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Abstract: The HIV-1 envelope glycoprotein (Env) is synthesized in the endoplasmic reticulum as a
trimeric gp160 precursor, which requires proteolytic cleavage by a cellular furin protease to mediate
virus-cell fusion. Env is conformationally flexible but controls its transition from the unbound “closed”
conformation (State 1) to downstream CD4-bound conformations (States 2/3), which are required for
fusion. In particular, HIV-1 has evolved several mechanisms that reduce the premature “opening” of
Env which exposes highly conserved epitopes recognized by non-neutralizing antibodies (nnAbs)
capable of mediating antibody-dependent cellular cytotoxicity (ADCC). Env cleavage decreases its
conformational transitions favoring the adoption of the “closed” conformation. Here we altered the
gp160 furin cleavage site to impair Env cleavage and to examine its impact on ADCC responses
mediated by plasma from HIV-1-infected individuals. We found that infected primary CD4+ T cells
expressing uncleaved, but not wildtype, Env are efficiently recognized by nnAbs and become highly
susceptible to ADCC responses mediated by plasma from HIV-1-infected individuals. Thus, HIV-1
limits the exposure of uncleaved Env at the surface of HIV-1-infected cells at least in part to escape
ADCC responses.

Keywords: HIV-1; Env glycoprotein; furin cleavage site; CD4 mimetics; Temsavir; nnAbs; ADCC;
HIV+ plasma

1. Introduction

The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) is a
class I viral membrane fusion protein which mediates viral entry using the CD4 cellular
receptor. The envelope gp160 precursor is synthesized in the endoplasmic reticulum (ER)
and oligomerizes as a trimer [1,2]. Subsequently, the trimeric Env traffics through the trans-
Golgi network (TGN) to reach the plasma membrane and to be incorporated into nascent
HIV-1 virions [3–5]. During its transit through the secretory pathway, Env undergoes
important post-translational modifications, including N-linked and O-linked glycosylation
as well as proteolytic cleavage [6–10]. The addition of high-mannose oligosaccharides takes
place in the ER and these glycans are further processed to acquire complex modifications in
the TGN [11]. Concomitantly, proprotein convertases present in the TGN, including furin
and furin-like proteases, catalyze the cleavage of the immature gp160 polyprotein [12–15]
into two functional non-covalently linked subunits: the exterior gp120 subunit, which is
responsible for viral attachment and the transmembrane gp41 subunit, which mediates
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membrane fusion. The human furin protein is part of the subtilisin-like serine endopro-
tease family and recognizes polybasic motifs, having Arg-X-Lys/Arg-Arg (RXK/RR) as a
consensus cleavage site [16]. HIV-1 Env possesses a highly conserved furin cleavage site at
the gp120-gp41 junction (508REKR511) which is adjacent to the hydrophobic fusion peptide
at the gp41 N-terminus, with furin cleavage being essential for viral infectivity [6,8,17,18].
A putative secondary furin cleavage site (500KAKR503), located a few residues upstream of
the primary cleavage site, has been described but its function remains unclear [17,19].

The functional mature Env trimer is known to sample different conformations ranging
from the pre-fusion “closed” metastable conformation (State 1) to the CD4-bound “open”
conformation (State 3), transitioning through an intermediate asymmetric conformation
(State 2) [20,21]. Env glycoproteins from primary isolates preferentially adopt the State
1 conformation, which is preferentially recognized by broadly neutralizing antibodies
(bNAbs) [20,22–24] and can be triggered into downstream conformations by CD4 bind-
ing, which exposes highly conserved epitopes targeted by non-neutralizing antibodies
(nnAbs) [20,25,26]. These nnAbs are rapidly elicited upon infection and vaccination [27–32]
and mediate potent Fc-effector functions, including antibody-dependent cellular cytotoxic-
ity (ADCC) [26,33–38]. The binding of Env to CD4 on the surface of HIV-1-infected cells
stabilizes Env in State 2A, which is highly susceptible to nnAbs-mediated ADCC [26,39,40].
However, HIV-1 has evolved to prevent the premature adoption of the CD4-bound con-
formation by downregulating and degrading pre-existing and newly-synthesized CD4
through its accessory proteins Nef and Vpu [26,35,41,42]. Small CD4 mimetic compounds
(CD4mc) are being developed to “open up” Env, with the goal of harnessing the potential
of nnAbs responses for prevention [31,32,38,43–46] and eradication [36,40,47–53] strategies.
Another class of Env antagonists known as conformational blockers, which includes the
FDA-approved drug Temsavir, prevents Env transitions to downstream conformations by
stabilizing Env State 1 [20,22,54,55].

Besides Env-CD4 interaction, there are also structural features of HIV-1 Env that
can modulate the sensitivity of HIV-1 to ADCC responses mediated by nnAbs present in
plasma from infected individuals. Natural polymorphisms in the Phe43 cavity (notably in
CRF01_AE strains) and mutations of conserved residues in the trimer association domain
have been shown to modulate Env conformation [25,56–59] and as a result, the susceptibil-
ity of cells infected with these viruses to ADCC responses [51,60,61]. Similarly, proteolytic
cleavage has been reported to stabilize a “closed” Env conformation [62–65], since mu-
tations in the furin cleavage site resulted in the spontaneous sampling of downstream
conformations, including Env State 2A [40,55,63]. Here we evaluate the impact of altering
the Env furin cleavage site on the susceptibility of infected primary CD4+ T cells to ADCC
responses mediated by HIV+ plasma.

2. Materials and Methods
2.1. Ethics Statement

Written informed consent was obtained from all study participants (the Montreal
Primary HIV Infection Cohort [66,67] and the Canadian Cohort of HIV Infected Slow
Progressors [68–70]), and research adhered to the ethical guidelines of CRCHUM and was
reviewed and approved by the CRCHUM institutional review board (ethics committee,
approval number CE 16.164-CA). The research adhered to the standards indicated by
the Declaration of Helsinki. All participants were adults and provided informed written
consent prior to enrolment in accordance with Institutional Review Board approval.

2.2. Cell Lines and Primary Cells

293T human embryonic kidney cells (obtained from ATCC) and TZM-bl cells (NIH
AIDS Reagent Program) were maintained at 37 ◦C under 5% CO2 in Dulbecco’s Modified
Eagle Medium (DMEM) (Wisent, St. Bruno, QC, Canada), supplemented with 5% fetal
bovine serum (FBS) (VWR, Radnor, PA, USA) and 100 U/mL penicillin/streptomycin
(Wisent). 293T cells were derived from 293 cells, into which the simian virus 40 T-antigen
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was inserted. TZM-bl were derived from HeLa cells and were engineered to stably express
high levels of human CD4 and CCR5 and to contain the firefly luciferase reporter gene
under the control of the HIV-1 promoter [71]. Primary human PBMCs and CD4+ T cells
were isolated, activated, and cultured as previously described [26]. Briefly, PBMCs were
obtained by leukapheresis from six HIV-negative individuals (all males), and primary CD4+
T lymphocytes were purified from resting PBMCs by negative selection using immuno-
magnetic beads per the manufacturer’s instructions (StemCell Technologies, Vancouver,
BC, Canada) and were activated with phytohemagglutinin-L (10 µg/mL) for 48 h and
then maintained in RPMI-1640 (Thermo Fisher Scientific, Waltham, MA, USA) complete
medium supplemented with rIL-2 (100 U/mL).

2.3. Antibodies and Sera

The following Abs were used to assess Env conformation at the cell surface: conformation-
independent anti-gp120 outer-domain 2G12 (NIH AIDS Reagent Program), broadly- neu-
tralizing antibodies anti-CD4 binding site VRC03 (NIH AIDS Reagent Program), anti-V2
apex PG9 (Polymun Scientific, Klosterneuburg, Austria), anti-V3 glycan PGT126, anti-
gp41-gp120 interface PGT151 (IAVI), anti-V3 glycan 10-1074 (kindly provided by Michel
Nussenzweig) and anti-fusion peptide VRC34 (kindly provided by John Mascola) as well
as non-neutralizing antibodies anti-gp41 C-C loop F240, anti-V3 crown 19b, anti-coreceptor
binding site 17b, anti-cluster A A32 and C11 (NIH AIDS Reagent Program). The HIV-IG
polyclonal antibody consists of anti-HIV immunoglobulins purified from a pool of plasma
from HIV+ asymptomatic donors (NIH AIDS Reagent Program). Goat anti-human and
anti-mouse antibodies pre-coupled to Alexa Fluor 647 (Invitrogen, Rockford, IL, USA) were
used as secondary antibodies in flow cytometry experiments. Plasma from HIV-infected
individuals was collected, heat-inactivated and conserved at −80 ◦C until use. In most ex-
periments, the 2G12 monoclonal Ab (mAb) was used to normalize Env expression because
of its conformation independence. Both viruses used in the study (CH058 and CH077) are
well recognized by 2G12 despite polymorphism found at position 295 in CH077 Env.

2.4. Small Molecules

The small-molecule CD4-mimetic compound BNM-III-170 was synthesized as de-
scribed previously [72]. The HIV-1 attachment inhibitor Temsavir (BMS-626529) was pur-
chased from APExBIO (Houston, TX, USA). The compounds were dissolved in dimethyl
sulfoxide (DMSO) at a stock concentration of 10 mM and diluted to 50 µM in phosphate-
buffered saline (PBS) for cell-surface staining and virus capture assay or in RPMI-1640
complete medium for ADCC assays.

2.5. Plasmids and Proviral Constructs

The vesicular stomatitis virus G (VSV-G)-encoding plasmid was previously described
[73]. Transmitted/Founder (T/F) infectious molecular clones (IMCs) of patients CH058 and
CH077 were previously reported [74–77]. To generate IMCs encoding for cleavage-deficient
Env, two mutations (R508S/R511S) were introduced in the furin cleavage site (508REKR511)
using the QuikChange II XL site-directed mutagenesis protocol (Agilent Technologies,
Santa Clara, CA). The presence of the desired mutations was determined by automated
DNA sequencing.

2.6. Radioactive Labeling and Immunoprecipitation of Envelope Glycoproteins

293T cells (3 × 105) were transfected by the calcium phosphate method with the
different IMCs. One day after transfection, cells were metabolically labeled for 16 h with
100 µCi/mL of [35S]methionine-cysteine ([35S] Protein Labeling Mix; PerkinElmer, Waltham,
MA, USA) in DMEM lacking methionine and cysteine and supplemented with 5% dialyzed
fetal bovine serum. Cells were subsequently lysed in RIPA buffer (140 mM NaCl, 8 mM
Na2HPO4, 2 mM NaH2PO4, 1% NP40, 0.05% sodium dodecyl sulfate (SDS), 1.2 mM sodium
deoxycholate). Precipitation of radiolabeled envelope glycoproteins from the whole-cell
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lysates or found in the supernatant was performed with a pool of sera from HIV-1-infected
individuals in the presence of 50 µL of 10% Protein A-Sepharose (Cytiva, Marlborough,
MA) at 4 ◦C. The precipitated proteins were loaded onto SDS-PAGE gels and analyzed by
autoradiography and densitometry to calculate their processing indexes. The processing
index is a measure of the conversion of the mutant gp160 Env precursor to mature gp120,
relative to wild-type Env trimers. The processing index is calculated with the following
formula: processing index = ([total gp120]mutant × [gp160]WT)/([gp160]mutant × [total
gp120]WT).

2.7. Viral Production and Infections

VSV-G-pseudotyped HIV-1 viruses were produced and concentrated as previously
described [60]. Viruses were then used to infect activated primary CD4+ T cells from
healthy HIV-1 negative donors by spin infection at 800× g for 1 h in 96-well plates at
25 ◦C. Viral preparations were titrated directly on primary CD4+ T cells to achieve similar
levels of infection among the different IMCs tested (around 10% of p24+ cells). To assess
viral infectivity, TZM-bl reporter cells were seeded at a density of 2 × 104 cells/well in
96-well luminometer-compatible tissue culture plates (PerkinElmer) 24 h before infection.
Normalized amounts of viruses (according to reverse transcriptase activity [78]) in a final
volume of 100 µL were then added to the target cells and incubated for 48 h at 37 ◦C. The
medium was then removed from each well, and the cells were lysed by the addition of
30 µL of passive lysis buffer (Promega, Madison, WI, USA) and one freeze-thaw cycle. An
LB 941 TriStar luminometer (Berthold Technologies, Bad Wildbad, Germany) was used to
measure the luciferase activity of each well after the addition of 100 µL of luciferin buffer
(15 mM MgSO4, 15 mM KH2PO4 [pH 7.8], 1 mM ATP, and 1 mM 170 dithiothreitol) and
50 µL of 1 mM D-luciferin potassium salt (Prolume, Pinetop, AZ, USA).

2.8. Virus Capture Assay

The HIV-1 virus capture assay was previously reported [79]. Pseudoviral particles
were produced by transfecting 2 × 106 293T cells with pNL4.3 R-E- Luc (NIH AIDS
Reagent Program) (3.5 µg), HIV-1CH058 (3.5µg), and VSV-G (1µg) using the standard
calcium phosphate method. Forty-eight hours later, virus-containing supernatant was
collected, and cell debris were removed by centrifugation (1500 rpm for 10 min). Anti-Env
antibodies was immobilized on white MaxiSorp ELISA plates (Thermo Fisher Scientific) at
a concentration of 5µg/mL in 100 µL of PBS overnight at 4 ◦C. Unbound antibodies were
removed by washing twice the plates twice with PBS. Plates were subsequently blocked
with 3% bovine serum albumin (BSA) in PBS for 1 h at room temperature. After washing
plates twice with PBS, 200µL of virus-containing supernatants were added to the wells.
After 4 to 6 h incubation, virions were removed, and the wells were washed three times with
PBS. Virus capture by any given antibody was visualized by adding 1 × 104 293T cells per
well in complete DMEM. To measure recombinant virus infectivity, 1 × 104 293T cells were
directly mixed with 100 µL of virus-containing supernatants per well. Forty-eight hours
post-infection, cells were lysed by the addition of 30µL of passive lysis buffer (Promega)
and one freeze-thaw cycle. An LB 941 TriStar luminometer (Berthold Technologies) was
used to measure the luciferase activity of each well after the addition of 100 µL of luciferin
buffer (15 mM MgSO4, 15 mM KH2PO4 [pH 7.8], 1 mM ATP, and 1 mM dithiothreitol) and
50 µL of 1 mM D-luciferin potassium salt (Prolume).

2.9. Flow Cytometry Analysis of Cell-Surface and Intracellular Staining

Cell-surface staining of HIV-1-transfected and HIV-1-infected cells was executed as
previously described [35,61]. For transfected cells, we used the standard calcium phosphate
method to transfect 7 µg of each IMC into 2 × 106 293T cells. Binding of cell-surface HIV-1
Env by anti-Env mAbs (5 µg/mL) or HIV+ plasma (1:1000 dilution) was performed at
48 h post-transfection. Similarly, cell-surface staining of infected cells was performed at
48 h post-infection. After cell-surface staining, transfected cells and infected cells were
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permeabilized using the Cytofix/Cytoperm Fixation/Permeabilization Kit (BD Biosciences,
Mississauga, ON, Canada) and stained intracellularly using PE-conjugated mouse anti-
p24 mAb (clone KC57; Beckman Coulter, Brea, CA, USA; 1:100 dilution). The percentage of
transfected or infected cells (p24+) was determined by gating on the living cell population
according to a viability dye staining (Aqua Vivid, Thermo Fisher Scientific). Samples were
acquired on an LSRII cytometer (BD Biosciences), and data analysis was performed using
FlowJo v10.5.3 (Tree Star, Ashland, OR, USA).

2.10. FACS-Based ADCC Assay

Measurement of ADCC using the FACS-based assay was performed at 48 h post-
infection as previously described [26,36]. Briefly, HIV-1-infected primary CD4+ T cells
were stained with AquaVivid viability dye and cell proliferation dye eFluor670 (Thermo
Fisher Scientific) and used as target cells. Autologous PBMC effectors cells, stained with
the cell proliferation dye eFluor450 (Thermo Fisher Scientific), were added at an effector:
target ratio of 10:1 in 96-well V-bottom plates (Corning, Glendale, AZ, USA). A 1:1000 final
dilution of HIV+ plasma was added to appropriate wells and cells were incubated for
5 min at room temperature. The plates were subsequently centrifuged for 1 min at 300× g
and incubated at 37 ◦C, 5% CO2 for 5 h before being fixed in a 2% PBS-formaldehyde
solution. Samples were acquired on an LSRII cytometer (BD Biosciences) and data analysis
was performed using FlowJo v10.5.3 (Tree Star). The percentage of ADCC was calculated
with the following formula: (% of p24+ cells in Targets plus Effectors) − (% of p24+ cells in
Targets plus Effectors plus sera)/(% of p24+ cells in Targets) by gating on infected lived
target cells.

2.11. Statistical Analysis

Statistics were analyzed using GraphPad Prism version 9.1.0 (GraphPad, San Diego,
CA, USA). Every data set was tested for statistical normality and this information was
used to apply the appropriate (parametric or nonparametric) statistical test. p values < 0.05
were considered significant; significance values are indicated as * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.

3. Results
3.1. Conformation of HIV-1 Uncleaved Env at the Surface of Infected Cells and Viral Particles

To study the role of the furin cleavage site on Env conformation, we performed
mutagenesis on the infectious molecular clones (IMCs) of clade B transmitted/founder
(T/F) viruses CH058 and CH077. Envs from both viruses were previously shown to
preferentially sample the “closed” State 1 conformation [61]. We introduced substitutions
in the primary cleavage site at position 508 and 511 (Figure 1A), to replace the highly
conserved arginine residues with serine residues (R508S/R511S; referred as Cl− mutant), a
double mutant known to efficiently abrogate furin-dependant Env processing [64,80–82].
We used protein radioactive labelling of 293T cells transfected with the different IMC
constructs followed by Env immunoprecipitation to confirm the effect of the mutations on
Env cleavage (Figure 1B–E). As expected, Env glycoproteins expressed from the wild-type
(WT) construct were efficiently cleaved while their cleavage-deficient (Cl−) counterpart
yielded little to no detectable gp120 in the 293T whole-cell lysates (Figure 1B,D). Although
we observed some soluble gp120 in the supernatant of CH058-transfected cells, this was
likely due to the presence of a second upstream cleavage site, which matched the furin
consensus sequence (RAKR). The supernatant of CH077-transfected cells did not contain
gp120 consistent with an altered upstream cleavage site (KAKR) (Figure 1A). Of note, two
bands of gp160 with distinct molecular weights were observed in cells transfected with
Cl− variants, a phenotype previously observed that was linked to a difference in Env
trafficking and localization [83–85].
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Figure 1. Proteolytic cleavage stabilizes Env in its “closed” conformation. (A) Sequence alignment of the HIV-1 Env furin
cleavage site region from primary viruses CH058 (GenBank accession number JN944940) and CH077 (GenBank accession
number JN944941) with the HXB2 reference strain (GenBank accession number K03455). Putative furin cleavage sequences
are highlighted by black boxes. Positively charged residues (arginine and lysine) are shown in blue. Residue numbering
is based on the HXB2 strain. Identical residues are shaded in dark gray, and conserved residues are shaded in light gray.
(B–E) 293T cells were transfected with primary IMCs (B,C) CH058, (D,E) CH077 WT or their cleavage-deficient (Cl−)
variants and metabolically labeled with [35S]-methionine and [35S]-cysteine. (B,D) Cell lysates and supernatants were
immunoprecipitated with plasma from HIV-1-infected individuals. The precipitated proteins were loaded onto SDS-PAGE
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gels and analyzed by autoradiography and densitometry to calculate their processing indexes. The processing index is a measure of
the conversion of the mutant gp160 Env precursor to mature gp120, relative to the wild-type Env trimer. (C,E) Shown is the average of
processing indexes calculated in 3 independent experiments. (F–I) Cell-surface staining of (F,G) IMC transfected 293T cells (H,I) or
primary CD4+ T cells infected with IMCs (F,H) CH058 and (G,I) CH077 WT or their cleavage-deficient (Cl−) variants using a panel of
anti-Env bNAbs (PGT126, PG9, PGT151, VRC34, VRC03) and nnAbs (19b, F240, 17b, A32, C11). Shown are the mean fluorescence
intensities (MFI) using the different antibodies normalized to the signal obtained with the conformation-independent 2G12 mAb. MFI
values were measured on the transfected or infected (p24+) population for staining obtained in at least 3 independent experiments.
Error bars indicate the mean ± SEM. Statistical significance was tested using an unpaired t-test (* p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001).

Subsequently, we evaluated the ability of a panel of bNAbs and nnAbs to recognize
the cleaved (WT) and uncleaved (Cl−) Env at the surface of 293T cells. We selected these
cells since they do not express CD4 and it has been well documented that the presence of
CD4 affects Env conformation [26,35,86]. Cells were transfected with the different IMC
constructs and virus-expressing cells were identified using Gag p24 staining (Figure 1F,G).
Cell-surface Env expression was normalized using the conformation-independent 2G12
antibody. Cells expressing WT Env were preferentially recognized by the bNAbs prefer-
ring the State 1 conformation (PGT126, VRC03, PG9) and recognizing the fusion peptide
(PGT151, VRC34) compared to those expressing the respective cleavage site mutants
(Figure 1F,G). Conversely, the binding of nnAbs targeting the downstream conformations
States 2/3 (19b, F240, 17b) and State 2A (A32, C11) was significantly enhanced on cells
expressing uncleaved Env (Figure 1F,G). To confirm this phenotype in a physiologically
more relevant culture system, we infected activated primary CD4+ T cells with the different
primary IMCs. Of note, all viruses were pseudotyped with the VSV G glycoprotein to nor-
malize the level of infection and to compensate for the inability of uncleaved Env to mediate
viral fusion. Consistent with the 293T results, productively-infected cells (p24+ CD4low)
were more efficiently recognized by bNAbs when expressing cleaved Env, and by nnAbs
when expressing uncleaved Env (Figure 1H,I). Overall, these results support and extend
previous observations indicating that furin cleavage favors the adoption of the native
“closed” conformation at the cell surface [40,65,84].

We next investigated the effect of furin cleavage on Env conformation at the surface
of viral particles, since the viral membrane is known to be enriched in cholesterol, a lipid
known to stabilize Env State 1 conformation by interacting with the gp41 membrane-
proximal external region (MPER) [87–89]. Since virions expressing the Env Cl−variants
were unable to infect even highly permissive cells, we used a recently developed virus
capture assay [79] (Figure 2A). Specifically, we generated luciferase reporter pseudovirions
that contained both HIV-1 Env and VSV G glycoproteins, thus allowing captured virions
to infect 293T cells in an Env-independent manner (i.e., 293T infection is driven by the
incorporated VSV G glycoprotein, Figure 2B). Virions harboring WT Env were captured
more efficiently by bNAbs, while virions harboring uncleaved Env were primarily bound
by nnAbs (Figure 2C). The recognition of pseudovirions was also assessed using purified
anti-HIV-1 immunoglobulins from HIV+ asymptomatic donors (HIV-IG) [90]. Since the vast
majority of naturally-elicited antibodies targets Env in its “open” conformation [26,27,34],
HIV-IG polyclonal antibodies captured viral particles displaying immature Env in a larger
proportion (Figure 2D). HIV-IG specific capture of uncleaved or cleaved Env could be
further increased using the small molecule CD4mc BNM-III-170, which stabilizes the
CD4-bound conformation (Figure 2D). Alternatively, treatment with the conformational
blocker Temsavir decreased the capacity of HIV-IG to capture viral particles bearing Cl−
Envs (Figure 2D), in agreement with its capacity to stabilize the “closed” conformation
[20,22,55]. These results indicate that uncleaved Env can be forced into “open” or “closed”
conformations using small molecule Env antagonists.
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TZM-bl target cells with HIV-1 CH058 virions expressing the wild-type (WT) or cleavage-deficient (Cl−) Env glycoprotein
for 48 h. Viral preparations were normalized according to reverse transcriptase activity. (B) VSV-G-pseudotyped viral
particles encoding the luciferase gene (Luc+) and bearing HIV-1 CH058 Env wildtype (WT) or its cleavage-deficient mutant
(Cl−) were used to infect 293T cells to determine their infectivity in a single-round infection. (C,D) These recombinant
pseudovirions were further tested for virus capture by (C) a panel of anti-Env bNAbs (PGT126, PG9, PGT151, VRC34,
VRC03) and nnAbs (19b, F240, 17b, A32, C11) or (D) HIV-IG. RLU values obtained using the different antibodies were
normalized to the signal obtained with the conformation-independent 2G12 mAb. Data shown are the mean ± SEM from at
least three independent experiments. Statistical significance was tested using an unpaired t-test or a Mann–Whitney U-test
based on statistical normality (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; ns, nonsignificant).

3.2. Impact of HIV-1 Env Proteolytic Cleavage on ADCC Responses Mediated by HIV+ Plasma

Knowing that alterations in the furin cleavage site increase the exposure of down-
stream conformations at the surface of infected cells and lentiviral particles, we sought to
determine whether the presence of uncleaved Env at the surface of infected cells could
also affect ADCC responses mediated by plasma from HIV-1-infected donors. Activated
primary CD4+ T cells were infected with WT or cleavage defective CH058 and CH077 and
then examined for their susceptibility to ADCC killing following incubation with plasma
from 15 different chronically HIV-1-infected individuals. As expected, HIV+ plasma bind-
ing was significantly higher on infected cells expressing cleavage-deficient Env compared
to WT Env (Figure 3A,B). Moreover, inhibition of Env cleavage led to strong ADCC re-
sponses, while WT-infected cells were protected from these responses mediated by HIV+
plasma (Figure 3C,D). Treatment with BNM-III-170 was found to enhance the binding
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of HIV+ plasma on both WT and Cl− mutant infected cells, consistent with its ability to
expose CD4i epitopes. Accordingly, CD4mc addition induced a potent ADCC response
against WT-infected cells, but marginally enhanced the ADCC response against cells ex-
pressing cleavage-deficient Env, suggesting that CD4i epitope exposure by uncleaved Env
is sufficient to trigger the elimination of infected cells by ADCC. Conversely, the addition
of State 1-stabilizing molecule Temsavir protected Cl− expressing cells from ADCC by
decreasing the binding of HIV+ plasma to uncleaved Env (Figure 3A–D). Of note, Temsavir
did not impact HIV+ plasma mediated ADCC against WT infected cells since they are
known to already express the Env in the “closed” conformation [26,35–37,40,60,61,86,91,92].
Altogether, our results demonstrate the importance for HIV-1 to limit the presence of Env
gp160 precursor at the surface of infected cells to evade nnAbs-mediated ADCC responses.
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Figure 3. Env cleavage protects HIV-1-infected cells from ADCC mediated by HIV+ plasma. (A,B) Cell surface staining
of primary CD4+T cells infected with primary HIV-1 viruses (A) CH058 and (B) CH077 WT or their cleavage-deficient
(Cl−) variants using plasma from 15 different HIV-1-infected individuals in the presence of 50 µM of CD4mc BNM-III-170,
conformational blocker Temsavir or an equivalent volume of the vehicle (DMSO). The graphs show the MFI obtained on the
infected (p24+) cell population. (C,D) Primary CD4+ T cells infected with (C) CH058 and (D) CH077 viruses were also used as
target cells, and autologous PBMCs were used as effector cells in a FACS-based ADCC assay. The graphs shown represent the
percentages of ADCC mediated by 15 different HIV+ plasma in the presence of 50 µM of CD4mc BNM-III-170, attachment
inhibitor Temsavir or an equivalent volume of the vehicle (DMSO). All results were obtained using cells from at least three
different donors. Error bars indicate the means ± SEM. Statistical significance was tested using a repeated measures one-way
ANOVA with a Holm–Sidak post-test (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; ns, nonsignificant).
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4. Discussion

In this study, we show that uncleaved HIV-1 Env trimers display conformational
flexibility which favors the sampling of downstream “more open” conformations at the
surface of infected cells and pseudoviral particles. Cell-surface expression of uncleaved
gp160 leads to an efficient recognition of infected cells by non-neutralizing CD4i antibodies
naturally present in plasma from HIV-1-infected individuals and as a consequence, leads
to a significantly higher susceptibility to ADCC responses. Conversely, efficient cleavage
by endogenous furin allows Env trimers to sample a metastable “closed” conformation
(State 1), thus protecting HIV-1-infected cells from ADCC responses mediated by HIV+
plasma. Beyond the well-established role of furin cleavage on viral infectivity, efficient
proteolytic cleavage of Env trimers thus appears to allow HIV-1 to evade humoral immune
responses. These results are important in the context of recent findings showing that several
interferon-inducible cellular antiviral factors affect Env gp160 precursor processing [93–97].
Among them, IFITM proteins impair Env cleavage through direct interaction with Env,
while GBP2 and GBP5 restrict furin protease activity [93,96]. The antiviral activity of both
families of proteins can be overcome by HIV-1 through Env substitutions or by increasing
Env expression through the deletion of the accessory Vpu protein, respectively [97–100].

According to the Los Alamos National Laboratory HIV sequence database, very few
mutations are naturally found in the furin cleavage site, especially for the basic residues
found at positions 508, 510, and 511 which are more than 99.7% conserved. Given the
importance of an effective Env cleavage to generate infectious viral particles, therapeutic
interventions designed to specifically inhibit this proteolytic cleavage could result in a
loss in infectivity with a concomitant increase in ADCC responses against infected cells.
A recent study has shown that conformational blockers, such as Temsavir, can interfere
with proper Env cleavage by reducing its conformational flexibility [63]. Additional drugs
inhibiting directly the furin protease activity, including the synthetic peptide Dec-RVKR-
CMK and the serine protease inhibitor α1-PDX, are also being investigated, but their in vivo
efficacy and toxicity remain to be determined [12,13,101–105]. If these broad-spectrum
inhibitors end up being well-tolerated and exhibit good pharmacokinetic properties, they
may also be useful as therapeutics against other viral infections, including Influenza A,
Ebola, Respiratory syncytial virus (RSV), and SARS-CoV-2, where the acquisition of a furin
cleavage site in the respective fusion glycoproteins appears to confer a higher level of
infectivity [106–110].
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