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Abstract: Autophagy is an evolutionarily conserved cellular-degradation mechanism implicated in 
antiviral defense in plants. Studies have shown that autophagy suppresses virus accumulation in 
cells; however, it has not been reported to specifically inhibit viral spread in plants. This study 
demonstrated that infection with citrus leaf blotch virus (CLBV; genus Citrivirus, family Betaflexiviri-
dae) activated autophagy in Nicotiana benthamiana plants as indicated by the increase of autophago-
some formation. Impairment of autophagy through silencing of N. benthamiana autophagy-related 
gene 5 (NbATG5) and NbATG7 enhanced cell-to-cell and systemic movement of CLBV; however, it 
did not affect CLBV accumulation when the systemic infection had been fully established. Treat-
ment using an autophagy inhibitor or silencing of NbATG5 and NbATG7 revealed that transiently 
expressed movement protein (MP), but not coat protein, of CLBV was targeted by selective autoph-
agy for degradation. Moreover, we identified that CLBV MP directly interacted with NbATG8C1 
and NbATG8i, the isoforms of autophagy-related protein 8 (ATG8), which are key factors that usu-
ally bind cargo receptors for selective autophagy. Our results present a novel example in which 
autophagy specifically targets a viral MP to limit the intercellular spread of the virus in plants. 

Keywords: autophagy; antiviral machinery; citrus leaf blotch virus; protein degradation; virus 
movement 
 

1. Introduction 
Autophagy is a highly conserved process that degrades and recycles any unneces-

sary or damaged cytoplasmic components [1,2]. Basal levels of autophagy maintain cellu-
lar homeostasis under normal environmental conditions, while higher levels of autoph-
agy are induced by various abiotic and biotic stress cues including nutrient deficiency, 
and pathogen infection [3,4]. There are three major types of autophagy in plants: micro-
autophagy, macro-autophagy, and mega-autophagy [5,6]. Among them, macro-autoph-
agy is considered to be the major process for degrading cytoplasmic proteins and orga-
nelles, and hereafter it is referred to as autophagy [1,7]. Autophagy is initiated by the 
formation of double-membrane vesicles, called autophagosomes, followed by fusing with 
lysosomes (in mammals) or vacuoles (in yeast and plants) to degrade and break down the 
enclosed cargoes [8]. 

The autophagy process requires a conserved set of proteins encoded by autophagy-
related genes (ATGs) [9]. Among them, ATG8, a ubiquitin-like conjugation protein with 
a unique amino (N)-terminal extension, is essential for autophagosome formation and the 
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recruitment of specific cargo receptors [10,11]. ATG8 proteins are covalently attached to 
the membrane lipid phosphatidylethanolamine (PE) by the ubiquitin-like conjugation sys-
tem, which is essential for autophagosome formation and regulation of ATG8 function 
[12–14]. Although early-diverged plant lineages and various other eukaryotes carry only 
one ATG8 gene, higher plants have evolved multiple ATG8 isoforms with diverse and 
flexible functions [11]. In selective autophagy, ATG8-family proteins bind to cargo recep-
tors or substrates via a conserved motif called ATG8-interacting motif (AIM) (or LIR-
LC3II interacting region in mammals) and recruit them for the autophagic degradation 
[15]. The core motif of AIM can be written as W/F/Y-XX-L/I/V, which is composed of an 
aromatic amino acid W/F/Y, two amino acids XX, and a hydrophobic amino acid L/I/V 
[16]. Previous studies reported that autophagy could target plant viral proteins through 
direct recognition by ATG8 [17,18]. The various ubiquitin-like ligases, such as E1-like lig-
ase ATG7, the E2-ligase ATG3, and the E3-like ligase ATG5, are considered to be critical 
components for the regulation of the autophagy process [1,9]. 

Several studies have revealed that autophagy is activated in response to various plant 
viral infections to limit virus accumulation, suggesting that the autophagic mechanism is 
evolutionarily conserved as a basal antiviral defense in plants; however, autophagy has 
also been shown to be involved in the promotion of viral infections [19–22]. Furthermore, 
viruses have evolved diverse measures to counteract autophagy for their own advantages 
[21,23–27]. Several reports have shown that autophagy restricts virus infection through 
selective degradation of proteins encoded by RNA viruses such as 2b, an RNA-silencing 
suppressor of cucumber mosaic virus (CMV) [28], RNA-dependent RNA polymerase of 
turnip mosaic virus (TuMV) [29], p3, an RNA-silencing suppressor of rice stripe virus 
(RSV) [30], the helper-component proteinase (HC-Pro), an RNA-silencing suppressor of 
TuMV, [31] as well as proteins encoded by double-stranded DNA (dsDNA) and single-
stranded DNA (ssDNA) viruses [18,32,33]. 

Citrus leaf blotch virus (CLBV), a member of the genus Citrivirus, family Betaflexiviri-
dae [34], naturally infects a wide range of plant species such as citrus, lemon, sweet cherry, 
peony, and kiwi [35–38]; depending on the plant hosts, it induces varied symptoms such 
as vein clearing, chlorotic blotching, and stem pitting [39,40]. Previously, CLBV was re-
ported to be able to infect some Nicotiana species [41,42]. The CLVB genome is a single-
stranded, positive-sense RNA [(+)ssRNA] consisting of 8747 nucleotides, excluding a 3′-
terminal poly(A) tail, which encodes three open reading frames (ORFs) and is enclosed in 
filamentous and flexuous virions approximately 960 × 14 nm in size [43]. CLBV ORF1 en-
codes a ∼227 kDa polyprotein thought to be a replication protein (replicase) containing 
methyltransferase, AlkB-like, Otu-like peptidase, papain-like protease, helicase, and 
RNA-dependent RNA polymerase (RdRp) motifs. ORF2 encodes a ∼40 kDa protein with 
a sequence characteristic of viral movement protein (MP) of the 30 K superfamily, while 
ORF3 encodes a 41 kDa coat protein (CP) [44,45], and both proteins are expressed through 
subgenomic RNA (sgRNA) transcriptions (MP and CP sgRNAs) [44,45]. CLBV MP was 
shown to have an RNA silencing suppression activity [46]. 

The role of autophagy in modulating CLBV infection remains unknown. In this 
study, using the model plant Nicotiana benthamiana, we investigated whether autophagy 
operates to restrict CLBV infection. Overall, we observed that autophagy affected CLBV 
infection and viral protein accumulation in N. benthamiana. 

2. Materials and Methods 
2.1. Plant and Virus Materials 

N. benthamiana plants were soil grown in environmental chambers under a 16-h 
light/8-h dark cycle at 25 °C. The full-length infectious clone of CLBV was kindly provided 
by Dr. Yunfeng Wu (Northwest A&F University, China). Actinidia chinensis (kiwifruit) 
plants infected with CLBV (GenBank accession no. MH427033) were obtained from a field 
in Zhouzhi County, in the Shaanxi Province of China, and used as a virus source. 
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2.2. Plasmid Construction 
For the generation of the CLBV infectious clone, total RNA extracted from CLBV-

infected leaves was subjected to cDNA synthesis using ReverTra Ace reverse transcriptase 
(Toyobo). The full-length genome of CLBV containing poly(A) was amplified using the 
primers F-pCass-CLBV and R-CLBV. Subsequently, the hepatitis delta virus ribozyme se-
quence was inserted downstream of the 3′-UTR of the viral genome by PCR using the 
primers F-pCass-CLBV and R-pCass-RZ. PCR amplification and DNA ligation were per-
formed using PrimeSTAR® HS DNA Polymerase (Takara Bio) and a one-step cloning kit 
(Vazyme Biotech), respectively. PCR products were ligated between the KpnI and SacI 
sites of pCass4 [47] to produce the pCass-CLBV. A recombinant CLBV infectious clone 
carrying the green fluorescent protein (GFP) gene was generated as described previously 
with minor modifications [48]. The CLBV clone was digested with the restriction enzymes 
SalⅠ and PmeⅠ and then a DNA fragment containing a partial MP coding sequence, the 
full length of the CP gene, a duplicate of the CP subgenomic RNA (sgRNA) promoter and 
the GFP gene, generated using overlapping PCR, was inserted into the same sites of the 
linearized infectious clone to produce pCass-CLBV-GFP. All of the primers used in this 
study are listed in Table S1. 

Replicase, CP, and MP ORFs were amplified from the CLBV infectious clone. 
NbATG8c1 (accession no. MG733101), NbATG8d (KX369400), NbATG8f (KU561372), and 
NbATG8i (KX369401)—coding sequences were obtained using RT-PCR with primers de-
signed according to the sequence deposited in the National Centre for Biotechnology In-
formation (NCBI) database. 

For the transient expression assay, the full-length coding sequences of replicase, CP, 
MP, NbATG8c1, NbATG8d, NbATG8f, and NbATG8i were amplified by PCR, cloned into 
pBin41 [49], pBin61-GFP [50], pCambia1302-GFP [51] or pBI121-mCherry [52] digested 
with BamHI, BamHI, SpeI or BamHI, respectively, to generate CP-HA, MP-HA, GFP-
ATG8c1, GFP-ATG8C1, GFP-ATG8d, GFP-ATG8f, GFP-ATG8i, replicase-GFP, CP-GFP, 
and MP-GFP, CP-mCherry, and MP-mCherry. 

For the bimolecular fluorescence complementation (BiFC) assay, the coding regions 
of CLBV-MP (including MP mutant derivatives) and NbATG8 isoforms were inserted into 
the pBin61-CYFP or pBin61-NYFP [53] after digestion with the BamHI and SmaI sites to 
form CLBV-YFP(c)-MP, YFP(n)-NbATG8c1, YFP(n)-NbATG8C1, YFP(n)-NbATG8d, 
YFP(n)-NbATG8f, and YFP(n)-NbATG8i, respectively. The MP-N (nucleotides 1–543), 
MP-C (nucleotides 545–1089), MP-N84 (nucleotides 1–252), and MP-N90 (nucleotides 1–
270) fragments were inserted into the BiFC vectors as described for full-length MP. 

For MBP-tagged protein expression, the coding sequences of MP, MP-N, MP-C, and 
MBP-CP were inserted into the pMAL-c2X vector [54] between the XbaI and HindIII sites 
to generate MBP-MP, MBP-MP-N, MBP-MP-C, and MBP-CP, respectively. For tobacco 
rattle virus (TRV)-based virus-induced gene silencing (VIGS), a partial fragment of GUS 
(nucleotides 1059–1355; S69414), NbATG5 (nucleotides 1–300; KX369397), or NbATG7 
(nucleotides 1–300; KX369398) was generated by PCR and then cloned into the pTRV2 
vector [55]. 

2.3. Agroinfiltration 
Agrobacterium tumefaciens (strain GV3101) cultures harboring binary vector con-

structs were resuspended in infiltration buffer (10 mM MES, pH 5.7, 10 mM MgCl2, and 
150 mM acetosyringone). After 4 h incubation at room temperature, Agrobacterium cul-
tures were infiltrated into N. benthamiana leaves. For inoculation of CLBV or CLBV-GFP, 
an Agrobacterium culture harboring RNA-silencing suppressor protein p19 [56] was added 
into the cultures. 
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2.4. Fluorescence Protein Observation 
An Olympus FV3000 confocal laser scanning microscope was used to visualize GFP 

(excitation, 488 nm; emission, 510–550 nm), yellow fluorescent protein (YFP) (excitation, 
514 nm; emission, 565–585 nm), mCherry (excitation, 543 nm; emission, 560–630 nm) and 
chlorophyll auto-fluorescence (excitation, 405 nm; emission, 635–708 nm) signals. 

2.5. Maltose-Binding Protein (MBP) Pull-Down Assay 
MBP-MP, MBP-MP-N, and MBP-MP-C fusion proteins were expressed in Escherichia 

coli (strain BL21) and purified as described previously [53]. Total proteins extracted from 
the GFP-NbATG8 isoform-expressing N. benthamiana leaves were incubated with purified 
MBP-MP, MBP-MP-N, or MBP-MP-C proteins bound to amylose resin (New England Bi-
olabs, Ipswich, MA, USA). The proteins were washed with column buffer (20 mM Tris-
HCl pH 7.4, 200 mM NaCl, and 1 mM EDTA pH 8.0) and boiled for 10 min. The interacting 
proteins were analyzed using an immunoblot with anti-GFP antibody. 

2.6. Chemical Treatments 
For the inhibitor assay, N. benthamiana leaves were pressure infiltrated with 100 µM 

E64d, 10 mM 3-MA, or 100 µM MG132 (Sigma-Aldrich, Saint Louis, MO, USA). Dimethyl 
sulfoxide (DMSO) was used as a negative control. For observing GFP-ATG8f-labeled au-
tophagosomes, N. benthamiana leaves were vacuum-infiltrated with 100 µM E64d and kept 
for 8 h in the dark before observation. 

2.7. Transmission Electron Microscopy (TEM) Observation 
N. benthamiana leaves were cut into small fragments (1 × 4 mm) and infiltrated in 100 

mM phosphate buffer (pH 7.0) containing 2.5% glutaraldehyde and 1% osmium tetroxide 
(OsO4). After post-fixation in OsO4, the samples were dehydrated in ethanol and then em-
bedded in Epon 812 resin. The sections were cut from the embedded tissues on an ultra-
microtome, and then stained with uranyl acetate and lead citrate before examination un-
der a transmission electron microscope (Hitachi JEM-1230). 

2.8. Immunoblot Analysis 
Immunoblotting was performed as previously described [57]. The antibodies used in 

this study were as follows: primary anti-GFP (1:5000; Signalway Antibody Co., Ltd., Col-
lege Park, MD, USA), anti-HA (1:2000; Abcam), anti-actin (1:5000; Kangwei, Taizhou, 
Jiangsu, China), and secondary goat anti-mouse IgG-HRP (1:5000; Proteintech, Wuhan, 
Hubei, China). For detection of CLBV CP protein, prokaryotically expressed recombinant 
MBP-CP was purified using amylose resin and then used to immunize rabbits. The ob-
tained antiserum was used as the CP primary antibody (1:2000). Goat anti-rabbit IgG-HRP 
(1:5000; Proteintech) was used as the secondary antibody. For detection of ATG8-PE, total 
protein extracts from N. benthamiana leaves were separated on 15% sodium dodecyl sul-
phate–polyacrylamide gel electrophoresis (SDS-PAGE) with 6 M urea, followed by im-
munoblotting using an anti-ATG8 primary antibody (1:2000; Abcam) [58]. 

2.9. RT-PCR, Quantitative RT-PCR (qRT-PCR) and Northern Blot Analyses 
Total RNA was extracted from plant tissues using Trizol (Invitrogen, Waltham, MA, 

USA) and first-strand cDNA was synthesized with ReverTra Ace reverse transcriptase 
(Toyobo, Osaka, Osaka Prefecture, Japan). For RT-PCR, gene fragments were amplified 
with specific primers (Table S1) using 2× mixture DNA polymerase (Kangwei, Taizhou, 
Jiangsu, China). For qRT-PCR, PCR reactions were performed using the GoTaq® Green 
Master Mix kit (Promega, Madison, WI, USA), and the 18S ribosomal RNA was used as 
an internal control standard. Relative expression levels were analyzed using the compar-
ative 2−ΔΔCt method. 
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For northern blotting, 3–5 g of  total RNA was denatured in 50% formamide at 68 
°C for 3–5 min, separated on agarose gels with 1% formaldehyde in MOPS buffer (pH 7.0), 
and transferred onto nylon membranes. Digoxigenin (DIG)-labeled DNA probes specific 
for the 3′-untranslated region of the CLBV genome (nucleotides 8315–8626) and CLBV MP 
(nucleotides 544–902) were used and prepared using a PCR DIG Probe Synthesis Kit 
(Roche, Basel, Switzerland). The hybridization conditions and detection of RNAs were 
carried out as described in the DIG Application Manual supplied by Roche. 

3. Results 
3.1. CLBV Infection Activates Autophagy 

To understand the interplay between autophagy and CLBV, we examined the au-
tophagy activity following CLBV infection. An infectious cDNA clone of CLBV based on 
a binary vector plasmid was generated and used to inoculate N. benthamiana by agroinfil-
tration. At 14 days post-inoculation (dpi), the upper leaves of inoculated plants showed 
leaf curl with yellowing or chlorotic symptoms (Figure 1A) and virus infection was de-
tected in non-inoculated upper leaves by Western blot analysis using CLBV CP antiserum 
(Figure 1B). ATG8 is conjugated to phosphatidylethanolamine (PE) lipids during the for-
mation of autophagosomes. As the level of accumulation of lipidated ATG8 (ATG8-PE) 
indicates the level of autophagic activities in the cell [59,60], we examined the accumula-
tion of modified ATG8 following CLBV infection by immunoblotting using an Arabidopsis 
ATG8a antibody, which was previously used to detect ATG8 accumulation in various 
plant species [61–63]. SDS-PAGE in the presence of urea was carried out to separate 
ATG8-PE from ATG8 [64]. Immunoblotting detected unmodified ATG8 and ATG8-PE as 
slower and faster-migrating bands, respectively (Figure 1B). Upon CLBV infection, accu-
mulation of both ATG8 and ATG8-PE was elevated (Figure 1B), suggesting that autoph-
agy was activated during virus infection. Next, we examined the ultrastructure of au-
tophagic bodies in the vacuoles by TEM observation. Much more numbers of autophagic 
body-like structures were observed in the vacuole of cells of CLBV-infected plants than in 
non-infected plants (Figure 1C, arrows). Quantification of the structures showed that the 
number of autophagic bodies in CLBV-infected plants was substantially increased (by ap-
proximately 5.0 fold) compared to that in non-infected plants (Figure 1D). Fluorescent 
protein-tagged ATG8 has been widely used to monitor autophagic activity [65]. We tran-
siently expressed green fluorescent protein-tagged N. benthamiana ATG8f (GFP-
NbATG8f) in leaf tissues and observed the labeled autophagic bodies in CLBV-infected 
and non-infected plants by fluorescence microscopy (Figure 1E). Consistent with the TEM 
observation of autophagic bodies, CLBV infection induced an approximately 3.0-fold 
greater number of GFP-NbATG8 punctate fluorescent signals relative to non-infected 
plants (Figure 1F). Collectively, these data indicate that autophagy was activated during 
CLBV infection. 
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Figure 1. Autophagy activity in CLBV-infected N. benthamiana. (A) CLBV symptoms in infected 
plants. Lower panels are images of the upper leaves. Scale bars, 1 cm. (B) Immunoblotting analyses 
of CLBV CP and ATG8 in plants described in (B). Total proteins were extracted from upper leaves 
and used for immunoblotting with a CLBV CP antibody to detect CP and an Arabidopsis ATG8a 
antibody to detect ATG8 and actin antibody to verify equal loading of protein samples. (C) Repre-
sentative TEM images of autophagic body-like structures (arrows) in vacuoles (Vac) of leaves in-
fected with CLBV. Chl, chloroplast. (D) Quantification of the numbers of autophagic structures in 
the cells of leaves described in (C). Each bar represents the mean number of structures from 10 cells 
obtained from three independent experiments. Vertical lines on the bars represent the standard de-
viation. “*” indicates a significant difference (P < 0.05, Student’s t-test). (E) Autophagic activity fol-
lowing CLBV infection assessed by using an autophagy marker GFP-NbATG8f. The GFP fluores-
cence in epidermal cells was observed by confocal laser scanning microscopy. Yellow arrows indi-
cate some autophagosomes in the cytoplasm. Scale bars, 20 μm. (F) Quantification of autophagic 
activity based on the numbers of GFP-NbATG8f-labelled autophagic structures in the cells of leaves 
described in (E). Each bar represents the mean number of structures counted from 100 cells obtained 
from three independent experiments. The mock sample was set to value 1.0. Vertical lines on the 
bars represent the standard deviation. “***” indicates a significant difference (p < 0.001, Student’s t-
test). 

3.2. Autophagy Inhibits Systemic Infection of CLBV 
Since autophagy is activated by CLBV infection (Figure 1), we next investigated its 

antiviral role. To impair the autophagy system, the autophagy-related genes N. bentham-
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iana (Nb) ATG5 and NbATG7 were silenced using TRV-VIGS [55,65]. At 10 days after in-
oculation with TRV vector virus, when the levels of NbATG5 and NbATG7 mRNAs were 
significantly reduced in TRV-NbATG5 and TRV-NbATG7-infected plants as compared to 
non-silenced control plants (TRV-GFP-infected plants) (Figure S1), the plants were inocu-
lated with a CLBV infectious clone. At 10 dpi, a mild chlorotic symptom appeared on the 
newly emerged upper leaves of NbATG5- and NbATG7-silenced plants, whereas there 
were no visible symptoms on control plants (TRV-GFP infected) (Figure 2A). Accordingly, 
the accumulation levels of CLBV CP and genome RNA assessed by Western blot and qRT–
PCR, respectively, in NbATG5- and NbATG7-silenced plants were markedly higher than 
those in control plants (Figure 2B,C). At 14 dpi, the upper leaves of control plants showed 
mild chlorotic symptoms similar to those of NbATG5- and NbATG7-silenced plants (Fig-
ure 2A). At this point, the accumulation levels of CLBV CP and genome RNA were slightly 
higher in NbATG5- or NbATG7-silenced plants than in control plants but not significantly 
different according to statistical analysis (Figure 2B,C). These observations suggested that 
autophagy specifically interfered with the progress of CLBV systemic movement but did 
not affect CLBV accumulation when the systemic infection was established in the upper 
leaves. To gain a more detailed view of the effect of autophagy on CLBV systemic move-
ment, an inoculation experiment was carried out in which virus RNA accumulation was 
monitored in the newly emerged leaves at 5, 7, 10, and 14 dpi by Northern blot analysis. 
In the NbATG5- and NbATG7-silenced plants, CLBV RNAs were readily detectable at 7 
dpi, while in control plants, CLBV RNAs were first detected at 14 dpi (Figure 2D). More-
over, in control plants, RT-PCR detected a low level of CLBV RNA accumulation at 10 dpi 
but not at 7 dpi (Figure 2D). Consistently, in a separated inoculation experiment, at 7 dpi 
CLBV symptoms and genome accumulation were detected in the upper leaves of 
NbATG5- and NbATG7-silenced plants but not in those of non-silenced control plants (Fig-
ure S2). Thus, it is obvious that impairing autophagy largely accelerates the systemic 
movement of CLBV in N. benthamiana. 
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Figure 2. Effect of autophagy on CLBV systemic infection in N. benthamiana. (A) CLBV symptom 
expressions in plants with NbATG5 and NbATG7 genes had been silenced using TRV-VIGS. Plants 
were inoculated with TRV–NbATG5 and TRV-NbATG7 or TRV-GFP as a control, and 10 days later, 
plants were inoculated with CLBV. Lower panels are the images of the upper two leaves. Scale bars, 
1 cm. (B) CLBV CP accumulation in transgenic plant leaves described in (A). Immunoblotting anal-
yses using anti-CP and anti-actin antibodies. (C) Quantitative RT-PCR detection of CLBV RNA in 
the NbATG5 and NbATG7 silenced plants described in (A). Total RNAs were extracted from the 
upper leaves at 10 and 14 dpi. qRT-PCR was carried out using primer sets specific for CLBV and N. 
benthamiana 18S rRNA as an internal control standard. TRV–GFP sample was set to value 1.0. The 
dashed lines indicate two compared samples. “**” indicates a significant difference (P < 0.01, Stu-
dent’s t-test). (D) CLBV RNA accumulation in infected plant at 5, 7, 10, and 14 dpi. Total RNAs were 
extracted from upper leaves subjected to RNA blotting analyses with a probe specific for CLBV 
genome and RT-PCR detection with viral CP gene-specific primers. Ethidium bromide-stained 28S 
rRNA is shown as a loading control. 
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3.3. Autophagy Inhibits Cell-to-Cell Movement of CLBV 
Viral spread throughout plants generally consists of two steps: cell-to-cell movement 

(local spread) through the plasmodesmata and long-distance transport through the vas-
culature [66,67]. To further investigate whether autophagy affects the cell-to-cell move-
ment of CLBV, we generated a GFP-expressing CLBV variant (CLBV-GFP). A GFP gene 
was inserted downstream of the CP coding region in the infectious clone of CLBV. A du-
plicate of the subgenomic promoter sequence of CP was also added so that GFP could be 
expressed through sgRNA transcription (GFP sgRNA; Figure 3A) [48]. As expected, 
northern blotting confirmed that the GFP sgRNA was transcribed during CLBV-GFP in-
fection in the upper systemic leaves of N. benthamiana inoculated via agroinfiltration (Fig-
ure 3B). CLBV-GFP was then inoculated into NbATG5- and NbATG7-silenced plants. In 
order to obtain CLBV-GFP infection that initiated from a single cell, an Agrobacterium cul-
ture harboring the infectious clone of CLBV-GFP was 10,000-fold diluted from an optical 
density at a wavelength of 600 nm (OD600) of 1 and used to infiltrate the leaves. Fluores-
cence-microscopy observation of the infiltrated leaves showed that at 5 days after infiltra-
tion, GFP fluorescence was predominantly restricted to a single cell in the leaves of non-
silenced plants, whereas GFP fluorescence was mostly seen as clusters consisting of six or 
seven cells in leaves of NbATG5- and NbATG7-silenced plants (Figure 3C). The number of 
cells in 10 GFP-expressing foci was significantly higher in the leaves of NbATG5- and 
NbATG7-silenced plants than in those of non-silenced control plants (Figure 3D). This re-
sult suggests that autophagy inhibits the cell-to-cell movement of CLBV and this nega-
tively affects the overall spread of CLBV throughout the plants. 

 
Figure 3. Effect of autophagy on cell-to-cell movement of CLBV in N. benthamiana. (A) Schematic maps of CLBV genomic 
and subgenomic RNA with or without GFP insert (not to scale). A black triangle after CP represents a duplicate of the CP 
subgenomic RNA promoter sequence. MT, methyltransferase motif; Hel, helicase motif; RdRP, RNA-dependent RNA pol-
ymerase motif; MP, movement protein; CP, coat protein. (B) CLBV and CLBV-GFP RNA accumulation in infected plant. 
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Total RNAs were extracted from upper leaves and subjected to RNA blotting with a probe specific for the CLBV genome. 
Ethidium bromide-stained 28S rRNA is shown as a loading control. (C) GFP expression in epidermal cells of leaves tissue 
infiltrated with an Agrobacterium culture harboring CLBV-GFP after silencing of NbATG5 or NbATG7 using TRV-VIGS. At 
5 days after infiltration the GFP fluorescence in epidermal cells was observed by confocal laser scanning microscopy. Scale 
bars, 100 μm. (D) Quantification of the numbers of cells in each of the GFP-expressing foci observed in leaves described in 
(C). Each bar represents the mean number of cells from 10 foci obtained from three independent experiments. Vertical 
lines on the bars represent the standard deviation. “***” indicates a significant difference (*** p < 0.001, Student’s t-test). 

3.4. CLBV MP Is Targeted for Autophagic Degradation 
To elucidate the mechanism of autophagy-mediated antiviral defenses against CLBV 

infection, we investigated the CLVB-encoded proteins that were targeted by autophagy. 
CLBV replicase, MP, and CP were fused with GFP (Replicase-GFP, MP-GFP, and CP-GFP) 
and transiently expressed in N. benthamiana plants. Immunoblotting using a GFP-specific 
antibody could detect MP-GFP and CP-GFP but not Replicase-GFP although Replicase-
GFP transcripts were detected by RT-PCR (Figures 4A and S3). Replicase-GFP may have 
been expressed below the limit of the detection level. Leaf tissues transiently expressing 
Replicase-GFP, MP-GFP, and CP-GFP were then treated with the lysosomal protease in-
hibitor E64d and the class III PI3K inhibitor 3-methyladenine (3-MA), which both inhibit 
the autophagy pathway, and MG132, a 20S proteasome inhibitor. Immunoblotting 
showed that accumulation of MP-GFP, but not the two other fusion proteins, was in-
creased upon treatment with autophagic inhibitors (3-MA or E64d), whereas treatment 
with the protease inhibitor MG132 did not affect the accumulation of all three fusion pro-
teins as compared with the control treatment dimethyl sulfoxide (DSMO) (Figures 4A and 
S3). This suggests that CLBV MP is subjected to autophagic degradation. To further con-
firm this observation, HA-tagged MP and CP (MP-HA and CP-HA) were transiently ex-
pressed in the leaves of NbATG5 and NbATG7-silenced plants. Consistent with the result 
of chemical treatments, increased accumulation of MP-HA, but not CP-HA, was observed 
in NbATG5- or NbATG7-silenced plants as compared to non-silenced control plants (Fig-
ure 4B). 
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Figure 4. Effect of autophagy on accumulation of CLBV-encoded proteins in N. benthamiana. (A) 
Treatment of leaf tissue transiently co-expressing unfused GFP and MP-GFP or CP-GFP with 
MG132 (20S proteasome inhibitor), and the E64d and 3-MA (autophagy inhibitors). Leaves were 
infiltrated with inhibitors at 3 days after agroinfiltration and 8 h later the leaves were sampled and 
analyzed by immunoblotting with a GFP antibody. (B) Accumulation of transiently expressed MP-
GFP and CP-GFP in the leaves of plants with silencing of the NbATG5 and NbATG7 genes mediated 
by TRV–VIGS. Plants were inoculated with TRV VIGS vectors (TRV-NbATG5 and TRV-NbATG7 or 
TRV-GUS as a control); 10 days later, leaves were infiltrated with agrobacterium cultures carrying 
the binary vector construct; and 3 days later, leaves were sampled and analyzed by immunoblotting 
with anti-GFP and anti-actin antibodies. (C) Subcellular localization of MP-GFP and CP-GFP tran-
siently co-expressed with an autophagosome marker GFP-ATG8f. Agrobacterium cultures carrying 
the binary vector constructs were used to infiltrate leaves; 3 days after infiltration leaves were sam-
pled and the GFP fluorescence in epidermal cells was observed by confocal laser scanning micros-
copy. Yellow arrows indicate some autophagosomes in the cytoplasm. EV, empty vector. Scale bars, 
20 μm. (D) Histograms of fluorescence intensity of the regions marked by dashed lines in images in 
(C). Fluorescence intensity is shown in arbitrary units. 

To examine the association of CLBV MP and CP with autophagosomes, MP and CP 
were fused with mCherry (MP-mCherry and CP-mCherry) and co-expressed with GFP-
NbATG8f, which was used as an autophagosome marker [65]. Fluorescence-microscopy 
observation showed that MP-mCherry was localized in small granule-like or punctate 
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structures, many of which were co-localized with similar structures labeled by GFP-
ATG8f. In contrast, CP-GFP was distributed throughout the cytosol and showed no asso-
ciation with the structures labeled by GFP-ATG8f (Figure 4C,D). Collectively, these data 
suggest that CLBV MP is engulfed by autophagosomes and degraded via a selective au-
tophagy pathway. 

3.5. CLBV MP Interacts with NbATG8C1 and NbATG8i 
Here we investigated whether CLBV MP was directly recognized and recruited by 

ATG8. The N. benthamiana genome encodes 13 ATG8 isoforms, which can be divided into 
four groups based on phylogenetic relationships (Figure 5A). We examined the interac-
tions between MP and a representative ATG8 isoform from each group, namely 
NbATG8C1, NbATG8d, NbATG8f, and NbATG8i, using a BiFC assay [68]. These proteins 
were fused to the N-terminal or C-terminal portions of the YFP [YFP(n) or YFP(c), respec-
tively] and then co-expressed in N. benthamiana. A BiFC assay showed that MP interacted 
with NbATG8C1 and NbATG8i, but not with NbATG8d and NbATG8f (Figure 5B). No-
tably, the reconstituted yellow fluorescence indicating the protein-protein interactions 
was predominantly localized in small granular-like or punctate structures resembling au-
tophagic bodies (Figure 5B). This observation suggests that CLBV MP is associated with 
ATG8 in autophagosomes. To further confirm this interaction, we performed an in vitro 
pull-down assay with prokaryotically-expressed CLBV MP fused to the MBP (MBP-MP) 
and GFP-NbATG8C1, GFP-NbATG8d, GFP-NbATG8f, and GFP-NbATG8i expressed in 
plants. Consistent with the result of the BiFC assay, GFP-NbATG8C1 and GFP-NbATG8i 
were co-purified with MBP-MP, indicating protein interactions (Figure 5C). 
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Figure 5. Interaction of CLBV MP and ATG8 isoforms encoded by N. benthamiana. (A) Phylogenetic 
analysis of ATG8 isoforms encoded by N. benthamiana, A. thaliana, and wheat (Triticum aestivum). 
The GenBank accession numbers are shown in brackets. The tree was constructed by the minimum 
evolution method of Mega 7. (B) Interactions of CLBV MP and N. benthamiana ATG8 isoforms in 
BiFC assays. CLBV MP and ATG8 isoforms were fused to N-terminal or C-terminal portions of the 
YFP [YFP(n) or YFP(c)] and then transiently co-expressed using agroinfiltration. Leaves of plants 
were sampled 4 days after infiltration and the reconstituted YFP fluorescence in epidermal cells was 
observed by confocal laser scanning microscopy. Enlarged images in rectangle areas are shown in 
the lower panels. Yellow arrows indicate punctate structures in the cytoplasm. Scale bars, 20 μm. 
(C) Binding of CLBV MP and N. benthamiana ATG8 isoforms in an in vitro pull-down assay. Prokar-
yotically expressed MBP–MP was incubated with GFP-tagged ATG8 isoforms and then MBP pull-
downs were performed. Protein samples before and after the MBP pull-downs were subjected to 
immunoblotting with an anti-GFP antibody. SDS-PAGE of prokaryotically expressed MBP-MP was 
stained with Coomassie Brilliant Blue (CBB). Asterisks mark GFP-tagged N. benthamiana ATG8 
isoforms detected with an anti-GFP antibody. 

3.6. N-Terminal Region Containing AIM Is Important for Recruitment of CLBV MP to 
Autophagosomes 

Because CLBV MP interacts with NbATG8C1 and NbATG8i (Figure 5), we analyzed 
whether CLBV MP contains AIM. An online bioinformatics analysis (http://re-
peat.biol.ucy.ac.cy/iLIR) (accessed on 1 September 2020) [69], predicted a potential AIM 
(LGFVPI) at amino-acid (aa) positions 85–90 in the N-terminal region (Figure 6A). To ex-
amine the role of this sequence motif, we generated two GFP-tagged MP mutants that 
lack the entire AIM sequence (MPΔ85–89) and contain four alanine substitutions in the AIM 
sequence (MPLGAAAA). However, neither GFP fluorescence nor protein accumulation of 
MPΔ85–89-GFP and MPLGAAAA–GFP was detected, although their mRNAs were normally 
transcribed (Figure S4). Treatment with MG132 slightly enhanced MPΔ85–89-GFP but not 
MPLGAAAA–GFP, while treatment with 3-MA or E64d did not affect the accumulation of 
these two fusion proteins (Figure S5). These MP mutants are not degraded by autophagic 
pathways but are likely to be structurally unstable and thus difficult to characterize. To 
gain insight into whether this AIM sequence has a role in the interaction, the half N- and 
C-terminal parts of MP (MP-N and MP-C, Figure 6A) were tested with respect to their 
binding to NbATG8C1 and NbATG8i by an MBP pull-down assay. Analysis showed the 
interaction of both N- and C-terminal regions with NbATG8C1 or NbATG8i (Figure 6B). 
Moreover, the BiFC assay indicated that both N- and C-terminal regions could interact 
with NbATG8C1 or NbATG8i (Figure 6C), suggesting that the AIM sequence in the N-
terminal region was not critical for the interaction between CLBV MP and NbATG8C1 
and NbATG8i. Nonetheless, it was observed that the YFP fluorescence reconstituted by 
the interaction with the N-terminal part was predominantly localized in the granular-like 
and punctate structures, while the fluorescence reconstituted by the interaction with the 
C-terminal part was dispersed throughout the cytosol (Figure 6C). This observation sug-
gests that although both N- and C-terminal regions of CLBV MP contribute to the binding 
to NbATG8C1 and NbATG8i, the N-terminal region is specifically required for the asso-
ciation of MP with autophagosomes. Furthermore, in the BiFC assay, the short N-terminal 
fragment that retains the AIM sequence (MP–N90, Figure 6A), and NbATG8C1 continued 
to interact in granular-like and punctate structures, while the interaction of the short N-
terminal fragment lacking the AIM sequence (MP–N84, Figure 6A) and NbATG8C1 ap-
peared not to occur in such structures and was distributed throughout the cytosol (Figure 
6C). In contrast, the interaction of NbATG8i with MP–N90 as well as with MP-N84 was 
not localized in any particular structures and was distributed throughout the cytosol (Fig-
ure 6C). This observation suggests that the predicted AIM sequence is sufficient to medi-
ate the recruitment of CLBV MP to autophagosomes via NbATG8C1, while recruitment 
via NbATG8i also requires other sequences that reside in the half N-terminal region. 
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Figure 6. The role of a potential AIM sequence in CLBV MP. (A) A schematic diagram of CLBV MP 
mutants analyzed in this study (not to scale). The position and sequence of AIM is indicated. (B) 
Binding of CLBV MP deletion mutant (MP-N and MP-C) and N. benthamiana ATG8 isoforms in an 
in vitro pull-down assay. Prokaryotically expressed MBP-MP-N and MBP-MP-C was incubated 
with GFP-tagged NbATG8i or NbATG8c1, and then MBP pull-downs were performed. Protein sam-
ples before and after the MBP pull-downs were subjected to immunoblotting with an anti-GFP an-
tibody. SDS–PAGE of prokaryotically expressed MBP-MP-N and MBP-MP-C were stained with 
Coomassie Brilliant Blue (CBB). (C) Interactions of CLBV MP deletion mutants illustrated in (A) and 
NbATG8i or NbATG8c1 in BiFC assays. CLBV MP deletion mutants and ATG8 isoforms were fused 
to N-terminal or C-terminal portions of the YFP [YFP(n) or YFP(c)] and then transiently co-ex-
pressed using agroinfiltration. Leaves of plants were sampled 3 days after infiltration and the re-
constituted YFP fluorescence in epidermal cells was observed by confocal laser scanning microscopy. 
Enlarged images in rectangle areas are shown in the lower panels. Yellow arrows indicate punctate 
structures in the cytoplasm. Scale bars, 20 μm. 



Viruses 2021, 13, 2189 16 of 21 
 

 

4. Discussion 
During the evolutionary battle between hosts and viruses, the former has evolved 

various defense mechanisms against infection [70,71]. Among them, autophagy has 
emerged as an important mechanism in immunity against viruses [19,20,72–74]. The anti-
viral role of autophagy in plants has relatively recently been recognized; therefore, the 
implications of autophagy on plant virus infection have so far been demonstrated only on 
a limited number of viruses. In this study, we investigated how autophagy affects CLBV 
infection in an experimental model host plant, N. benthamiana. By impairing autophagy 
through silencing of NbATG5 and NbATG7, we observed that autophagy inhibited the 
progress of the cell-to-cell movement and systemic infection but had no obvious effect on 
CLBV accumulation and symptom expression after systemic infection had been estab-
lished (Figures 2 and 3). Previous reports showed that silencing of NbATG5 and NbATG7 
in N. benthamiana largely promoted plant virus accumulation and symptom expression 
such as that observed for RSV [30], cotton leaf curl multan virus rus (CLCuMuV) [17], 
barley stripe mosaic virus (BSMV) [75], and tomato leaf curl Yunnan virus (TLCYnV) [18]. 
As autophagy operates through targeting diverse viral proteins that function in particular 
steps of virus infection and life cycle, conceivably, autophagy could exert different effects 
among viruses. Our results provide an understanding that although autophagy is an in-
tracellular process, its antiviral activities could manifest as suppression of the intercellular 
spread of the virus rather than the restriction of virus accumulation in the cells. 

Inhibitor treatment assays and silencing of NbATG5 and NbATG7 revealed that tran-
siently expressed CLBV MP was selectively targeted for autophagic degradation (Figure 
4). To establish an infection throughout the plant, viruses depend on the activity and sta-
bility of virally encoded MP. In the case of (+)ssRNA, MPs commonly bind viral genomic 
RNA and enlarge the size exclusion limits of plasmodesmata, but they are not directly 
involved in viral genome replication [76]. Thus, the inhibition of intercellular transport of 
CLBV could be attributed to the degradation of CLBV MP by the autophagy pathways. 
Plants appear to have evolved various pathways to degrade viral MPs. Previously, the 
30K MP of the tobacco mosaic virus was shown to be degraded by the 26S proteasome 
during viral infection [77]. Likewise, the 69K MP of the TuMV was found to be polyubiq-
uitinated and subsequently degraded by the proteasome [78]. It is still unclear whether 
degradation of viral MPs by the proteasome pathway is a part of host antiviral responses 
or is a strategy employed by viruses to facilitate effective infection. There is experimental 
evidence showing that suppression of ubiquitination results in inhibition of virus infec-
tion [79–81]; this may suggest that in some cases, MP degradation by the proteasome path-
way may be beneficial for the viral invasion of plants. 

As CLBV MP was shown to have an RNA-silencing suppression activity [46], we 
could not rule out the possibility that degradation of CLBV MP also led to an inability of 
the virus to effectively counteract antiviral RNA silencing. In fact, the viral RNA-silencing 
suppressor is a common target of autophagy degradation [17,28,30,31]. Many viral MPs 
also function as an RNA-silencing suppressors. For example, P25 of potato virus X [82], 
50 kDa MP of apple chlorotic leaf spot virus [83], 29K MP of TRV [84], P4 MP of barley 
yellow dwarf virus [85], Pns6, a putative MP of rice ragged stunt virus [85], P1, an MP of 
rice yellow mottle virus [86], MP of red clover necrotic mosaic virus [87], and MP of potato 
virus M [88]. Furthermore, there is some evidence showing that cell-to-cell or long-dis-
tance movement of viruses also requires the activity of viral RNA-silencing suppressors, 
aside from viral MP [89–92]. In the Agrobacterium co-infiltration assay, CLBV MP showed 
a weak RNA-silencing suppressor activity as compared to other well-characterized silenc-
ing suppressors [46]. It remains to be determined to what extent the RNA-silencing sup-
pression activity of CLBV MP contributes to facilitating the cell-to-cell or long-distance 
movement of CLBV. 

ATG8-family proteins play a central role in the autophagy pathway by interacting 
with numerous cargo receptors or adaptors via recognition of AIM [10,11]. Some cargo 
receptors or adapters have been identified to be involved in the selective degradation of 
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plant viral proteins. NEIGHBOR OF BRCA1 (NBR1) acts as a cargo receptor for targeting 
HC-Pro of TuMV and P4 of cauliflower mosaic virus to autophagosomes [31,32]. Beclin1 
(ATG6) interacts with NIb (replicase) of TuMV and targets NIb to autophagosomes pos-
sibly via ATG8a [29]. An uncharacterized protein encoded in N. benthamiana, NbP3IP, in-
teracts with p3 of RSV and targets it for autophagic degradation through NbATG8f [30]. 
However, similar to our observation in the current study, there have been previous re-
ports that ATG8 could directly recognize plant viral proteins and be targeted for au-
tophagic degradation. βC1 of CLCuMuB interacts with NbATG8f and the other three N. 
benthamiana ATG8 isoforms [17], while C1 of TLCYnV interacts with ATG8h [18]. Both 
CLCuMuB βC1 and TLCYnV C1 contain potential AIM sequences but these sequence mo-
tifs are not essential for the interaction with the ATG8 isoforms. A TLCYnV C1 mutant 
with aa substitutions in AIM sequences maintains the ability to bind ATG8h but is defec-
tive in the translocation of the ATG8h-C1 complex from the nucleus to the cytoplasm and 
the induction of C1 autophagic degradation [17,18]. In our study, mutational and deletion 
analyses suggest that the AIM sequence in CLBV MP is critical for protein structural sta-
bility but seems to be dispensable for the interaction with NbATG8i and NbATG8C1 (Fig-
ure 6). However, the AIM sequence in CLBV MP, in part, may be necessary for the recruit-
ment of the CLBV-ATG8 complex to the autophagic bodies (Figure 6). Further detailed 
studies are necessary to elucidate the precise role of AIM in facilitating the recruitment of 
viral protein targets to autophagosomes. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/v13112189/s1, Figure S1. Relative mRNA accumulation of NbATG5 and NbATG7 follow-
ing silencing using TRV-VIGS. Figure S2. Effect of autophagy on CLBV systemic infection in N. 
benthamiana. Figure S3. Protein and mRNA accumulations of transiently expressed Replicase−GFP 
upon treatment with MG132, E64d, and 3-MA. Figure S4. Protein and mRNA accumulations of tran-
siently expressed CLBV MP with mutation in the AIM sequence fused with GFP. Figure S5. Protein 
accumulation of transiently expressed CLBV MP with mutation in the AIM sequence fused with 
GFP upon treatment with MG132, E64d and 3-MA. Table S1. A list of primers used in this study. 
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