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Abstract: The recent emergence of novel SARS-CoV-2 variants has threatened the efforts to contain
the COVID-19 pandemic. The emergence of these “variants of concern” has increased immune
escape and has supplanted the ancestral strains. The novel variants harbored by the B.1.617 lin-
eage (kappa and delta) carry mutations within the receptor-binding domain of spike (S) protein
(L452R + E484Q and L452R + T478K), the region binding to the host receptor. The double mutations
carried by these novel variants are primarily responsible for an upsurge number of COVID-19
cases in India. In this study, we thoroughly investigated the impact of these double mutations on
the binding capability to the human host receptor. We performed several structural analyses and
found that the studied double mutations increase the binding affinity of the spike protein to the
human host receptor (ACE2). Furthermore, our study showed that these double mutants might be
a dominant contributor enhancing the receptor-binding affinity of SARS-CoV-2 and consequently
making it more stable. We also investigated the impact of these mutations on the binding affinity of
two monoclonal antibodies (Abs) (2-15 and LY-CoV555) and found that the presence of the double
mutations also hinders its binding with the studied Abs. The principal component analysis, free
energy landscape, intermolecular interaction, and other investigations provided a deeper structural
insight to better understand the molecular mechanism responsible for increased viral transmissibility
of these variants.

Keywords: SARS-CoV-2; COVID-19; variant; molecular dynamics; double mutant; delta variant;
kappa variant

1. Introduction

Today, the entire world is struggling with coronavirus disease 2019 (COVID-19), a
pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1].
This virus has rapidly spread worldwide, and subsequently, its infectivity has been reported
from every part of the world [2—4]. Accounting for several millions of worldwide deaths,
this viral disease has presented a significant challenge. One of the main attributes of viruses
is their ability to mutate frequently [5,6]. Therefore, the occurrence of new mutations affects
the virulence and transmission of the virus [7-9].

The Spike (S) protein is an essential part of SARS-CoV-2 as it mediates interaction with
the human cells and is the target for most vaccine and therapeutic antibodies (Abs) [10,11].
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Similar to other coronaviruses, the S protein of SARS-CoV-2 is responsible for its binding
and attachment to the host cell-surface receptor. This surface glycoprotein consists of two
functional domains: S1 and 52 [11,12]. 51 is located on the cell surface; its receptor-binding
domain (RBD) mainly interacts with the host cell receptor while the S2 domain is located
inside the membrane of coronavirus, mediating membrane fusion (Figure 1) [13-15]. The
viral entry of SARS-CoV-2 within the host cell is mediated by binding its surface S protein
to the host angiotensin-converting enzyme 2 (ACE2) [16]. The S protein’s RBD is the region
responsible for the attachment [17]. The viral entry and its propagation in the human host
are well depicted in Figure 1.
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Figure 1. The viral entry mechanism of SARS-CoV-2 via the interaction of its spike protein with the
host ACE2.

Several studies have confirmed the role of this RBD-ACE2 interaction in the viral entry
process [18-20]. In addition, the impact of naturally selected mutations within RBD on viral
entry, infectivity, pathogenesis, and immune escape has been well documented [7,21,22].

Mutation in S1 or S2 region may result in variations in virus infectivity into the host
cell [23-25]. The recently reported variants of SARS-CoV-2 possess higher transmissibil-
ity [22]. These recent emergences of new SARS-CoV-2 variants have increased the viral
transmission and threatened the effectiveness of vaccines and other small molecule in-
hibitors designed explicitly for the COVID-19 pandemic. These newly reported “variants
of concern” harbor mutations that confer increased viral transmissibility or immune es-
cape [8,26]. The mutation-induced conformational changes in these new reported variants
might also make the vaccines or neutralizing antibodies (nAbs) ineffective [21,22,26,27].
The recently reported SARS-CoV-2 variant B.1.617 (delta and kappa) are responsible for the
steep rise in the number of COVID-19 cases and deaths in India [28-30]. The emergence
of these new SARS-CoV-2 variants is believed to be highly responsible for several million
new infections, leading to thousands of new deaths within a few weeks [29].

The SARS-CoV-2 B.1.617 lineage, first identified in India, has become dominant in
several parts of the globe [31-33]. This lineage has been classified into three sublineages
viz. B.1.617.1, B.1.617.2, and B.1.617.3 [34]. All the sublineages are found to be harboring
diverse mutations within the RBD of the S protein [32]. It is believed that the rapid
spread of the B.1.617 variant in India might be due to the presence of some essential
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point mutations within the RBD, which might be promoting the cellular entry of the virus,
thereby infecting a broader range of target cells [35]. These mutations are also reported
to be mainly responsible for their increased immune evasion potential [36]. The SARS-
CoV-2 S protein of the B.1.617.1 (kappa) variant harbors a total of eight mutations [37]. Of
these eight mutations, seven are located within the S1 region, while one is located within
the S2 subunit. This variant harbors two mutations within the RBD (L452R, E484Q), the
region responsible for the viral entry [37]. This double mutation is also carried by the
B.1.617.3 as well [32]. Here in this study, we have investigated the impact of the double
mutation (L452R + E484Q and L452R + T478K) carried by the B.1.617.1 (kappa variant)
and the B.1.617.2 (delta variant), respectively, on the binding propensity of SARS-CoV-2 S
protein with the human ACE2. Both double mutants (dm) investigated in this study
are reported to be originating from India and are primarily responsible for the surge in
COVID-19 cases in India [38]. Delta variant rapidly spread and became dominant in India
and other countries [32,39,40]. The impact of delta variant, classified as variants of concern
(VOC) by the World Health Organization (WHO), has been well reported [41-43]. The
findings of this study demonstrate the dominant impact of double mutations carried by
the kappa and delta variants on the binding capabilities between S and ACE2. The double
mutations carried by these variants affected the microenvironment of the S—~ACE2 interface
region, thereby promoting the stability of the complex. The presence of the studied double
mutations was also observed to be restricting the Ab binding. This further challenge the
possibilities of effective vaccine design and therapeutics. The detailed investigation of the
impact of delta and kappa variants envisage their role in promoting the virus’s cellular
entry, thereby making it an essential factor for a higher infectivity rate.

2. Materials and Methods
2.1. Model Building and Optimization

The crystal structure of the SARS-CoV-2 S receptor-binding domain bound with ACE2
was fetched from the RCSB (PDB ID 6M0J) [44]. The structure was modeled for the missing
sidechain atoms and minimized. For the kappa variant, the L452 and E484 residues of
the SARS-CoV-2 spike receptor-binding domain (wild) were mutated to 452R and 484Q,
respectively. The L452R and T478R substitutions were performed for the delta variant.

The structure and binding mode for the neutralizing Abs 2-15 and LY-CoV555 were
retrieved from the RCSB (PDB Id: 7L5B and 7ZKMG) [45,46]. Mutant spike complexes in
conjugation with the Abs were generated and optimized.

2.2. Molecular Dynamics Simulation

All the complexes (wild and the two variants) were subjected to MD simulations. The
MD calculations were performed on GROMACS 2020.4 package using the CHARMM27
force field [47]. Initially, both complexes were solvated within the TIP3P cubic solvation
box with a 10 A periodic boundary. To satisfy the electro-neutrality of the systems, Na+
and Cl— ions were added. Both systems were subjected to energy minimization using the
steepest descent integrator. The energy minimized model was subjected to NVT and NPT
ensemble for 100 ps to stabilize the system at 300K temperature and 1 bar pressure. The
equilibrated system was further subjected to extended molecular dynamics simulation
for 200 ns.

The structures for nAbs in a complex with complete S protein were minimized and
simulated for 100 ns each. We followed the same molecular dynamics protocol and
parameters as mentioned above for the RBD-ACE2 complex. Various parameters such as
hydrogen bond, the distance between the atoms, contact surface area were calculated using
the inbuilt GROMACS modules. The average trajectories were extracted, and the center of
masses was calculated for RBD and ACE2 subunits to obtain the lateral and angular shifts
(tilt angle).
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2.3. Principal Component Analysis

Principal component analysis (PCA) was performed and analyzed to investigate the
collective motions of the wild type (wt) and dm. The covariance matrix C was calculated
using the following Equation (1):

Cl']' =< (Xl' <X >)(x]- — <X >) > @)

where x; and x; are the instant coordinates of the M and ]-th atoms of the systems, while <x;>
and <x;> represents an ensemble average. The trajectories were analyzed for the relative
motions about their center of masses.

2.4. Free Enerqy Landscape

The Free energy landscape (FEL) was analyzed to understand the stability and folding
of wt and dm. The FEL was depicted as Equation (2):

AG(X) = KgTIn P(X) ©)

where Boltzmann constant was denoted by Kp, T is absolute temperature, while the
probability distribution of the molecular system along the PCs is denoted by P(X).

2.5. Binding Free Energy Analysis

We determined the binding free on the binary complexes using GMXPBSA 2.1, a
Bash/Perl-based tool for MM /PBSA calculations utilizing structural ensembles generated
of GROMACS trajectories. It calculates the binding free energies of the complexes [48].

This approach calculates the binding free energy (AGpinging) according to the following
Equations (3)-(5):

AGbinding = AGpm (Potential energy in vaccum) + AG, (solvation ef fects) ®3)
where
AGmm = AGeoutomb (electrostatic interaction) + AGvaw 4)
and
AGgy = AGpolar + A(—?'non]zzolar (5)
3. Results

3.1. Structural Analysis of the Wild and Double Mutant SARS-CoV-2 Spike Protein Complexes

The Crystal structure of the SARS-CoV-2 spike receptor-binding domain bound with
ACE2 (PDB ID: 6M0J]) was taken as the reference [44]. The reference complex structures
along with the kappa (L452R, E484Q) and delta variant (L452R and T478K) models were
subjected to two hundred nanoseconds of MD simulations. Various structural analyses
were performed to study the structural impact of these mutations.

The solvated system consists of 56,430, 56,440, and 56,665 atoms for the wt, kappa, and
delta complex, respectively. The RMSD values relative to the initial crystal structures were
determined, as shown in Figure 2A. The RMSD values for the wt receptor-binding domain
(WtRBD) were found to be the lowest as compared with the values for selected variants,
i.e., kappa(k)RBD and delta(d)RBD. A conformational shift was seen in the delta variant
between 80-110 ns, which later stabilized. The average RMSD undulation amplitude was
below 0.5 A throughout most of the simulation time. The backbone RMSD of the ACE2
was stable in all the complexes with almost similar amplitude of fluctuations. The residual
root mean square fluctuations (RMSF) values for the backbone atoms of the wt and mutant
complexes were estimated (Figure 2B). A higher degree of fluctuation was observed in the
native complex. However, the kappa variant witnessed the lowest level of fluctuations
within the amino acid residues, suggesting the better stability of the kappa variant complex
followed by the delta variant.
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Figure 2. The molecular dynamics results of ACE2 in complex with the wild, kappa, and delta RBD during the 200 ns
(A) The backbone RMSD of wtRBD (green), kRBD (blue), and dRBD (red) (B) The RMSF of wtRBD (green), kRBD (blue) and
dRBD (red) in complex with the ACE2. The contact surface area of (C) wtRBD (green) (D) kRBD (blue), and (E) dRBD (red)
structures of RBD bound to the ACE2.

The interfacial binding contact surface area was estimated to be 19.0, 20.5, and 19.9 nm?
for wild, kappa, and delta, respectively (Figure 2C-E). The higher level of structural rigidity
in both variants is attributed to the close and stable binding in the mutants. The studied
parameters clearly indicate the increased binding interaction among the mutant complexes,
which corroborates the previous reports on the increased virulence of these variants [49,50].

3.2. Essential Dynamics Outcome: Mutation Induced Local Structural Rigidity and
Conformational Shift

PCA or essential dynamics is one of the dimensionality reduction techniques used to
extract the principal motion in conformational ensemble generated by protein dynamics in
collective coordinate space [51]. This statistical technique is significant for reducing the
data complexity [52]. The PC1 and PC2, along with the corresponding free energy, were
plotted (Figure 3). As shown in Figure 3, most of the simulation ensembles in the variants
are concentrated to a narrow range of conformational space, indicating better stability and
compact packing of the variant complexes.

The conformational sampling of tertiary structure for the wt, kappa, and delta in the
essential subspace along eigenvectors 1 and 2 is shown in Figure 4A. The entire confor-
mational space was classified into 2373 eigenvectors obtained from the diagonalization
of the covariance matrix of the atomic fluctuations of each ensemble in the wt and the
selected mutant protein simulations. The top ten vectors, along with their eigenvalues,
were plotted. A fall in the eigenvalues was noted as expected. The first ten principal com-
ponents accounted for more than 80% of the total motions observed during the simulation
of RBD-ACE2 complex systems (Figure 4B). The eigenvectorl and eigenvector2 projections



Viruses 2021, 13, 2295

6 of 19

for both variants show a compact cluster of stable states, while a slight state deviation was

noticed in the wt.
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Figure 3. The 2D and 3D graphical representation of the free energy landscape of the (A,D) wtRBD-ACE2, (B,E) kRBD-

ACE2, and (C,F) dRBD-ACE2 complexes.
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kRBD (blue), and dRBD (red) complexes of SARS-CoV-2 with the ACE2 (B) the plot for the eigenvalues for the top 10

selected vector.

Further, we analyzed the lateral drift and angular tilt across the domains. The average
trajectories were extracted, and the center of masses was calculated for RBD and ACE2
subunits. The distance between the two centers of mass (COM) was found to be decreased
from 49.2 A (in the wt) to 48.85 A (kappa) and 48.76 A (delta) (Figure 5). The decrease in
the magnitude of the distance between the COM for the variants suggests a more compact
topology with more intermolecular interactions.
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Figure 5. The average lateral drift between the COM of (A) wtRBD and ACE2, (B) kRBD and ACE2, (C) dRBD and ACE2.

We also analyzed the distinct trajectories in the largest eigenvector for angular tilt.
Figure 6 shows the angular fluctuation between the COM for RBD, ACE2, and the least
fluctuating hinge helix (HH) between residue 21 to 51 on the ACE2 protein. The wt
complex was found to have the highest rotational freedom (20.07°) compared with that
of kappa (7.45°) and delta (6.95°) variant complexes. This observation also favors the
previous findings showing the impact of mutations increasing the binding of RBD toward
the human ACE2.

. VS

Figure 6. Characteristic relative angular twist of the (A) wtRBD-ACE2, (B) kRBD-ACE2, and (C) dRBD-ACE2 complexes.

3.3. Intermolecular Binding Free Enerqy Estimation

The intermolecular binding free energy change (AAG) between the RBD (wt, kappa,
and delta variants) in complex with the ACE2 was also calculated. The total free en-
ergy of binding, Van der Walls energy, and electrostatic energy of binding are illustrated
in Table 1. The binding free energy change (AAG) for the wtRBD-ACE2 complex was
—51.96 Kcal/mol. The magnitude increased to —67.19 Kcal/mol and —64.58 Kcal/mol for
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the kappa and delta-bound ACE2 complexes, respectively. The higher negative magnitude
in the AAG shows the mutations carried by these variants significantly increased their
binding affinity towards human ACE2. The occurrence of these point mutations stabilized
the binding of delta and kappa variants towards ACE2 (Table 1). The Van-der Waals
energy contribution is relatively constant; however, the variants’ electrostatic energy is
highly increased.

Table 1. The binding free energy components for the wtRBD, kRBD, and dRBD in complex with the ACE2.

DELTA G VDWAALS EEL DELTA G Gas DELTA G solv
Complex (Avg (Std. Err. of (Avg (Std. Err. of (Avg (Std. Err. of (Avg (Std. Err. of (Avg (Std. Err. of
Mean) kcal/mol) Mean) kcal/mol) Mean) kcal/mol) Mean) kcal/mol) Mean) kcal/mol)
wtRBD-ACE2 —51.96 (0.52) —83.02 (0.39) —672.79 (2.42) —755.82 (2.54) 703.85 (2.34)
kRBD-ACE2 —67.19 (0.57) —79.75 (0.33) —1081.61 (1.78) —1161.36 (1.79) 1094.16 (1.81)
dRBD-ACE2 —64.58 (0.74) —80.21 (0.39) —1054.76 (3.18) —1134.96 (3.08) 1070.38 (2.87)

3.4. Inter and Intra Molecular Interaction Analysis

The total intermolecular hydrogen bonds between binary protein complexes during
the course of the simulation were analyzed to investigate the extent and nature of interac-
tions between RBD and ACE2 protein in wt and selected variants. The average number of
hydrogen bonds at the interfacial binding surface of the kappa and delta variant were 10.26
and 9.14, respectively (Figure 7), which is relatively higher compared with the wt (6.91).
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Figure 7. The interfacial binding region between (A) wtRBD-ACE2 in green, (B) kRBD-ACE2 in
cyan and (C) dRBD-ACE2 complex in pink color. The average number of intermolecular hydrogen
bonds between (D) wtRBD-ACE2 (green) and kRBD-ACE2 (cyan) and (E) wtRBD-ACE2 (green) and
dRBD-ACE2 (red).
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The role of critical residues involved in binding SARS-CoV-2 S protein to the human
ACE2 was explored. Residues 417Lys, 487Asn, 493GIn, 495Tyr, and 505Tyr on the RBD surface
were involved in hydrogen bonding interactions in the wt complex (Table 1). Apart from these
residues, the kappa variant has seven additional residues (449Tyr, 476Gly, 496Gly, 498GlIn,
500Thr, 501Asn, 502Gly) and the delta variant has two additional residues (500Thr, 501Asn),
found involved in forming the intermolecular hydrogen-bonded interactions.

The mutant residue was found to have a cascading effect on the interfacial surface
of the RBD. The backbone nitrogen is making a consistent hydrogen-bonded interaction
with the hydroxyl group of the Ser349 in the wt and both variants as well (Figure 8A-C).
The polar side chain in the kappa and delta variant forms some additional hydrogen-
bonded interactions with the hydroxyl oxygen on Ser494 (Arg452 NH2/NE-OG Ser494).
The bond distance through most of the dynamics time was identified to be <=3.5A. In the
delta variant, the basic side chain of mutant residue Arg452 orients itself in two different
configurations and is stabilized by hydroxyl group of Tyr351 and Ser494 (Arg452 NH-OG
Ser494 and Arg452 NH-OH Tyr351).
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Figure 8. Binding conformation of mutant residue 452. (A) Leucine 452 making backbone hydrogen bond interaction with
Ser349; (B,C) showing hydrogen-bonded interaction of 452Arg in kRBD and dRBD; (D-F) plot for hydrogen bond distance
through the course of simulation in wtRBD, kRBD and dRBD.
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We also analyzed the comparative interactions at the complex interface and found that
in both variants, three additional interactions (Thr500-OG1-NH1-Arg357, Asn501-ND1-
O-LYS353, and Thr500-OG1-OH-Tyr41) were well maintained throughout the simulation
period (Figure 9). Another consistent hydrogen bond interaction between Tyr505-OH-
OE1-Glu37 was present discriminately in the kappa and delta variant; however, it was
missing in the wt complex. These interactions add to the binding potency of the variants
and may be attributed to further strengthening the binding ability in the mutant complexes
(Figure 10). The higher number of hydrogen bonding residues reflects better stability and
compactness of the mutant complexes.
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Figure 9. Intermolecular hydrogen bonds at the binding interface (A—C) showing hydrogen-bonded interactions in the wild

(green), kappa (cyan), and delta (red) respectively; (D-F) plot for hydrogen bond distances during simulation time.
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Figure 10. Intermolecular hydrogen bonds at the binding interface (A—C) showing hydrogen-bonded interactions at position
505 in the wild (green), kappa (cyan) and delta (red) respectively; (D-F) plot for hydrogen bond distance.

3.5. Interaction between Neutralizing Antibody and RBD

Several Abs are reported to be interacting with the RBD, and their positional clustering
analysis data suggest five distinct regions of attachment on the RBD (Figure 11A). To find
the effect of selected mutations on the binding response of nAbs, we performed molecular
dynamic studies on the wild-type RBD-Antibody (wtRBD-Ab), delta RBD-Antibody
(dRBD-ADb), and kappa RBD-Antibody (kRBD-Ab). Here we investigated two different
monoclonal Abs that specifically target regions 2 and 3 lying close to the mutation site on
the RBD of the S protein (Figure 11A).

To account for the changes in the binding pattern in the variants, we build the complete
complex system around 6 A distance on the Abs, which included the other two subunits of
the homotrimer S protein, as shown in Figure 11. The S protein consists of three chains (A,
B, and C). The neutralizing Abs orient themselves at the RBD domain (Figure 11B,C), with
mutant residues depicted inside the red circle (Figure 12A-F). SARS-CoV-2 neutralizing
Ab 2-15 and LY-CoV555 (bamlanivimab) were selected for the mutational analysis. The
complex system was exceedingly large, with 80,367, 80,325, and 80,349 atoms in wt, kappa,
and delta mutant complexes, respectively. Our study found that the mutations in the
delta and kappa variants of SARS-CoV-2 decrease the binding affinity of the selected
Abs. We also observed the changes in the loop conformations at the interface in the
dRBD-2-15 complex. The Ab binding region is shifted with the lighter chain of Ab, making
hydrophobic interactions with the loop residues on the chain B subunit of the S protein.

We determined the binding free energy for RBD-2-15 and RBD-LY-CoV555 complexes
(Table 2). The energy values for the wt, kappa and delta complexed with Ab 2-15 were
found to be —50.82, —44.76, and —41.64, and for Ab LY-CoV555, the values were —68.44,
—30.84, and —57.08, respectively. The electrostatic energy contribution to the binding
affinity calculated by the MM force field is —19.24, 337.05, and 146.18 for LY-CoV555 and
255.29, 689.15, and 731.41 for 2-15 nAbs.



Viruses 2021, 13, 2295

Ab: 2-15, LY-CoV555,

2-15
(Antibody)

LY-CoV555
(Antibody)

e’

\

Spike Protein

Figure 11. Diagrammatic representation depicting different antibody binding regions on the RBD. (A) ribbon and surface
representation of RBD showing different antibodies targeting different regions. The mutant residues are colored in magenta
(B,C) ribbon representation showing antibody 2-15 and LY-CoV555 orientated to RBD.

Table 2. The interaction-free energies between the RBD (wtRBD, kRBD and dRBD) in complex with the ACE2 (in kcal/mol)
for neutralizing antibodies 2-15 and LY-CoV555.

12 0of 19

DELTA G VDWAALS EEL DELTA G Gas DELTA G Solv
(Avg./Std. Err. (Avg./Std. Err. (Avg./Std. Err. (Avg./Std. Err. (Avg./Std. Err.
of Mean) of Mean) of Mean) of Mean) of Mean)

wtRBD-2-15 —50.82 (1.46) —83.11 (2.22) 255.29 (4.42) 172.18 (5.18) —222.99 (4.68)
kRBD-2-15 —44.76 (1.20) —79.58 (1.23) 689.15 (5.54) 609.57 (5.77) —654.33 (5.27)
dRBD-2-15 —41.64 (1.17) —101.05 (1.37) 731.41 (6.35) 630.36 (6.11) —671.99 (5.88)

wtRBD-LY-CoV555 —68.44 (0.93) —79.42 (0.62 —19.24 (2.49) —98.66 (2.56) 30.22 (2.34)
kRBD-LY-CoV555 —30.84 (0.89) —75.48 (0.65) 337.05 (3.13) 261.57 (3.25) —292.42 (2.91)
dRBD-LY-CoV555 —57.08 (0.75) —78.26 (0.44) 146.18 (3.22) 67.92 (3.14) —124.99 (2.99)

The light chain region of the Abs was found to interact with the homologous B-
chain of the S trimer protein. In both variants, replacing the hydrophobic residue at the
452 positions (GIn) with a polar residue (Arg) sterically restricted the binding of the studied
Abs. We found that LY-CoV555 showed a strong binding affinity towards the wtRBD;
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however, the affinity was reduced in the selected variants. The binding free energy change
(AAG) was calculated. It was found that the AAG of the wtRBD-LY-CoV555 complex was
—68.4 Kcal/mol, which was reduced to —30.8 and —57 Kcal/mol in the kappa and delta
variants, respectively. These findings show the importance of 1452, T478, and E484 in
stabilizing the interaction of LY-CoV555 with the RBD. The occurrence of L452R and E484Q
mutations in the kappa variant severely impacted the affinity of LY-CoV555. In the kappa
variant, the binding of LY-CoV555 is escaped. The delta variant, which carried L452R and
T478K mutations, also demonstrated a reduced affinity towards the LY-CoV555.

Figure 12. Diagrammatic representation of spike protein conjugated with antibody. (A-C) MD structure showing spike-2-15
antibody interface in wild, kappa and delta variants; (D-F) MD structure showing spike-LY-CoV555 antibody interface in
wild, kappa and delta variant. The red circle highlights the interfacial site and the mutant residues.

4. Discussion

COVID-19, the pandemic disease which has shaken the global medical settings, has
impacted a significant proportion of the worldwide population. Despite being the main
research focus accounting for massive research investment, searching for an effective agent
to combat this infection remains challenging [53,54]. SARS-CoV-2, the etiological agent
of this pandemic, binds to host ACE2, facilitating the viral entry [55,56]. This interaction
of SARS-CoV-2 S-ACE2 is the first checkpoint. The emergence of novel SARS-CoV-2
variants has further added the hurdle toward effective therapeutic development [57,58].



Viruses 2021, 13, 2295

14 of 19

B.1.617 [30,59], a recently reported SARS-CoV-2 variant, seemingly responsible for a steep
increase in the global pandemic cases, has been studied.

Several studies have reported mutations within the S protein and their impact on
virulence [31,60-62]. The dual mutations (L452R + E484Q and L452R + T478K) harbored
by the novel variants (kappa and delta) were found to be responsible for the higher
virulence [63]. Our study demonstrated that the presence of double mutations carried by
the kappa and delta variants within the RBD on S protein of B.1.617 were responsible for the
increase in binding capability with the human ACE2 and further established the structural
basis behind it. The RBD lies between residues 331-524 of the S1 domain on S protein [64]
consists of an antiparallel beta-sheet with five strands sandwiched between short helices
and loops on either side. Most of the structure is in the flexible loop conformation. The
interfacial binding surface (IBS) of the RBD that is involved in binding to the ACE2 receptor
of the host involves mainly the loop conformation with residues Arg403, Glu406, Arg408,
GIn409, Gly413, GIn414, Thr415, Gly416, Lys417, 1le418, Ala419, Asp420, Tyr421, Gly446,
Tyr453, Leu455, Phe456, Ser459, Asn460, Leu461, Alad75, Gly476, Serd77, Phe486, Asn487,
Tyrd89, GIn493, Gly496, GIn498, Thr500, Asn501, Gly502, and Tyr505. Interface region
1 from Val483 to Tyr505 (IR1) is highly flexible and contains the mutant residue 484GIn.
The other two mutant residues, 452Arg and 478Lys, are located on a loop adjacent to
the IR1. The role of these residues at 484 and 452 in the binary complex formation are
documented in previous studies [65,66]. This study also determined the effect of kappa
and delta variants on Ab binding.

4.1. Molecular Dynamics Trajectory Analysis

The solvated systems for the wt and kappa variants were equivalent, while it was
considerably higher in the delta variant. This occurred due to the introduction of a charged
residue at the protein’s exposed surface, which attracted several solvent molecules. The
RMSDs relative to the initial crystal structures were stable in all three systems. Compared
with the wt, the RMSD values were higher for the selected variants as expected. Inter-
estingly, the residual RMSF for the kappa and delta variant was lower in contrast to the
wt. Further, the values for the interfacial site contact surface area were greater for the
studied variants. These results distinctly exhibit the changes in conformational state of
the secondary structures in the variants, which might have led it to attain a more stable
orientation when complexed with the ACE2 with increased binding propensities of the
kappa and the delta variants towards the ACE2 receptor.

4.2. Essential Dynamics Analysis of the Molecular Trajectories

Essential dynamics of the simulated trajectory identified a total of 2373 discrete vectors.
Almost all (>80%) of the meaningful variances associated with the wt, kappa, and delta
proteins were concentrated on the top ten principal components. The free energy contour
plot (Figure 3) for PC1 and PC2 showed the least deviation among the ensembles for kappa
and delta variants. The delta variant occupied a slightly different conformational space
manifesting two less distant energy peaks of unique and distinct conformational class.
Further analysis of the classified vectors for the phase space distribution properties of the
motions described by the selected EVs revealed a narrow and concentrated conformational
space in the mutant systems. A slight deviation is evident in the wt complex.

The analysis of the average ensemble from the largest vector in all the three complex
systems revealed a lateral drift in the relative COMs, resulting in reducing the distance
between the individual protein masses compared with the wt complex. The binary mutant
complexes were more closely packed. Subsequently, we scrutinized the angular degree
of freedom. The trajectory analysis revealed the characteristic twisting motion of the two
proteins at the interface along the stable hinge helix (HH) on the ACE2 protein. The
wtRBD-ACE2 binary complex had standard angular freedom of about 20.07° (Figure 6).

In contrast, the kappa and delta RBD-ACE2 complexes showed restricted angular
freedom with the twist angle reduced to only 7.45°. The delta complex showed an angular
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twist of 16.45° within the initial 10 ns of the simulation phase, which stabilized and
remained consistent at 6.95° throughout the rest of the simulation time, making the binary
complex in a more compact and stable conformation. This behavior may have surfaced
due to the angular rearrangement between the RBD and ACE2 to accommodate the bulky
side chains of 452Arg, 484Gln, and 478Lys residue in the mutant proteins. Based on these
observations at this stage, we anticipated a considerably increased number of interactions
at the binding interface in the variants.

4.3. Intermolecular Affinity Analysis

To gain further insight into the structural aspect of this outcome, the detailed interac-
tions at the binding site were studied. Initially, we examined the binding interaction of the
mutant residues. Apart from the consistent hydrogen bond interaction between Ser349 and
residue at 452 in the wt and mutants, some additional polar interactions were witnessed
in the variants. The polar side chain at 452 in kappa and delta variant forms additional
hydrogen bond interactions with the hydroxyl oxygen on Ser494. In the delta variant, the
basic side chain of mutant residue Arg452 orients itself in two different configurations and
is stabilized by hydroxyl groups of Tyr351 and Ser494. These additional interactions formed
by the mutant residues stabilized the interfacial binding loop in the variants. The effect cas-
caded down, and interestingly, we found that the kappa and delta variants demonstrated
lower RMSD, lower twist angle, and a higher contact surface area in the mutant complexes.
Due to the restricted movement of the IR1, the orientation of the residues on it has taken a
more favorable conformation to interact with ACE2 (Figure 3C-E). The hydrogen bond
interaction 505Tyr OH—OE 37Glu (2.6 A) was absent in the wt complex; however, it was
found to be consistently present in the mutant complexes throughout most of the dynamic
period. Likewise, 498GIn OE1—NZ 353Lys (3.4 A) and 452 Arg NH2—494Ser OG (3.8 A)
in the kappa, and 452Arg NH2—OH Tyr351 (3.4 A), 502Gly N—O 353Lys (3.0 A) and
500T OG—OD 355D (3.1 A) were found to be making a hydrogen bond with the residues
on ACE2 in most of the dynamic states compared to the wt complex. These additional
hydrogen bonds between ACE2 and RBD in dm imparted an enhanced binding affinity
responsible for better stability and anchoring of dm RBD within the ACE2 groove. Further-
more, the binding free energy values between the wtRBD-ACE2 complex were estimated
to be less favorable than the kappa and delta variant complexes. The higher interaction
free energies in the mutant complexes are attributed to the increased number of additional
consistent hydrogen-bonded interactions that were not found throughout most states in
the molecular dynamic simulations in the wt.

All the above in-depth comparative structural analysis of the binary complexes indi-
cates the close, stable, and enhanced interfacial interactions as a dominant impact of the
kappa and the delta variant. The study found that the selected variants may be a dominant
contributor enhancing the receptor binding of SARS-CoV-2, hence making it more virulent.

4.4. Neutralizing Antibody Complex Analysis

The nAbs recognize RBD, or other regions on the S glycoprotein, directly or indirectly
interfering with the ACE2 interaction [67]. Previous studies have shown that different Abs
target different regions on the S protein [68,69]. The epitome mapping studies on the Abs
specific to S protein showed that 21% of the 377 epitopes were from RBD [70]. Further
clustering analysis on 80 monoclonal Abs has identified five distinct RBD regions where
Abs select to bind [70]. We specifically selected SARS-CoV-2 nAbs 2-15 and LY-CoV555
for the mutational analysis. The reason for choosing these two Abs was their selective
binding on the region close to the mutant residue on RBD of the S protein. The S protein is
a homo-trimer protein with each subunit interacting with the ACE2 receptor. The second
and the third chain lies within 5 A distance to the complexed Ab. Therefore, we selected the
entire trimer of the S protein to avoid any unanticipated bias arising due to an incomplete
system. The system size formed was extremely large but requisite. The interfacial binding
region between RBD and nAb on the S protein majorly consists of hypervariable loop
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conformation. As shown in Figure 11, the mutations are located in the binding region to
the Abs. The mutations in kappa and delta variants at the interfacial binding surface with
the bulky side chain and altered polarity presented different spatial and conformational
surfaces to the interacting Abs. Due to these structural changes in the interfacial binding
surface residues, the light chain region of the 2-15 Ab was found to interact extensively to a
region distant from the actual binding surface, as seen in the wt crystal complex.

The binding free energy values for the RBD-Ab complexes in wt, kappa and delta
variants were compared. The value for the energies clearly shows the decreased affinity of
the Abs towards the variants. The 2-15 Ab, which targets the common interfacial surface
on the RBD domain as with human ACE2 protein, has the least affinity for the delta variant.
Compared with the wtRBD-Ab complex, the electrostatic energy contribution to binding
free energy for the kRBD-Ab and dRBD-Ab complexes was highly reduced. Additional
interaction between residues on the light chain and mutant residues on the S protein was
found in the delta variant. Increased hydrophobic interaction with offsite residues (other
than the native binding site) is seen in the delta variant, which is attributed to the extended
off-target binding of the light chain of the Ab to the adjacent homologous subunit of the S
trimer protein. Overall, the binding free energy of binding in the kappa and delta mutant
strains is reduced compared with that of wtRBD-neutralizing Ab complexes. The study’s
finding shows significantly reduced interactions of the selected Abs, clearly suggesting a
possible immune escape mechanism by both the kappa and the delta variants.

5. Conclusions

This study concludes that the occurrence of kappa (L452R, E484Q) and delta
(L452R + T478K) variants were more stable than the wt SARS-CoV-2 S protein. The variants
were observed to be making a few additional hydrogen-bonded interactions which caused
conformational changes at the binding interface. The relative angular freedom between
the RBD and ACE2 protein is reduced in the kappa and delta RBD-ACE2 complexes. The
larger contact surface area and higher intermolecular interactions enhance the affinity
of mutants toward the ACE2. It was also observed that the new variants had reduced
interactions with the nAbs compared with the wt. Our findings indicate that the local
conformational shift at the interface region in mutant S protein results in a more stable,
compact, with a higher contact surface area, a higher number of interactions, and lower
negative interaction energies than the wt protein. These parameters might be responsible
for the virus being more virulent. We observed the off-target binding of the Abs on the
RBD of S protein with reduced Gibbs free energy in the kappa and delta variants, clearly
suggesting a possible mechanism of immune escape by the kappa and delta variants.
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