are available [12]. Nickbakhsh et al. (2013) included a transmission term in their within
flock HPAI transmission model for spread due to susceptible bird contacts with infectious
fecal contaminated dust or equipment [47]. The output from the virus shedding model in
this analysis could be similarly used to model transmission due to environmental contam-
ination in a LPAI transmission model. Furthermore, the virus shedding model could be
used to adjust the transmission rate according to the amount of virus shed by a bird over
time, as opposed to a constant rate across the bird’s infectious period, which is the current
assumption in the model.
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Appendix A

Two-part models were fit to the log10 EID50/ml values estimated from oropharyngeal
(OP) and cloacal swabs sampled from turkeys inoculated with twelve different H7 low
pathogenicity avian influenza virus (LPAIV) strains by Spackman et al. (2010) [8,22]. The
OP and cloacal swabs were sampled from turkeys 2, 4, 7, 10, and 14 days post inoculation [8].
In two-part models, the data is treated as a mixture of the zero and nonzero components [22].
Here, the components were modeled using generalized linear mixed models with virus
strain as the random effect [23]. An individual bird random effect was not evaluated due
to data limitations.

Let yij be the log10 EID50/ml observed for bird i inoculated with virus j; β0, β1, and
β2 the fixed effects; and b0j the random intercept, and b1j the random slope for virus j with{

b0j, b1j
}
∼ N(0, D), where D is the variance-covariance matrix. Let D =

[
d1 d12
d12 d2

]
where d1 is the standard deviation for b0j, d2 is the standard deviation for b1j, and d12 is the
covariance. Three regression models were evaluated for the probability that virus was not
detected from an OP swab sampled from bird i inoculated with virus strain j at time tij:

logit{P(yi = 0)} = β0 + β1ti (A1)

logit
{

P
(
yij = 0

)}
= β0 + β1tij + b0j (A2)

logit
{

P
(
yij = 0

)}
= β0 + β1tij + b0j + b1jtij (A3)

Similarly, three regression models were evaluated for the probability that virus was
not detected from a cloacal swab sampled from bird i inoculated with virus strain j at
time tij:

logit{P(yi = 0)} = β0 + β1ti + β2t2
i (A4)

logit
{

P
(
yij = 0

)}
= β0 + β1tij + β2t2

ij + b0j (A5)

logit
{

P
(
yij = 0

)}
= β0 + β1tij + β2t2

ij + b0j + b1jtij (A6)
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Next, let β∗0, β∗1, and β∗2 be the fixed effects; b∗0j the random intercept, and b∗1j the

random slope for virus j with
{

b∗0j, b∗1j

}
∼ N(0, D∗), where D∗ is the variance-covariance

matrix; and εij the random error with εij ∼ N
(
0, σ2). Let D∗ =

[
d∗1 d∗12
d∗12 d∗2

]
where d∗1 is

the standard deviation for b∗0j, d∗2 is the standard deviation for b∗1j, and d∗12 is the covariance.
The same three regression model formulations were evaluated for OP and cloacal swabs
for the virus amount estimated from the swab at time tij, given this amount was not zero:

yi|yi >0 = β∗0 + β∗1ti + β∗2t2
i + εi (A7)

yij
∣∣yij >0 = β∗0 + β∗1tij + β∗2t2

ij + b∗0j + εij (A8)

yij
∣∣yij >0 = β∗0 + β∗1tij + β∗2t2

ij + b∗0j + b∗1jtij + εij (A9)

The optimal regression equations were selected using Akaike’s Information Criterion
(AIC) [27]. The AIC values are given in Table A1. The regression equation with the smallest
AIC (indicating best fit) was selected for each swab type and two-part model component.
Burnham and Anderson (2002) outline a rule of thumb for comparing AIC values, where
differences greater than 10 provide substantial support in favor of the model with the
smaller AIC, differences between 4 and 7 provide less support, and differences between 0
and 2 do not provide strong evidence in favor of either model [28].

Equation (A2) was selected to estimate the probability that virus was not detected
from an OP swab sample. Though Equation (A2) had the lowest AIC value, the difference
was less than 10 compared to the AIC values estimated from the other two regression
models. Thus, we do not have conclusive evidence that Equation (A2) is the best fitting
model. Under Equation (A2), the log odds that virus was not detected from an OP swab
initially following infection is dependent on the virus strain. The subsequent increase in
the log odds of not detecting virus is the same across strains, due to the absence of the
random slope term. Therefore, by using Equation (A2), we assume in the simulation model
that birds stop shedding orally at the same rate across the different virus strains. The β0
parameter represents the general log odds that a bird does not shed virus immediately
following infection. The log odds that a bird does not shed virus at time 0 are modified
according to the virus strain as captured by the random intercept term b0j. However, the
two-part models were not used to simulate virus shedding in the disease transmission
model until birds transitioned out of the latent period, which was 0.63 days long on average.
The increase over time in the log odds that a bird does not shed virus increases according
to the slope term β1.

Table A1. Two-part Regression Model Comparisons. AIC values of the regression models estimated
from the zero and nonzero portions of the OP and cloacal swab data from Spackman et al. (2010) [8].

Swab Type Two-Part Model Component Regression Equation AIC

Oropharyngeal

P
(

yij = 0
) Equation (A1) 251.28

Equation (A2) 243.50
Equation (A3) 247.10

yij

∣∣∣yij >0
Equation (A7) 1391.75
Equation (A8) 1225.04
Equation (A9) 1183.44

Cloacal

P
(

yij = 0
) Equation (A4) 806.08

Equation (A5) 758.90
Equation (A6) 742.60

yij

∣∣∣yij >0
Equation (A7) 980.74
Equation (A8) 938.63
Equation (A9) 934.86
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Equation (A9) was selected to estimate the amount of virus detected by the OP swab
sample, given this amount was not zero. The pattern observed for the nonzero OP swab
portion was high amounts of virus initially that decreased over time. There was substantial
support in favor of Equation (A9), as there was a difference of greater than 10 compared to
the next smallest AIC value. This provides evidence that the amount of virus initially shed
orally by birds, and the subsequent decrease in the amount of virus shed over time varies
by virus strain. The β∗0 parameter represents a general intercept term for the amount of
virus shed by birds at time 0. This amount is modified by the strain-specific random effect
b∗0j. The β∗1 and β∗2 parameters determine the decrease in the amount of virus shed over
time. The significance of the quadratic term suggests that the rate of decrease is faster as
time increases. The linear decrease in the amount of virus over time increases or decreases
for a virus strain according to the random slope term b∗1j. Lastly, εij models the variation in
the amount of virus shed by individual birds infected with a given virus strain.

Equation (A6) was selected to estimate the probability that virus was not detected
from a cloacal swab. There was considerable variation between virus strains observed in
the data for the initial probability that virus was not detected, as well as the subsequent
probabilities over time: for two strains, there was a lower probability initially that then
increased, whereas for the other strains, the probability decreased from a higher initial
value before increasing. These patterns occurred at different rates across virus strains.
Consequently, the best fit model included both a random intercept and slope term for the
virus strain.

Equation (A9) was selected to estimate the amount of virus detected by a cloacal
swab, given the amount was not zero. Random intercept and slope terms for the virus
strain were included in this model. The pattern observed in the data was parabolic: the
amount of virus increased post infection, peaked after several days, and then decreased.
The difference in the AIC values for Equation (A9) and the next best fitting model, Equation
(A8), which did not include a random intercept term for virus, was 3.77. Therefore, we do
not have overwhelming evidence that the rate of change in the amount of virus detected
by cloacal swabs over time varied by virus strain. The interpretation of the parameters for
the cloacal swab two-part model is similar to the interpretations discussed for the OP swab
two-part model.

Overall, the two-part model results for the OP and cloacal swabs suggest that there is
variation between LPAIV strains in the proportion of birds that shed virus, and the amount
of virus shed by the birds over time post infection. However, the nature of this variation
was not always clear. There were differences of less than 10 between the AIC values of best
fitting models for the probability that virus was not detected by OP swabs, and the amount
of virus detected from cloacal swabs, given this amount was not zero. More information
on the effect of strain on virus shedding could be gleaned by fitting two-part models to
data from other LPAIV inoculation experiments.

The parameters for Equations (A2) and (A6) were estimated by maximum likeli-
hood (Laplace approximation) using the ‘glmer’ function from the lme4 package in R
statistical software [29,40]. The mean estimates and 95% confidence intervals (CI) are
given in Table A2 for Equation (A2), estimated from the OP swab data; and Table A3 for
Equation (A6), estimated from the cloacal swab data. The 95% CI were estimated using the
bootstrap method from the ‘confint’ function in R [29]. The parameters for Equation (A9)
were estimated from the OP and cloacal swab data by maximum likelihood using the
‘lme’ function from the nlme package in R [30]. The mean estimates and 95% CI are given
in Table A4 for Equation (A9), estimated from the OP swab data; and in Table A5 for
Equation (A9), estimated from the cloacal swab data. The 95% CI were estimated using
the ‘intervals’ function in R, which uses a normal approximation to the distribution of the
maximum likelihood estimators [30].
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Table A2. Regression Model Estimates for OP Swab Zero Component. Parameter estimates for the probability of observing
no viral shedding over time from a turkey sampled with an OP swab modeled by regression Equation (A2).

Parameter Description Mean (95% CI)

β0 Fixed intercept −5.88 (−7.57, −4.77)
β1 Fixed coefficient for the number of days post exposure 0.38 (0.29, 0.50)
d1 Random intercept standard deviation 0.96 (0.15, 1.55)

Table A3. Regression Model Estimates for Cloacal Swab Zero Component. Parameter estimates for the probability of
observing no viral shedding over time from a turkey sampled with a cloacal swab modeled by regression Equation (A6).

Parameter Description Mean (95% CI)

β0 Fixed intercept −0.42 (−1.74, 0.82)
β1 Fixed coefficient for the number of days post exposure −0.22 (−0.47, 0.02)
β2 Fixed coefficient for the number of days post exposure squared 0.02 (0.01, 0.04)
d1 Random intercept standard deviation 1.78 (0.81, 2.68)
d2 Random slope standard deviation 0.17 (0.07, 0.27)
ρ12 Random intercept and random slope correlation −0.83 (−0.99, −0.28)

Table A4. Regression Model Estimates for OP Swab Nonzero Component. Parameter estimates for the amount of virus
observed from a turkey sampled with an OP swab over time, given the amount is not zero. This amount was modeled by
regression Equation (A9).

Parameter Description Mean (95% CI)

β∗0 Fixed intercept 5.13 (4.47, 5.79)
β∗1 Fixed coefficient for the number of days post exposure −0.18 (−0.28, −0.08)
β∗2 Fixed coefficient for the number of days post exposure squared −0.007 (−0.013, −0.001)
σ Standard deviation of the normal distribution for the errors 0.88 (0.82, 0.94)
d∗1 Random intercept standard deviation 1.07 (0.71, 1.59)
d∗2 Random slope standard deviation 0.10 (0.07, 0.16)
ρ∗12 Random intercept and random slope correlation −0.80 (−0.94, −0.45)

Table A5. Regression Model Estimates for Cloacal Swab Nonzero Component. Parameter estimates for the amount of virus
observed from a turkey sampled with a cloacal swab over time, given the amount is not zero. This amount was modeled by
regression Equation (A9).

Parameter Description Mean (95% CI)

β∗0 Fixed intercept 0.84 (0.34, 1.33)
β∗1 Fixed coefficient for the number of days post exposure 0.47 (0.31, 0.62)
β∗2 Fixed coefficient for the number of days post exposure squared −0.03 (−0.04, −0.02)
σ Standard deviation of the normal distribution for the errors 1.21 (1.12, 1.31)
d∗1 Random intercept standard deviation 0.30 (0.10, 0.93)
d∗2 Random slope standard deviation 0.06 (0.03, 0.13)
ρ∗12 Random intercept and random slope correlation 0.64 (−0.95, 1.00)

The strain-specific estimates for the two-part models are given in Table A6. One of
the strain-specific two-part models was randomly selected for each iteration to simulate
oral and cloacal shedding in the LPAIV transmission model for the Spackman et al., 2010
scenario [8]. As a result, variance due to virus strain when birds stop shedding, and the
amounts of virus they shed are captured in this scenario.
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Table A6. Estimated Strain-specific Two-part Models for OP and Cloacal Swabs.

LPAIV Strain Strain-Specific Two-Part Model for OP and Cloacal (CL) Swabs

A/chicken/MD/MinhMa/2004
(H7N2)

OP:
logit

{
P
(

yij = 0
)}

= −5.14 + 0.38tij

E
[
yij

∣∣∣yij >0
]
= 5.36− 0.30tij − 0.007t2

ij
CL:
logit

{
P
(

yij = 0
)}

= 0.13− 0.09tij + 0.02t2
ij

E
[
yij

∣∣∣yij >0
]
= 0.67 + 0.43tij − 0.03t2

ij

A/chicken/NJ/15086-3/1994
(H7N3)

OP:
logit

{
P
(

yij = 0
)}

= −7.00 + 0.38tij

E
[
yij

∣∣∣yij >0
]
= 3.91− 0.07tij − 0.007t2

ij
CL:
logit

{
P
(

yij = 0
)}

= −0.24− 0.46tij + 0.02t2
ij

E
[
yij

∣∣∣yij >0
]
= 0.90 + 0.48tij − 0.03t2

ij

A/chicken/NY/12273-11/1999
(H7N3)

OP:
logit

{
P
(

yij = 0
)}

= −6.61 + 0.38tij

E
[
yij

∣∣∣yij >0
]
= 4.48− 0.15tij − 0.007t2

ij
CL:
logit

{
P
(

yij = 0
)}

= 0.03− 0.19tij + 0.02t2
ij

E
[
yij

∣∣∣yij >0
]
= 0.50 + 0.40tij − 0.03t2

ij

A/chicken/NY/30749-3/2000
(H7N2)

OP:
logit

{
P
(

yij = 0
)}

= −5.66 + 0.38tij

E
[
yij

∣∣∣yij >0
]
= 7.01− 0.28tij − 0.007t2

ij
CL:
logit

{
P
(

yij = 0
)}

= 0.21− 0.01tij + 0.02t2
ij

E
[
yij

∣∣∣yij >0
]
= 1.24 + 0.54tij − 0.03t2

ij

A/chicken/NY/3112-1/1995
(H7N2)

OP:
logit

{
P
(

yij = 0
)}

= −5.66 + 0.38tij

E
[
yij

∣∣∣yij >0
]
= 3.58− 0.02tij − 0.007t2

ij
CL:
logit

{
P
(

yij = 0
)}

= −0.09− 0.31tij + 0.02t2
ij

E
[
yij

∣∣∣yij >0
]
= 0.74 + 0.45tij − 0.03t2

ij

A/chicken/PA/9801289/1998
(H7N2)

OP:
logit

{
P
(

yij = 0
)}

= −4.59 + 0.38tij

E
[
yij

∣∣∣yij >0
]
= 5.74− 0.28tij − 0.007t2

ij
CL:
logit

{
P
(

yij = 0
)}

= −0.15− 0.37tij + 0.02t2
ij

E
[
yij

∣∣∣yij >0
]
= 0.78 + 0.44tij − 0.03t2

ij

A/guinea hen/MA/148081-11/2002
(H7N2)

OP:
logit

{
P
(

yij = 0
)}

= −6.39 + 0.38tij

E
[
yij

∣∣∣yij >0
]
= 6.42− 0.30tij − 0.007t2

ij
CL:
logit

{
P
(

yij = 0
)}

= 0.20− 0.02tij + 0.02t2
ij

E
[
yij

∣∣∣yij >0
]
= 0.74 + 0.42tij − 0.03t2

ij
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Table A6. Cont.

LPAIV Strain Strain-Specific Two-Part Model for OP and Cloacal (CL) Swabs

A/mallard/OH/421/1987
(H7N8)

OP:
logit

{
P
(

yij = 0
)}

= −6.33 + 0.38tij

E
[
yij

∣∣∣yij >0
]
= 3.99− 0.12tij − 0.007t2

ij
CL:
logit

{
P
(

yij = 0
)}

= −0.14− 0.36tij + 0.02t2
ij

E
[
yij

∣∣∣yij >0
]
= 0.59 + 0.42tij − 0.03t2

ij

A/pintail/MN/423/1999
(H7N3)

OP:
logit

{
P
(

yij = 0
)}

= −5.10 + 0.38tij

E
[
yij

∣∣∣yij >0
]
= 4.98− 0.15tij − 0.007t2

ij
CL:
logit

{
P
(

yij = 0
)}

= −0.06− 0.28tij + 0.02t2
ij

E
[
yij

∣∣∣yij >0
]
= 1.22 + 0.53tij − 0.03t2

ij

A/ruddy turnstone/DE/1538/2000
(H7N9)

OP:
logit

{
P
(

yij = 0
)}

= −5.86 + 0.38tij

E
[
yij

∣∣∣yij >0
]
= 6.06− 0.13tij − 0.007t2

ij
CL:
logit

{
P
(

yij = 0
)}

= 0.13− 0.09tij + 0.02t2
ij

E
[
yij

∣∣∣yij >0
]
= 1.09 + 0.55tij − 0.03t2

ij

A/turkey/NY/4450-4/1994
(H7N2)

OP:
logit

{
P
(

yij = 0
)}

= −6.88 + 0.38tij

E
[
yij

∣∣∣yij >0
]
= 4.42− 0.09tij − 0.007t2

ij
CL:
logit

{
P
(

yij = 0
)}

= −0.17− 0.39tij + 0.02t2
ij

E
[
yij

∣∣∣yij >0
]
= 1.02 + 0.49tij − 0.03t2

ij

A/turkey/VA/SEP-67/2002
(H7N2)

OP:
logit

{
P
(

yij = 0
)}

= −4.78 + 0.38tij

E
[
yij

∣∣∣yij >0
]
= 5.64− 0.29tij − 0.007t2

ij
CL:
logit

{
P
(

yij = 0
)}

= 0.07− 0.15tij + 0.02t2
ij

E
[
yij

∣∣∣yij >0
]
= 0.54 + 0.42tij − 0.03t2

ij

The regression models estimated from the nonzero values were assessed by plotting
the Pearson residuals versus the fitted values for the overall fit, as well as the fit for each
virus strain. The assumption of normal distributed within-group errors was assessed with
a normal quantile-quantile (Q-Q) plot of the residuals for each virus strain. Similarly, the
assumption of normal distributed random effects was assessed with a normal Q-Q plot of
the predicted random effects for the regression models estimated from both the zero and
nonzero portions of the data [23–26]. The regression fits could also be viewed directly since,
as defined, the response variable varied only by time. An example is given in Figure A1
for the H7N9 LPAIV strain, A/ruddy turnstone/DE/1538/2000. The residuals of the
regression models estimated from the nonzero portion of the data were fairly large (>2) at
14 days post-inoculation for some strains. The evidence of issues at 14 days post-inoculation
was unsurprising, as few birds were shedding at that point in the experiment [8]. As such,
the predicted amounts of shedding greater than two weeks post-inoculation should be
viewed with caution.
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