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Abstract: We reported the genetic evidence of circulating hantaviruses from small mammals captured
in a chronic kidney disease of unknown etiology (CKDu) hotspot area of Sri Lanka. The high
seroprevalence of anti-hantavirus antibodies against Thailand orthohantavirus (THAIV) has been
reported among CKDu patients and rodents in Sri Lankan CKDu hotspots. We captured 116 small
mammals from CKDu endemic regions in the Polonnaruwa District of Sri Lanka. Seven animals
(five out of 11 Mus booduga and two out of 99 Rattus rattus) were PCR-positive for the hantavirus.
A rat-borne sequence was grouped with a THAIV-like Anjozorobe virus. In contrast, Mus-borne
sequences belonged to the THAIV lineage, suggesting a novel orthohantavirus species according
to the phylogenetic analyses and whole-genome comparisons. Our genetic evidence indicates the
presence of two THAIV-related viruses circulating in this CKDu endemic area, suggesting a basis for
further investigations to identify the infectious virus in patients with CKDu and the CKDu induction
mechanism of these viruses.
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1. Introduction

A previously unexplained form of renal disease, referred to as a chronic kidney disease
of unknown etiology (CKDu), has been increasingly diagnosed over the past three decades
in dry zone areas of Sri Lanka, becoming an overwhelming public health burden [1]. This
disease has become more prevalent among rural agricultural communities [2], where males
are more often affected than females [3]. Affected individuals show no symptoms until the
disease progresses into its late stages. Areas in 13 out of 25 districts in the country have
been identified as high-risk regions for the occurrence of CKDu. North Central Province
alone has reported approximately 20,000 CKDu patients with a population prevalence rate
of 4.7% [4]. The scarcity of recent incidence data has made it difficult to understand the
current prevalence of CKDu in the country. Moreover, despite many studies conducted
over the past few decades, the etiology of CKDu remains obscure.

Hantaviruses are a group of zoonotic pathogens belonging to the family Hantaviridae
of the order Bunyavirales. The spherical enveloped viral particles consist of a tri-segmented
negative-strand RNA genome. The large (L), medium (M), and small (S) genome segments
encode an L-protein, a glycoprotein precursor (GPC) of two envelope glycoproteins Gn
and Gc, and a nucleocapsid protein (N), respectively [5]. Hantaviruses currently have a rel-
atively diverse host range, with rodents, shrews, moles, and bats being the common hosts.
Interestingly, all medically important human pathogenic hantaviruses are carried by rodent
hosts [6]. Hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus car-
diopulmonary syndrome (HCPS) represents two severe forms of human infections caused
by hantaviruses. HCPS shows a higher fatality rate (25–35%) than HFRS in Asia (5–15%) [7].
East Asia accounts for approximately 90% of HFRS cases caused by Old World ortho-
hantaviruses, such as the Hantaan virus (HTNV) and Seoul virus (SEOV) [8]. Southeast
Asia, South Asia, and the Indian oceanic region are home to the Thailand orthohantavirus
(THAIV) [9] and its genetic variants (the Anjozorobe (ANJZV) [10], Serang [11], Jurong [12],
and Mayotte [13] viruses). The pathogenicity of these viruses remains unexplained because
of the lack of data. Although several sero-epidemiological reports have described human
infections involving THAIV in Thailand, India, and Sri Lanka [14–16] and ANJZV in Mada-
gascar [17], there are no confirmed clinical cases of HFRS or HCPS documented in South
Asia or Southeast Asia. Epidemiological information on hantaviruses and their hosts is
limited, particularly in South Asian countries [8].

Hantavirus infection was first documented in Sri Lanka as early as 1988 by Vitarana
and colleagues [18]. Since then, very few reports have been published on individuals with
suspected leptospirosis who have been found to possess anti-hantavirus antibodies [19,20].
It was recently reported by Gamage et al. that 72 (54.5%) out of 132 CKDu patients
from the CKDu endemic area of Girandurukotte, Sri Lanka harbored antibodies against
hantaviruses [21]. The existence of THAIV- or THAIV-related hantavirus infections was
confirmed by serotyping 89 anti-hantavirus antibody-positive human serum samples
obtained from the same area [22]. Similarly, high levels of antibodies against the hantavirus
were reported among CKDu patients from a CKDu hotspot in Polonnaruwa District in
the North Central Province of Sri Lanka [23]. In addition, a cross-sectional study carried
out with case-control comparisons in two geographically distinct CKDu endemic areas
vs. a nonendemic area in Sri Lanka demonstrated that exposure to the hantavirus was an
independent risk factor associated with renal disease in the CKDu endemic regions [24].
An ecoepidemiological study in Girandurukotte serologically confirmed that THAIV-like
hantavirus species were highly prevalent among the Rattus rattus lineage [25]. Serological
findings from both humans and rodents in the CKDu areas supported the hypothesis
that exposure to hantaviruses is a risk factor for the possible development of CKDu in
Sri Lanka [26]. However, no studies have provided the genomic evidence from hantavirus
rodent hosts circulating in Sri Lanka. Viral genomic information is essential in developing
specific diagnostics to detect hantavirus infections in CKDu patients. The results will add
further insights into the relationship between exposure to a hantavirus and CKDu etiology.
Therefore, the current study aimed to address this knowledge gap. Hence, this report
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describes a genetic analysis of small mammals captured from a CKDu endemic area in
Sri Lanka to determine the hantavirus species and possible natural hosts.

2. Materials and Methods
2.1. Sample Collection

Small mammal samples were collected in September 2018 and July 2019 from the
Polonnaruwa, Welikanda, and Sinhapura areas in Polonnaruwa District, where CKDu is
highly prevalent (Figure 1). The study protocol was approved by the Ethics Committee of
the Faculty of Veterinary Medicine and Animal Sciences of the University of Peradeniya,
Sri Lanka (VER-16-007). In September 2018, rodent trapping was performed using cage-
type traps to capture the first 98 rodents. Most of the traps used in July 2019 were Sherman
traps (H. B. Sherman Traps, Inc., Tallahassee, FL, USA), and 18 additional rodents and
shrews were collected. The captured species were initially identified based on their mor-
phology. The animals’ body weight, sex, and other body parameters were recorded. The
lungs, liver, kidneys, and blood samples from a heart puncture were collected from each
animal. Parts of the lung and kidney tissues were preserved in RNAlater (Qiagen, Hilden,
Germany), and a portion of the kidneys were preserved in 99.5% ethanol (Sigma-Aldrich,
Burlington, MA, USA).

Figure 1. Map of Sri Lanka showing the CKDu endemic regions and sampling points of the study.

2.2. DNA Extraction and Rodent Species Identification

The DNA was extracted from small mammal kidney tissues preserved in ethanol using
the DNAzol reagent (Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, USA) according to
the manufacturer’s instructions. PCR was performed on kidney DNA samples to amplify
a mitochondrial cytochrome b (cytb) gene using AmpliTaq Gold® 360 DNA polymerase
(Applied Biosystems, Life Technologies, Warrington, UK) and the primers L14115, H15300,
L497A, and H655A [27,28]. The PCR program consisted of 10 min of initial denaturation at
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95 ◦C; 35 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s; and a final extension at
72 ◦C for 7 min. The nucleotide sequences of the amplified cytb fragments were determined
using a BigDye Terminator v3.1 cycle sequencing kit (Applied Biosystems) and a 3130xl
Genetic Analyzer (Applied Biosystems).

2.3. Indirect Immunofluorescence Assay (IFA)

Anti-hantavirus IgG antibodies were detected in small mammal sera using IFAs based
on antigens from THAIV-infected and recombinant THAIV N protein-expressing Vero E6
cells, as described elsewhere [29]. Alexa Fluor 488-conjugated goat anti-rat IgG (for rat and
Bandicota sera), anti-mouse IgG (for mouse sera) (Invitrogen), and protein A (for shrew
and gerbil sera) were used as the secondary antibodies. Each serum sample was diluted
1:100 in PBS. Scattered granular immunofluorescence patterns in the cell cytoplasm were
considered to indicate positive staining.

2.4. RNA Extraction, cDNA Synthesis, and Hantavirus Screening PCR

RNA extraction was performed from lung and kidney tissues of all the small mam-
mals preserved in RNAlater using the RNeasy Plus mini kit (Qiagen) following the man-
ufacturer’s instructions. cDNA synthesis from the total RNA was carried out using the
SuperScript IV VILO Master mix (Invitrogen). All lung cDNA samples were screened by
PCR using AmpliTaq Gold® 360 DNA polymerase and degenerate primers [30] target-
ing a conserved domain of the L genome segment of hantaviruses. The HAN-L-F2 (5′-
TGCWGATGCHACIAARTGGTC-3′) and HAN-L-R1 (5′-AACCADTCWGTYCCRTCATC-
3′) primers were used for the first round, followed by hemi-nested amplification using
the HAN-L-F2 and HAN-L-R2 (5′-GCRTCRTCWGARTGRTGDGCAA-3′) primers. Both
amplification reactions included 10 min of initial denaturation at 95 ◦C; 35 cycles of 95 ◦C
for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s; and a final extension at 72 ◦C for 7 min. Amplified
PCR products with correct sizes were purified and sequenced as described previously.

2.5. Genomic Sequencing

All the screening PCR-positive samples were selected for hantavirus whole-genome
sequencing via either the primer walking method or Illumina MiSeq sequencing. In the
primer walking method, the primers were designed for all three genomic segments based
on the initial sequences obtained in this study and previously published Muridae-borne
hantavirus sequences (Supplemental Tables S1–S3) and were used to amplify segments of
the genome, not including the termini. The PCR products were gel-purified and sequenced
by Sanger sequencing, as described above.

For the Illumina MiSeq analysis, the RNA fractions extracted from lung tissues, as
described above, were treated with the Ribo-Zero rRNA removal kit (Illumina, San Diego,
CA, USA) to deplete host-derived rRNA. The treated RNAs were employed to construct
sequencing libraries using the KAPA RNA HyperPrep kit (for Illumina) and the KAPA
Dual-Indexed adapter kit (KAPA Biosystems, Wilmington, MA, USA). Twenty-four libraries
and other nonrelated samples were mixed in equal amounts to obtain 9 fmol of a MiSeq
library, which was then sequenced on the Illumina MiSeq platform using the MiSeq reagent
kit v3 (Illumina) with 2 × 300-bp paired-end read lengths.

Since there is no reported complete sequence of the prototype THAIV L segment avail-
able for the whole-genome comparison, the entire L segment sequence of THAIV strain-749
(LC553715) was determined using the cDNA of the virus. The primer walking method was
carried out using degenerate primers designed as described above (Supplemental Table S3),
and the amplicons were sequenced by Sanger sequencing, as described previously. To com-
plete the terminal sequences, the RACE method was applied as previously described [31]
using the adapter sequences [31] and specific primers shown in Supplemental Table S3.
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2.6. Sequence Alignment and Phylogenetic Analysis

The sequences obtained via Sanger sequencing were manually edited and aligned
with reference genome sequences obtained from DNA databases. At the same time, the
MiSeq reads were mapped onto reference genomes using GENETYX-MAC version 20.1.0
(Genetics Co., Ltd., Tokyo, Japan). The full-length sequences obtained from the S, M,
and L segment ORFs aligned with representative sequences from other Muridae-borne
hantaviruses using MUSCLE, as implemented in Geneious Prime® 2020.2.2 (Biomatters,
Ltd., Auckland, New Zealand). Multiple sequence alignments were edited and used to
construct Bayesian phylogenetic trees using the MrBayes 3.2.6 [32] plug-in of Geneious
Prime® 2020.2.2 with the GTR + G + I substitutional model. Consensus cladograms were
constructed using viral N protein amino acid sequences, and host cytb sequences were
compared for the degree of concordance using Dendroscope V3.7.2. [33] to describe the
coevolutionary relationships between the hantaviruses and hosts identified in this study,
along with other representative rodent-, mole-, shrew-, and bat-borne hantaviruses and
their hosts.

2.7. Quantification of Viral RNA

Whole-genome-positive rodent lung and kidney cDNAs were subjected to a quantita-
tive real-time PCR analysis. For the Mus cDNA samples, primers LANS_F (5′-GAGAGCAT
GCCAGGGGTGCAGG-3′) and LANS_R (5′-GTAGGTGGACACCTATCAGGAGC-3′) were
used. For the R. rattus cDNA samples, primers SA108S_F (5′-GATCATGCTAGGGATGCTG
G-3′) and SA108S_R (5′-GTAGGAGGACACCGATCAGGTGC-3′) were used, with the
KAPA SYBR FAST qPCR master mix (KAPA Biosystems) and a Light Cycler 480 instrument
II (Roche, Indianapolis, IN, USA) according to the manufacturer’s instructions.

3. Results
3.1. Animal Species Identification

Morphological identification showed that the most (99/116) of the captured small
mammals were Rattus rattus. An analysis of the cytb sequences from several animals
confirmed that they belonged to lineage Ib, a Sri Lankan endemic lineage of R. rattus [25,28].
Eleven animals were identified as Mus booduga (Little Indian field mouse) after analyzing
the cytb sequences (Supplemental Figure S1). We identified two clusters of M. booduga
sequences in the phylogeny, which differed from the M. booduga sequences from India and
Nepal. The other rodent and shrew species captured in this study were Tatera indica (Indian
Gerbil) (n = 3), Bandicota bengalensis (n = 1), Bandicota indica (n = 1), and Crocidura horsfieldii
(n = 1) (Table 1).

Table 1. Summary of the captured species and test results.

Species No. of Captured
Animals

IFA Antibody
(% Positive)

PCR
(% Positive)

Rattus rattus complex 99 34 (34.3%) 2 (2%)
Mus booduga 11 5 (45.5%) 5 (45.5%)
Tatera indica 3 0 0

Bandicota bengalensis 1 1 0
Bandicota indica 1 0 0

Crocidura horsfieldii 1 0 0
Total 116 40 7

3.2. Sero-Survey and Hantavirus Screening PCR

As shown in Table 1, a total of 36.4% (40/116) of the captured animals were seropos-
itive for anti-hantaviral antibodies in an IFA. Thirty-four out of 99 R. rattus individuals
were seropositive, as were 5/11 M. booduga and 1/1 B. bangelensis. Genome screening was
performed for all the small mammal lung cDNA samples. Out of 116 captured animals,
seven were positive by the hantavirus genome screening PCR (Table 1). Positive amplicons
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were obtained from M. booduga (5/11) and R. rattus (2/99). All five seropositive M. booduga
were PCR-positive, resulting in a high positive rate of 45.5% (5/11). Conversely, among
34 seropositive R. rattus, only one was PCR-positive. PCR positivity was also detected in a
seronegative R. rattus individual. Whole-genome sequencing was carried out to determine
the respective hantavirus species precisely.

3.3. Whole-Genome Sequencing

We determined nearly complete whole-genome sequences of six of the seven PCR
screening-positive samples using the primer walking and MiSeq approaches. The ac-
cession numbers of the genome segment sequences determined in this study are listed
in Supplemental Table S4. All Mus-borne hantavirus sequences were similar in the se-
quence identities and showed less similarity to those of all known THAIV-like viruses.
Therefore, these Mus-borne sequences were designated as the Lanka virus. The sequences
determined from M. booduga sample #98 (PR98) were used to represent Lanka viruses for
further analyses, as it was the first Mus sample to obtain the whole genome of the Lanka
virus. We failed to determine the whole-genome sequence from the seronegative rat (#32)
that was positive according to PCR screening, and its amplicon sequence was identical to
that of the Lanka virus. Sequence comparisons with other representative Muridae-born
hantaviruses revealed that PR98 was the closest to ANJZV, and its S, M, and L segment
open reading frames (ORFs) showed 62.6–80.1%, 59.4–76.9%, and 74–79.7% nucleotide
identities, respectively, while the encoded N, GPC, and L proteins showed 61.4–93.2%,
53.6–87.2%, and 68.5–94.5% amino acid identities, respectively (Table 2). Another seropos-
itive rat (#108) carried sequences differing from those of the Lanka virus. The sequence
analysis of this R. rattus-borne virus, designated as strain SA108 (SA108; Sri Lankan ANJZV
detected from rat #108) showed high similarity to ANJZV, a genetic variant of THAIV in
the R. rattus species from the Madagascar Islands. SA108 led to a similar sequence identity
range (Supplemental Tables S5–S7). The predicted GPC cleavage site, having a conserved
WAASA motif, could be observed at amino acid positions 642–646 in both strains. The
novel Lanka virus detected from M. booduga showed a high divergence from all the known
THAIV-like viruses at both nucleotide and amino acid levels. The M segment nucleotide
and amino acid sequences of the Lanka virus showed the lowest identity with the THAIV
and THAIV-like viruses (Table 2 and Supplemental Table S6). In contrast, those of the L
segment showed the highest identity values (Table 2 and Supplemental Table S7).

Table 2. Nucleotide and amino acid sequence identities of S, M, and L segment ORFs and their
corresponding encoded proteins of the Lanka virus strains PR98 with SA108 and other representative
Muridae-born hantaviruses.

Lanka Virus Strain-PR 98

Nucleotide Identity, % Amino Acid Identity, %

ORF_S ORF_M ORF_L N GPC L-protein

THAIV 78.1 76.6 79.2 92.1 85.4 94.0
ANJZV 79.4 76.9 79.5 93.2 86.7 94.3
SA108 80.1 76.9 79.7 93.0 87.2 94.5
SEOV 75.0 72.3 76.7 85.8 79.7 88.3
HTNV 74.0 71.2 74.0 84.1 76.8 84.8
DOBV 72.6 70.7 74.2 83.2 75.7 85.6
PUUV 62.6 59.4 66.9 61.4 53.6 68.5

THAIV strain Thai-749 (S: AB186420, M: L08756, and L: LC553715); ANJZV strain Anjo-
zorobe/Em/MDG/2009/ATD49 (S: KC490918, M: KC490919, and L: KC490922); Seoul virus (SEOV)
strain 80-39 (S: AY273791, M: S47716, and L: X56492); Hantaan virus (HTNV) strain HTN76-118 (S: M14626, M:
M14627, and L: X55901); Dobrava virus (DOBV) strain Dobrava-Belgrade (S: L41916, M: L33685, and L: JQ026206);
and Puumala virus (PUUV) strain Sotkamo (S: X61035, M: X61034, and L: Z66548).
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3.4. Sequence Alignment and Phylogenetic Analysis

A phylogenetic analysis based on the ORFs of all three genomic segments of the SA108
and Lanka viruses clustered them with THAIV-like viruses (Figure 2 and
Supplemental Figures S2 and S3). The Lanka virus showed a quite divergent topology
in the phylogenetic trees, following the sequence identity results. The Lanka virus formed
the basal clade in the S and M trees, where THAIV and its genetic variants seemed to
diverge from the virus later. The tanglegram (Figure 3) illustrating the host–virus evolu-
tionary relationships clearly showed the grouping of M. booduga, the Lanka virus host,
with Apodemus and Hylomyscus species, which are the hosts of the Hantaan, Dobrava, and
Sangassou orthohantaviruses found in Eurasia and Africa (Figure 3). The results revealed a
notable difference since all the other THAIV-like hantavirus reservoir hosts were clustered
into the Bandicota and Rattus groups (i.e., THAIV (Bandicota indica), ANJZV and Mayotte
virus (R. rattus), Serang virus, and Jurong virus (R. tanezumi)).

Figure 2. Phylogenetic tree based on S-segment ORF sequences representing the Muridae-borne
hantaviruses and newfound viruses (shown in boldface) from this study. The scale bar indicates a
sequence divergence of 0.2. The numbers above the nodes indicate the Bayesian posterior probability
values. Hantaan (HTNV): S85-46 (AF288659), HTN76-118 (M14626), US8A14-2 (KU207208), CGHu1
(EU092218), and Hu (AB027111); Dabieshan: NC167 (AB027523); Seoul (SEOV): Gou3 (AF184988),
L99 (AF288299), CSG5 (AB618112), Tchoupitoulas-POR (KU204960), and 80-39 (AY273791); Do-
brava (DOBV): DOBV/Ano-Poroia/Afl9/1999 (AJ410615), Dobrava-Belgrade (L41916), East Slo-
vakia/400Af/98 (AY168576), and DOB/Saaremaa/160V (AJ009773); Sangassou: SA14 (JQ082303);
THAIV: Nakhon Ratchasima/Bi0017/2004 (AM397664), Thai-749 (AB186420), ANJZV strain Anjo-
zorobe/Em/MDG/2009/ATD49 (KC490918), ANJZV strain Anjozorobe/Rr/MDG/2009/ATD56
(KC490916), ANJZV strain Anjozorobe/Rr/MDG/2009/ATD9 (KC490915), ANJZV strain Anjo-
zorobe/Rr/MDG/2009/ATD261 (KC490914), Jurong strain TJK/06/RT49 (GQ274940), and Serang
strain Serang/Rt60/2000 (AM998808); and Puumala (PUUV): Sotkamo (X61035).
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Figure 3. Tanglegram comparing the phylogenies of the representative hantaviruses and their hosts.
The phylogeny of viruses based on amino acid sequences of the N protein (on the right) is compared
with the cytb sequence-based phylogeny of their hosts (on the left). The newfound viruses are desig-
nated as the Lanka virus (LC553716) and SA108 (LC553722) in boldface, and the Lanka virus host
Mus booduga (LC556235) is also shown in boldface. The other viruses used in the analysis include the
shrew-borne thottimviruses Imjin virus (MJNV, KJ420559) from Crocidura lasiura (KJ004674) and Thot-
topalayam virus (TPMV, AY526097) from Suncus murinus (JF784171); the mole-borne Nova mobatvirus
(NVAV, KR072621) from Talpa europaea (KF801566); the bat-borne Longquan loanvirus (LQUV, JX465422)
from Rhinolophus affinis (DQ297582); the shrew-borne Seewis orthohantavirus (SWAV, KY651020) from
Sorex araneus (AJ245893); the mole-borne Asama orthohantavirus (ASAV, EU929072) from Urotrichus
talpoides (AB033611); the rodent-borne orthohantaviruses Seoul virus (SEOV, AY273791) from Rattus
norvegicus (AB033713), the Thailand virus (THAIV, AM397664) from Bandicota indica (KJ592790), the
Dobrava-Belgrade virus (DOBV, AJ410615) from Apodemus flavicollis (AY158445), the Sangassou virus
(SANGV, JQ082300) from Hylomyscus simus (JX893846), the Hantaan virus (HTNV, M14626) from
Apodemus agrarius (AB032851), the Sin Nombre virus (SNV, L25784) from Peromyscus maniculatus
(JF489123), the Andes virus (ANDV, AF291702) from Oligoryzomys longicaudatus (KR822254), the
Tula virus (TULV, Z49915) from Microtus arvalis (GU187363), the Prospect Hill virus (PHV, Z49098)
from Microtus pennsylvanicus (KF948531), the Puumala virus (PUUV, X61035) from Myodes glareolus
(FJ881480); and the THAIV genetic variant Anjozorobe virus (ANJZV, KC490918) from Rattus rattus
(AB033702).

3.5. Quantification of Viral RNA

Higher viral RNA copy numbers were detected in lung tissues than in kidney tissues
in all the rodent samples. R. rattus (PR108) had a notable difference in the viral RNA copy
numbers between the two tissue types. All the M. booduga kidney tissues showed viral
copy number values higher than 105 copies/mg, while the single SA108-infected R. rattus
kidney tissue sample showed a lower value (Figure 4).
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Figure 4. Viral RNA copy numbers in lung and kidney tissues of hantavirus genome-positive rodents.
Tissues from M. booduga and R. rattus were examined by quantitative real-time PCR using the Lanka
virus primer set and the SA108 primer set, respectively. The two markers of each sample show the
two replicated runs of the same cDNA sample, and the error bars representing the standard error
and the median of the duplicates are shown for each sample.

4. Discussion

In this study, we report the detection of two novel hantaviruses, the Lanka virus
and an ANJZV variant from Sri Lanka. The Lanka virus detected from M. booduga shows
notable differences from all known THAIV genetic variants and from the THAIV prototype.
The differences identified in the Lanka virus S and M segments and their corresponding
proteins suggest the unique adaptation of this virus to its host, M. booduga. The S and M
genomic sequences of the Lanka virus are placed as the basal branches of the THAIV-like
clades in the corresponding phylogenetic trees, indicating that the Lanka virus might
be the most ancient lineage of the THAIV-like hantaviruses. Based on the most recent
proposed taxonomy guidelines, hantaviruses showing pairwise evolutionary distance
(PED) values for the N protein and GPC concatenated amino acid sequences greater than
0.1 are considered distinct orthohantavirus species [34]. The corresponding values for the
Lanka virus are 0.1344, 0.1214, and 0.1159 compared with the THAIV, ANJZV, and Jurong
virus, respectively, suggesting that the Lanka virus is a novel, distinct orthohantavirus
species. The tanglegram analysis further supported this hypothesis by accommodating the
Lanka virus host in a different group of rodents from the usual THAIV-like virus hosts.

THAIV and its genetic variants, such as the ANJZV and Mayotte, Jurong, and Serang
viruses, are carried primarily by Bandicota and Rattus species. Initially, rats were the targets
of trapping, and we used only cage-type traps. As a result, many seropositive rats were
captured, but a virus genome was not identified from any of them [25]. A partial Lanka
virus genome was first detected from a seronegative rat (#32) after heminested PCR. This
rat was thought to be in the early phase of infection. Seropositive but genome-negative
rats were considered to have recovered from a spillover infection rather than representing
a reservoir of the Lanka virus or SA108. Additionally, the fact that the rats can easily
experience a spillover infection directly explains why humans living in the same field
exhibit the same chance of infection as rats. A single mouse, #98, was captured in a cage-
type trap, and this mouse seemed to be a hantavirus reservoir. After that, we switched
to traps for capturing mice and ultimately succeeded in identifying the Lanka virus. All
the genome-positive mice were captured within the Sinhapura area and had a relatively
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dispersed origin. M. booduga sample PR116 was collected from a location relatively far from
the area where other genome-positive M. booduga samples were collected. The differences
in the PR116-borne Lanka virus nucleotide sequences suggest the possible diversity among
the Lanka viruses distributed in CKDu endemic areas and possibly in other regions as well.

To our knowledge, this is the first report providing genetic evidence of Mus species
acting as hantavirus reservoir hosts. Several studies describing hantavirus genome detec-
tion in Mus musculus appear to represent spillover infections from reservoir hosts found in
the same environmental habitats [35–39]. A perusal of the available literature revealed that
the M. booduga species is distributed in East Pakistan, India, Southern Nepal, Sri Lanka,
Bangladesh and Myanmar [40]. The finding that Sri Lankan M. booduga sequences are
distinct from those found in India and Nepal (Supplemental Figure S1) indicates that the
Sri Lankan M. booduga evolved as a distinct group, which segregated a long time ago from
other strains in the Indian Peninsula. Strong coevolutionary relationships with natural
hosts are often observed among the hantaviruses [41,42]. However, the identification of M.
booduga as a host for a THAIV-like virus suggests that a host-switching event occurred long
ago, resulting in the coevolution of the Lanka virus with the Sri Lankan M. booduga lineage.
The detection of high viral RNA copy numbers in genome-positive rodent tissues suggests
a high possibility of shedding viruses in their excreta. Yasuda et al. reported that the Seoul
orthohantavirus was excreted in feces when showing more than 105 genome copies/mg of
lung tissues of R. norvegicus [43]. The Lanka virus and SA108 may pose elevated risks of
human infections.

The two hantaviruses described herein were detected in CKDu endemic areas of
Sri Lanka. It is of utmost importance to understand the epidemiological relationship
between the virus infection and the prevailing human CKDu in the region. It is evident
that young adult males engaged in farming activities year-round are significantly affected
by CKDu in Sri Lanka. Male farmers working in agricultural fields are exposed to many
external risk factors. We hypothesize that these individuals are exposed to hantaviruses in
their working environments rather than in their homes. However, the infective virus and
its source should be confirmed to determine possible interventions. Our study identified
two candidate viruses and their distinct rodent hosts, which may transmit these viruses
to humans in different habitats. Rattus species are well-adapted to peri-domestic environ-
ments and are thus distributed in both urban and rural areas. Their habitats are generally
within houses or nearby neighborhoods, where they primarily feed on harvested crops
stored inside homes or garbage dumps. On the other hand, M. booduga, commonly known
as the little Indian field mouse, is most commonly found in agricultural fields, shrublands,
and forest areas [39]. Therefore, the habitat of M. booduga, rather than that of R. rattus, is
consistent with our hypothesized site of the acquiring a virus infection by humans. The
geographic distribution of M. booduga includes India, where some regions are affected by
CKDu. Hence, it is important to study whether Indian M. booduga strains can also carry
hantaviruses that may confer a risk of CKDu.

CKDu has emerged as a significant public health problem in countries other than
Sri Lanka, such as Nicaragua, El Salvador, and Costa Rica in Central America; some parts
of India; and Egypt. Although the etiology has yet to be confirmed, extensive research
has suggested some risk factors, such as heat/dehydration, infection/inflammation, and
pesticides in Central American countries and water contamination/metals, pesticides, and
infections in South Asian countries [44]. However, the hantavirus infection has, thus far,
only been identified as a possible risk factor in CKDu patients from Sri Lanka [24,45,46].

Previous sero-epidemiological evidence indicated that THAIV-like hantaviruses infect
both humans and rodents in CKDu hotspot regions. However, the unavailability of genetic
information on hantaviruses circulating in the country has hindered the understanding
of the relationship between these viruses and CKDu in Sri Lanka. Therefore, the current
study aimed to fill the knowledge gap by identifying hantavirus genomes from rodent
populations from a CKDu endemic region in Sri Lanka and further added a novel species
to the list of hantavirus rodent hosts.
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In conclusion, the current study revealed the genomic basis of hantaviruses in Sri Lanka.
Our findings provided new insights for further investigations based on specific diagnos-
tics for detecting the hantavirus species circulating among rodents and humans in other
areas of Sri Lanka. These findings may contribute to better characterizing the exposure in
CKDu patients to understanding the involvement of hantavirus infections in the context of
pathophysiology of CKDu in Sri Lanka.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13101984/s1: Figure S1: Phylogenetic tree based on cytb sequences of Mus booduga
samples obtained in this study (in boldface) and other Mus spp. retrieved from databases.
Figure S2: Phylogenetic tree based on M segment ORF sequences representing Muridae-borne
hantaviruses and newfound viruses (in boldface) from this study. Figure S3: Phylogenetic tree
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