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Abstract: Marburg virus (MARV), the causative agent of Marburg virus disease, emerges sporadically
in sub-Saharan Africa and is often fatal in humas. The natural reservoir for this zoonotic virus is
the frugivorous Egyptian rousette bat (Rousettus aegyptiacus) that when infected, sheds virus in the
highest amounts in oral secretions and urine. Being fruit bats, these animals forage nightly for
ripened fruit throughout the year, including those types often preferred by humans. During feeding,
they continually discard partially eaten fruit on the ground that could then be consumed by other
Marburg virus susceptible animals or humans. In this study, using qRT-PCR and virus isolation, we
tested fruit discarded by Egyptian rousette bats experimentally infected with a natural bat isolate of
Marburg virus. We then separately tested viral persistence on fruit varieties commonly cultivated
in sub-Saharan Africa using a recombinant Marburg virus expressing the fluorescent ZsGreen1.
Marburg virus RNA was repeatedly detected on fruit in the food bowls of the infected bats and viable
MARV was recovered from inoculated fruit for up to 6 h.

Keywords: Marburg virus; Egyptian rousette bat; Rousettus aegyptiacus; viral persistence; transmission;
bat; zoonoses; fluorescent ZsGreen1; high-consequence viruses; reservoirs

1. Introduction

Marburg virus (MARV) is the prototype member of the family Filoviridae and was
discovered in 1967 after an outbreak of Marburg virus disease (MVD) that occurred among
German and former Yugoslavian scientists that had worked with MARV-infected non-
human primates (NHPs) imported from Uganda in the days prior to becoming ill [1,2].
How the non-human primates became infected with MARV was never established except
that they were likely exposed while still in Uganda just prior to shipment. Since that
time, sporadic spillover of MARV into human populations has resulted in an additional
13 known outbreaks of MVD [3–5], with the most recent occurring in 2021 in Guinea [6].
Most of these MVD outbreaks have been small with the notable exceptions of the outbreaks
in the Democratic Republic of Congo (DRC) from 1998 to 2000 [7] and Angola in 2005. The
outbreak in Angola resulted in 252 cases and 227 deaths, the highest case fatality ratio
(CFR: 90%) reported for any large filovirus outbreak [8] including that for the 2013–2016
West Africa Ebola outbreak (CFR: 41%) [9].

Marburgvirus (MARV and Ravn virus (RAVV)) RNA and antibodies were first identi-
fied in bats in Gabon [10,11] and DRC [12]. However, it was not until a series of small MVD
outbreaks in Uganda linked to miners working in Kitaka Mine and tourists visiting Python
Cave [13,14] that MARV and RAVV were repeatedly isolated directly from cave-dwelling
Egyptian rousette bats (ERBs; Rousettus aegyptiacus) [15,16]. These findings, combined with
the studies in DRC and Gabon, led to the conclusion that ERBs are a natural reservoir for
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marburgviruses. MARV and, in some instances, RAVV have subsequently been found in
ERBs in Zambia [17], Kenya [18], and South Africa [19–21]. Most recently, an Angola-like
MARV was isolated from ERBs captured in Sierra Leone [22].

Since the discovery of ERBs as the marburgvirus natural reservoir, research efforts
have focused on understanding how MARV is maintained in nature and how the virus
spills over into humans. These efforts have included experimental infection studies using
captive bred ERBs, first reported by Paweska et al. [23] and then Amman et al. [24]. In
the study by Amman et al., using a natural bat isolate of MARV, the authors detected the
highest levels of viral shedding in oral secretions, suggesting biting and perhaps mucosal
contact with oral secretions as a likely mechanism of bat-to-bat MARV transmission. These
same mechanisms could also serve as conduits for bat-to-primate MARV transmission
under the right circumstances. Interestingly, none of the historical MVD outbreak index
cases reported direct contact with bats, suggesting an additional route of viral shedding
may be involved. Paweska et al. [25] sporadically detected MARV RNA in the urine of
experimentally infected ERBs, and Schuh et al. [26] experimentally demonstrated MARV
transmission between ERBs and also detected MARV RNA in ERB urine. These findings
indicate infectious urine could be a second plausible route of virus transmission, perhaps
by direct deposition into mucous membranes including those of human or non-human
primates looking upward at roosting or flying bats. It is well known that bats will defecate
and urinate during flight.

When considering either route of marburgvirus shedding, saliva, or urine, environ-
mental contamination of surfaces could also represent a means for MARV bat-to-bat or bat-
to-human transmission beyond direct biting or deposition of urine in mucous membranes
of susceptible hosts. Further, the environmental stability and viability of the pathogens
must be considered [27–33]. ERBs are frugivorous and routinely forage in the wild or
cultivated fruiting trees where they may urinate on fruit and test bite fruits for ripeness [34]
or simply drop fruit they have been actively eating. ERBs do not typically consume fruit
completely, rather they chew the fruit to extract the juice and then discard the pulp in what
is known as a fruit spat [35]. Up to 25% of foraged fruit will be discarded in either this
manner or spit out following squabbles with other ERBs [34]. These activities could poten-
tially result in deposition of infectious virus on significant amounts of whole fruits in trees
or fruit and fruit spats lying on the ground that could later be consumed by susceptible
non-reservoir hosts such as humans or non-human primates. Moreover, the first outbreak
of MVD was directly linked to the handling of infected NHPs [1,2], and for Ebola virus, the
well-known relative of MARV virus, the origins of multiple outbreaks in Gabon and the
Republic of Congo were linked to human contact with infected non-human primates and
duikers [36].

To assess the potential of MARV to be transmitted to humans through environmental
contamination, specifically contaminated fruit, we tested uneaten and discarded fruit
collected from the cages of ERBs experimentally infected with MARV from 5 to 14 days
post-inoculation (DPI). This specific time interval coincided with peak viral shedding from
the oral mucosa [24,26]. We further evaluated MARV spillover potential via contaminated
fruit by separately testing a variety of fruits, many common to sub-Saharan Africa, with a
range of MARV doses similar to those detected in oral swabs of MARV-infected ERBs [24,26]
and then monitored virus persistence on the fruit over 24 h post-inoculation (HPI).

2. Materials and Methods
2.1. Animals and Biosafety

This fruit inoculation experiment was performed in conjunction with a concurrent
study involving MARV-experimentally inoculated ERBs [37]. All experimental procedures
were conducted with the approval from the Centers for Disease Control and Prevention
(CDC, Atlanta, GA, USA), Institutional Animal Care and Use Committee (protocol number:
2682BATTOWC), and in strict accordance with the Guide for the Care and Use of Laboratory
Animals [38]. The CDC is an Association for Assessment and Accreditation of Laboratory
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Animal Care International fully accredited research facility. No human patient-derived
clinical materials were used in these studies. Procedures conducted with infectious MARV
or with infected bats were performed at the CDC under biosafety level 4 (BSL-4) laboratory
conditions in accordance with Select Agent regulations (Animal and Plant Health Inspection
Service and Centers for Disease Control and Prevention, 2014). All investigators and
animal handlers followed strict BSL-4 biosafety and infection control practices to prevent
cross contamination between experimentally infected and control bats. All ERBs were
transferred from the CDC ERB breeding colony to the BSL-4 laboratory one week prior to
the commencement of the experiment to acclimate them to their new environment.

2.2. Oral Swab and Bat Cage Fruit Sampling

Procedures for inoculation of the bats are reported in Guito et al. [37]. Briefly, for
the bats in this study, ten ERBs were anesthetized using isoflurane vapors and inoculated
subcutaneously in the mid-ventral abdomen with a 1 × 104 tissue culture infectious dose
(TCID50) of MARV (250 µL of 4 × 104 TCID50/mL Uganda 371Bat2007, GenBank accession
number: FJ750958; Vero E6+2 passages; [15]) in sterile Dulbecco’s Modified Eagle’s Medium
(DMEM, GIBCO, Thermo Fisher Scientific, Waltham, MA, USA). Five control bats were
mock inoculated with an equal volume of DMEM only. From 5 to 14 DPI, polyester-tipped
applicators (Life Technologies, Grand Island, NY, USA) were used to swab the oral mucosa
of the ten infected bats housed in two cages and the five negative control bats housed in
one cage. Each oral swab sample was placed into a well of a deep-well plate containing
500 µL MagMax lysis buffer solution (Life Technologies, Grand Island, NY, USA).

Each morning at 7:00 am from 5 to 14 DPI, approximately 13 h from when we estimate
the bats began feeding, uneaten bat fruit mix, hereafter referred to as “bat mix” (i.e., banana,
red grapes, pear, and honeydew melon supplemented with protein–vitamin powder; the
CDC ERB colony and experimental bats consumed this mix daily), left in the food bowls of
each cage (n = 3) were swabbed using one set of polyester-tipped applicators, and discarded
fruit and fruit spats on each cage floor were swabbed using a second set of polyester-
tipped applicators. The polyester-tipped applicators were placed into 15 mL conical tubes
containing 1 mL of growth medium (DMEM supplemented with 10% heat-inactivated
fetal bovine serum (HI-FBS), 100 units/mL penicillin, 100 µg/mL streptomycin, 50 µg/mL
gentamicin, and 2.5 µg/mL amphotericin B), vortexed, and then centrifuged at 1000× g for
10 min. The supernatants were treated with 50 µL of a 5X antibiotic/fungizone additive
and incubated for 1 h at room temperature. After incubation, 100 µL of each antimicrobial-
treated supernatant was placed into a well of a deep-well plate containing 500 µL MagMax
lysis buffer solution spiked with 0.25 µL of gamma-irradiated Rift Valley fever virus (RVFV;
internal extraction control), and the remaining volume of each supernatant was reserved
for immediate virus isolation attempts. Statistical analysis was performed, and graphs
were produced using GraphPad Prism (version 9, GraphPad Software, San Diego, CA, USA).

2.3. Fruit Inoculation

Cut banana, mango, and bat mix samples (∼=113 g) contained within 12-well tissue
culture plates (Corning Inc., Corning, NY, USA) were inoculated in triplicate with 250 µL of
high (1.00 × 105 TCID50), medium (1.00 × 103 TCID50), and low (1.00 × 101 TCID50) doses of
replication-competent, infectious recombinant (r) MARV expressing the fluorescent ZsGreen1
(ZsG) (rMARV-ZsG; GenBank accession number: MK271062; Huh7+2 passages; [39,40]), gen-
tly mixed with a polyester-tipped applicator to distribute the virus, and then incubated at
room temperature for 24 HPI. Each rMARV-ZsG-inoculated fruit specimen was sampled
by gently swabbing the surface of each piece of fruit in a well using a polyester-tipped
applicator at 0, 1, 6, and 24 HPI. The applicator was then placed into a 15 mL conical tube
containing 1 mL of FluoroBrite Growth Media (FlouroBrite DMEM (GIBCO, Waltham, MA,
USA) supplemented with 10% HI-FBS, 100 units/mL penicillin, 100 µg/mL streptomycin,
50 µg/mL gentamicin, 2.50 µg/mL amphotericin B, and GlutaMAX(Grand Island, NY,
USA)). The samples were vortexed and then centrifuged at 1000× g for 10 min. After
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incubating the supernatants with 50 µL of a 5X antimicrobial additive for 1 h at room tem-
perature using a previously described procedure [41], 100 µL of each antimicrobial-treated
supernatant was placed into a well of a deep-well plate containing 500 µL of MagMax
lysis buffer solution spiked with 0.25 µL of gamma-irradiated RVFV), and the remaining
volume of each supernatant was reserved for virus isolation.

2.4. RNA Extraction and Reverse Transcriptase PCR

RNA was extracted from the (1) MARV-experimentally infected bat cage fruit samples,
(2) oral swabs collected from the MARV-experimentally infected bats, and (3) rMARV-ZsG-
inoculated fruit samples using the MagMAX Pathogen RNA/DNA Kit (Life Technologies,
Grand Island, NY, USA) with the MagMAX Express-96 Deep Well Magnetic Particle
Processor (Life Technologies, Grand Island, NY, USA) following previously described
procedures [26]. Reverse-transcribed rMARV-ZsG and MARV RNA (all three sample types),
RVFV (all sample types except oral swabs), and eukaryotic 18S rRNA (oral swabs only)
were detected on the ABI 7500 Real-Time PCR System (Life Technologies, Grand Island, NY,
USA) using the SuperScript III Platinum One-Step Q-RT-PCR Kit (Life Technologies) with
amplification primers and reporter probes targeting the viral protein 40 gene of MARV,
the large segment of RVFV, and eukaryotic 18S rRNA gene, respectively (Supplementary
Materials Table S1). Relative rMARV-ZsG or MARV log10TCID50 eq/mL were interpolated
from a standard curve generated from serial dilutions of the respective virus stocks with
known titers in sterile media. It is possible that titers can vary slightly due to the fact that
the standard curve was not generated using a saliva matrix.

2.5. Virus Isolation

Virus isolation was attempted on all fruit samples collected from the cages of MARV-
experimentally infected bats. Isolations were not attempted on oral swabs due to the large
amount of data already published on oral swabs from MARV-infected bats [24–26,42].
After inoculating wells of 90% confluent Vero E6 cells in 25 cm2 flasks containing 2 mL of
Maintenance Media with 850 µL of the antimicrobial-treated supernatants, cultures were
incubated at 37 ◦C/5% CO2 through 14 DPI. Cell culture media was replaced with 7.5 mL
of fresh Maintenance Media at 1 DPI, and all cultures were tested by immunofluorescent
assays at 7 and 14 DPI following published procedures [43].

Virus isolation was attempted on all rMARV-ZsG-inoculated fruit samples. One
hundred and ninety microliters of each antimicrobial-treated supernatant was added to
90% confluent Vero E6 cell monolayers in 12-well tissue cultures plates containing 760 µL
of FluoroBrite Maintenance Media (FlouroBrite DMEM supplemented with 2% HI-FBS,
100 units/mL penicillin, 100 µg/mL streptomycin, 50 µg/mL gentamicin, 2.5 µg/mL am-
photericin B, and 1× GlutaMAX) and incubated at 37 ◦C/5% CO2. Cell culture media were
replaced with 2 mL of fresh FluoroBrite Maintenance Media at 1 DPI. At 4, 5, and 14 DPI,
each cell culture plate well was viewed under a fluorescence microscope to determine the
presence of infectious rMARV-ZsG as indicated by cells containing green foci.

3. Results
3.1. qRT-PCR of Oral Swabs Confirmed MARV Shedding in Inoculated Bats

MARV RNA loads measured by qRT-PCR are hereafter reported as log10TCID50
equivalents (eq.) per mL of fluid. MARV RNA positive oral swabs (27/101; 26.73%) were
collected from all inoculated bats between 5 and 14 DPI (Figure 1). Viral loads in infected
bats ranged from 1.42 × 101 TCID50 eq/mL eq. at 14 DPI to 3.21 × 104 TCID50 eq/mL at
7 DPI over the 10 day period of MARV oral shedding. There were no MARV RNA positive
oral swabs collected from the negative control bats.
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Figure 1. Marburg virus (MARV) RNA loads in oral swabs obtained from MARV experimentally
infected bats (n = 10) and negative control bats (n = 5) shown by tissue culture infectious dose (TCID50)
and day post-inoculation. For reference, the dashed line through the yellow squares indicates the
daily average viral load for all 10 inoculated bats.

3.2. qRT-PCR of Bat Cage Fruit

After 10 days of daily sampling each morning, two of the 58 (3.45%) samples col-
lected from fruit in the bat food bowls were positive for MARV RNA: one on 6 DPI
(1.19 × 100 TCID50 eq/mL) and the other on 11 DPI (0.94 × 100 TCID50 eq/mL). All the
samples collected from the cage floors tested negative for MARV RNA. The RVFV inter-
nal extraction control failed to be detected in 17.2% (5/29) of the bat food bowl samples
and 82.8% (24/29) of the fruit samples collected from the cage floors, possibly indicat-
ing the presence of inhibitory substances that may have interfered with RNA extraction
or qRT-PCR.

3.3. Virus Isolation of Bat Cage Fruit

Virus isolation was attempted on all samples collected from fruit in the food bowls and
on the cage floors of MARV-infected bat cages. All isolation attempts were unsuccessful.

3.4. rMARV-ZsG Detected on Inoculated Fruit by qRT-PCR

Reasoning that there was a high degree of potential variability between when MARV
could have been deposited on fruit by infected bats and when fruit in the cage was sampled
each morning (i.e., 0–24 h), a more rigorous virus viability experiment was performed in which
different varieties of fruit were separately inoculated with high (1.00 × 105 TCID50), medium
(1.00 × 103 TCID50), and low (1.00 × 101 TCID50) doses of rMARV-ZsG followed by sampling
at 0, 1, 6, and 24 h. In this experiment, a total of 75/108 (69.4%) rMARV-ZsG-inoculated fruit
samples were positive for MARV RNA (Table 1). Viral RNA was detected in at least one
replicate of all MARV-inoculated fruit sample types at all time points through 24 HPI except
for banana inoculated with a low virus dose at 24 HPI, bat mix inoculated with a medium
virus dose at 6 and 24 HPI, and bat mix inoculated with a low virus dose at all time points.
Mean viral RNA loads for high-dose fruit inoculations (Figure 2A) were as follows: banana
ranged from 8.35 × 103 TCID50 eq/mL at 0 HPI to 7.22 × 102 TCID50 eq/mL at 24 HPI;
mango ranged from 9.40 × 103 TCID50 eq/mL at 0 HPI to 8.48 × 102 TCID50 eq/mL at
24 HPI; bat mix ranged from 1.17 × 103 TCID50 eq/mL at 0 HPI to 2.27 × 101 TCID50 eq/mL
at 24 HPI. Mean viral loads for medium-dose fruit inoculations (Figure 2B) were as follows:
banana ranged from 1.61 × 102 TCID50 eq/mL at 0 HPI to 3.36 × 100 TCID50 eq/mL at
24 HPI; mango ranged from 1.03 × 102 TCID50 eq/mL at 0 HPI to 1.16 × 101 TCID50 eq/mL
at 24 HPI; bat mix ranged from 0.30 × 100 TCID50 eq/mL at 0 HPI to undetectable at 24 HPI.
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Mean viral loads for low-dose fruit inoculations (Figure 2C) were as follows: banana ranged
from 1.91 × 100 TCID50 eq/mL at 0 HPI to undetectable at 24 HPI; mango ranged from
0.98 ×100 TCID50 eq/mL at 0 HPI to 0.17 × 100 TCID50 eq/mL at 24 HPI. The RVFV internal
extraction control was detected in 100% (36/36) of banana and mango samples but failed to
be detected in 52.8% (19/36) of the bat mix samples (Table 1), a finding consistent with limited
RVFV detections in the bat mix present in cages of MARV-infected bats described above.

Table 1. Marburg virus (MARV) qRT-PCR for viral RNA and virus isolation results for fruit inoculated in triplicate with
high (1.00 × 105 tissue culture infectious dose (TCID50)), medium (1.00 × 103 TCID50), and low (1.00 × 101 TCID50) doses of
a recombinant MARV expressing the fluorescent ZsG reporter according to hours post-inoculation (HPI). Gamma-irradiated
Rift Valley Fever virus (RVFV) was used as an internal RNA extraction control and the results are shown in the table.

High Dose Medium Dose Low Dose

Fruit HPI
RT-PCR Isolation RT-PCR Isolation RT-PCR Isolation

MARV RVFV MARV MARV RVFV MARV MARV RVFV MARV

Bat Mix

0 1 1 3 1 2 2 0 1 0

1 2 3 0 1 3 0 0 2 0

6 2 3 0 0 2 0 0 0 0

24 3 2 0 0 0 0 0 0 0

Banana

0 3 3 3 3 3 3 3 3 0

1 3 3 3 3 3 1 3 3 0

6 3 3 1 3 3 0 1 3 0

24 3 3 0 3 3 0 0 3 0

Mango

0 3 3 3 3 3 3 3 3 1

1 3 3 3 3 3 3 3 3 0

6 3 3 3 3 3 0 3 3 0

24 3 3 0 3 3 0 1 3 0

3.5. Virus Isolation from Inoculated Fruit

Infectious rMARV-ZsG was isolated from inoculated fruit samples, with most isola-
tions recovered from fruit inoculated with high and medium virus doses (Table 1). Bat
mix inoculated with rMARV-ZsG produced the fewest isolates with three isolates recov-
ered from mixes inoculated with high virus doses and two isolates recovered from mixes
inoculated with medium virus doses but only at 0 HPI. rMARV-ZsG-inoculated banana
produced three isolates each from samples inoculated with high and medium virus doses
at 0 HPI, three isolates from samples inoculated with medium virus doses at 0 HPI, and one
isolate from a sample inoculated with a medium virus dose at 1 HPI. Banana also produced
one isolate from a sample inoculated with a high virus dose at 6 HPI. Mango produced the
most rMARV-ZsG isolates with three each from samples inoculated with high and medium
virus doses at 0 HPI and one isolate from a sample inoculated with a low virus dose at
0 HPI. There were also three isolates recovered from mangoes inoculated with high and
medium virus doses at 1 HPI and three isolates from mangoes inoculated with high virus
doses at 6 HPI.
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(1.00 × 101 TCID50) of rMARV-ZsG according to hours post-inoculation (HPI). Vertical lines represent
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4. Discussion

To examine real-world MARV spillover potential in areas where ERBs routinely forage
on fruits commonly eaten by humans, discarded fruit and fruit spats from experimentally
infected bats were swabbed and tested for residual MARV RNA. The results were unexpect-
edly limited. Similar to past experiments [24–26,42], the MARV-experimentally infected
ERBs shed virus through oral secretions in typical amounts as evidenced by 27 MARV
RNA positive oral swabs collected over 10 days. During this same time interval, only
two MARV RNA positive samples were collected from uneaten fruit remaining in the
food bowls of MARV-infected bats. While this is evidence that MARV was indeed shed
from infected bats and had been deposited on uneaten fruit, either through saliva, urine,
or both, the two positive samples were far less than that expected given the number of
positive oral swabs produced by the infected bats. This low level of MARV detection
could be explained by the limited ability to detect the spiked irradiated RVFV internal
extraction control in a large percentage of uneaten bat mix samples collected from the
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food bowls (17.2%) and cage floors (82.8%). This is indicative of either incompatible RNA
extraction conditions, such as low pH due to fruit acidity, or inhibitors present in fruit or
the powdered vitamin/protein supplement present in bat mix but not the individually
tested fruits. Also, urea, a component of urine, and complex polysaccharides in feces have
been previously cited as PCR inhibitors [44], and so the influence of urine and feces could
not be ruled out. Given the possible influence of inhibitors, the 3.45% (2/58) qRT-PCR for
MARV samples that were detected on the food bowl fruit would be a highly conservative
estimate of how much virus was actually shed onto discarded fruit and fruit spats.

Due to the daily feeding and sampling schedule, the virus could have persisted on
cage fruit anywhere between 0 and 24 h. Therefore, the elapsed time between the bats
potentially depositing low levels of virus on the fruit and sample collection might also have
been a contributing factor to explain why MARV RNA was detected in so few samples
from MARV-infected bat cages. Bat cage sample collections were performed at 7:00 am
upon entry into the animal biosafety level-4 (ABSL-4) room, immediately followed by bat
husbandry activities consisting of cleaning and replenishing food bowls and placing new
plastic liners on cage floors. The ABSL-4 room holding the infected bats was on a 12 h light
and dark cycle, beginning at 6:00 am and 6:00 pm, respectively. The bats typically eat after
the lights go out, indicating that a period of up to 13 h could have lapsed between when
the bats ate the fruit and the collection of samples the next morning. Although if bats did
some feeding during the day, this time frame could be up to 24 h.

Despite the low number of fruit bowl (bat mix) samples with detectable MARV RNA,
oral swab data from this and previous MARV experimental infection studies indicate
that bats shed MARV through saliva in concentrations encompassing the range of doses
we used for the artificial fruit inoculations. MARV oral shedding loads in this study
peaked at 3.21 × 104 TCID50 eq/mL but have been as high as 2.5 × 105 TCID50 eq/mL
in previous MARV experimental infection studies [26]. Moreover, infectious MARV has
been isolated from oral swabs at viral loads as low as 4.60 × 101 TCID50 eq/mL [26]. This
demonstrates the potential for ERBs actively infected with MARV to shed infectious virus
onto discarded fruit through saliva. The fruit inoculation experiment was designed to
establish a more defined timeline for the persistence of infectious virus on individual fruit
varieties, particularly banana and mango, since the mixture of fruit with the supplements
(bat mix) is not natural, and banana and mango are commonly cultivated fruits in Africa.
Moreover, the fruit inoculation allowed for the assessment of viral persistence on fruit
in the absence of some possible inhibitors such as those found in urine and feces or the
protein/vitamin powder (banana and mango only). Similar to the bat cage fruit samples,
the internal RVFV RNA extraction control failed to be detected in >50% of the bat mix
samples but was detected in all banana and mango samples. This suggests that either some
of the fruit in the mix other than banana (red grapes, pear, and honeydew melon) or the
protein–vitamin supplement acted as RNA extraction or qRT-PCR inhibitors. Some fruits
and concentrated proteins have been reported to contain PCR inhibitors [45,46].

Surprisingly, MARV RNA was detectable for up to 24 h in banana and mango, suggest-
ing that elapsed time may be less of an issue than initially thought. Moreover, rMARV-ZsG
isolates were recovered up to 6 HPI in samples of banana and mango, demonstrating the
potential for viral persistence on common African fruit.

The 6 h persistence of MARV on banana and mango was notably shorter than the
4–5 day persistence of MARV on contaminated surfaces (i.e., wool and glass) reported
in [27] and the reported three weeks persistence on plastic and glass surfaces held at low
temperatures [32]. However, this shorter window of infectiousness does not rule out a
potential real-world scenario in which a susceptible host (i.e., human or NHP) could be
exposed to infectious MARV shed from infected ERBs. Six hours is sufficient time for a
ripe fruit to be consumed by another susceptible animal or human, and in a setting such as
an orchard or garden, this represents a significant public health risk. ERBs are known to
test bite fruit for ripeness [34] and drop fruits they do not like. These bats also consume
fruit by masticating the pulp to extract the juice and then discarding the fruit spat onto
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the ground [35]. Apes, other NHPs, and forest duikers feed on fallen and possibly dis-
carded fruits and are particularly susceptible to filovirus infections [47–49]. Environmental
transmission of other bat-borne viruses has occurred through contamination of fruit and
other plant-derived foods. Nipah virus (NiV) has been linked to the consumption of raw
date palm sap in Bangladesh [50]. Contaminated grass, fruit, and feed may lead to Hendra
virus exposure in horses [51]. It is probable that fruit contaminated with bat excrement
in orchards planted near pigsties resulted in an outbreak of NiV in pigs in Malaysia that
ultimately resulted in 265 human cases of encephalitis and 105 deaths [52].

Historically, MARV spillover to humans has occurred after exposure to areas around
bat habitats, such as caves or mines, but not necessarily involving direct contact with
bats [3]. To reiterate, NHPs imported from Uganda served as the catalyst for the first
ever MVD outbreak in Germany and the former Yugoslavia (now Serbia) [2]. Typically,
ERBs emerge from their roost just after sunset and forage for fruit, such as banana, mango,
peaches, dates, fig, and many other fruits, all night and return to the roost before sunrise [34].
This includes fruit cultivated for human consumption, earning ERBs the moniker of being
an economic nuisance in some areas [35,53]. The human disease risk repercussions of
infectious MARV persistence on mango and banana would originate from a MARV-infected
ERB biting and discarding or dropping infectious fruit or consuming and discarding spats
of infectious fruit, during the early hours of the morning. It is very conceivable that humans
or NHPs actively foraging just after sunrise could encounter and consume the infectious
fruit or fruit spats that are within the 6 h window of infectious MARV persistence.

In conclusion, we demonstrated that MARV-infected ERBs can shed virus onto dis-
carded fruit. Further, we demonstrated that infectious MARV is stable for at least 6 h
on two types of fruit (i.e., mangoes and bananas) routinely consumed by both ERBs and
primates, including humans, throughout sub-Saharan Africa. Together, these findings
suggest that the consumption or handling of fruit test-bitten or spat-out by ERBs is a risk
factor for MARV spillover into to humans and MARV-sensitive wildlife.
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