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Abstract: Glycosylation, being the most abundant post-translational modification, plays a profound
role affecting expression, localization and function of proteins and macromolecules in immune
response to infection. Presented are the findings of a transcriptomic analysis performed using high-
throughput functional genomics data from public repository to examine the altered transcription of
the human glycosylation machinery in response to SARS-CoV-2 stimulus and infection. In addition
to the conventional in silico functional enrichment analysis methods we also present results from
the manual analysis of biomedical literature databases to bring about the biological significance of
glycans and glycan-binding proteins in modulating the host immune response during SARS-CoV-2
infection. Our analysis revealed key immunomodulatory lectins, proteoglycans and glycan epitopes
implicated in exerting both negative and positive downstream inflammatory signaling pathways, in
addition to its vital role as adhesion receptors for SARS-CoV-2 pathogen. A hypothetical correlation
of the differentially expressed human glycogenes with the altered host inflammatory response and
the cytokine storm-generated in response to SARS-CoV-2 pathogen is proposed. These markers can
provide novel insights into the diverse roles and functioning of glycosylation pathways modulated
by SARS-CoV-2, provide avenues of stratification, treatment, and targeted approaches for COVID-19
immunity and other viral infectious agents.

Keywords: glycosylation; transcription; immune function; infection; susceptibility; biomarker;
therapeutic

1. Introduction

Of the four major classes of biomolecules (nucleic acids, proteins, glycans, and lipids),
the glycans conjugated to proteins and lipids provide a ubiquitous biological interface at
cell surfaces, where they are instrumental in intermolecular and cell–cell recognition events
that define and control cell interactions and functions [1]. Indeed, with greater than 70% of
circulating proteins being glycosylated, including most cytokines and all immunoglobulins,
the role of glycosylation in immune function is key, extending beyond the first-contact
cell surface interaction [2]. Though not template-driven, the synthesis and presence of
glycans on cell surfaces and macromolecules is driven by a known and diverse set of genes,
collectively referred to as ‘glycogenes’, which encode the glycosylation machinery. Glycan
recognition and function is typically mediated by complementary glycan-binding proteins
(GBPs), which present specific glycan recognition domains conferring glycan-binding speci-
ficity. In addition, functional domains translate glycan recognition into functional cellular
responses, positioning the role of glycans and GBPs as key components of the immune
system [3]. Greater understanding of the glycans, GBPs and their associated molecular
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machinery, which underlie and regulate immune function, will permit a greater biological
understanding of host and coronavirus SARS-CoV-2 interaction. Presenting opportunities
for rational design of glycan and GBPs targeted therapeutics, immune dysfunction mea-
sured via glycan modulation, and potential risk and stratification of individuals based on
glycan signatures, through the utilization of glycan biomarker diagnostics.

As the significance of SARS-CoV-2 and the associated risks posed more evident,
diverse structural, biochemical and genome-wide screening approaches have been under-
taken to identify and elucidate host factors involved in SARS-CoV-2 infection [4,5]. Studies
have highlighted the relevance played by glycosylation on host cell receptors and viral
membrane envelope proteins in facilitating host–virus infection [6–9]. Findings to date have
indicated host-virus interaction involvement with sialic acid biosynthesis and sialylation
pathways, as well as in the regulation of cell-intrinsic immunity to be critical for supporting
different stages of viral replication, including entry and antiviral responses. This is in keep-
ing with reported glycosylation involvement in human immunodeficiency virus-1 (HIV-1),
hemagglutinin glycoprotein (HA) of influenza virus, coronavirus glycoprotein spike (S)
SARs, glycoprotein (GP) of Ebola virus, glycoprotein complex (GPC) of Lassa virus, and
envelope (E) glycoprotein of dengue, Zika, and other flaviviruses [10–13]. Beyond host-
virus infection, a study by Sadat et al. examining a rare genetic disease (type II congenital
disorders of glycosylation (CDG-IIb)), caused by mutation in the gene encoding N-linked
glycan processing enzyme mannosyl-oligosaccharide glucosidase (MOGS), reported that
despite severe hypogammaglobulinemia, the patients did not show susceptibility to viral
infection or recurrent infections, indicating a potential role of glyco-machinery in directly
impacting an individual’s degree of susceptibility to enveloped viruses [14]. Establishing an
indispensable and critical role of glycosylation machinery in viral replication, with altered
glycosylation of host and viral proteins conferring potential resistance to virus infection.

Modulation of host glycosylation machinery is a fundamental molecular mechanism
leveraged by biological agents for eliciting pathogen specific immunity [15]. Variation in
glycosylation patterns of host proteins [16,17] especially the antigen specific antibodies [18],
have been extensively characterized for viral agents such as the H1N1 influenza virus,
hepatitis B virus and HIV-1 to determine the relevance of glycosylation in regulating both
innate and adaptive immune response. In the current COVID-19 pandemic, successful
infection of host airway epithelial cells by the heavily glycosylated SARS-CoV-2 virus
is dependent upon the occupancy and nature of glycan chains expression on the virus
binding sites of human Angiotensin Converting Enzyme-2 (ACE2) protein receptors [7].
Interestingly, a recent study using high throughput pseudovirus-based neutralization
assay identified 80 natural variants and 26 glycosylation spike mutants of SARS-CoV-2
which significantly affected the viral infectivity [19]. Moreover, glycosylation is a major
modulatory factor which influences the nature of inflammatory responses [20,21], with
altered expression of glycan chain structures reported on several proteins and tissues un-
derlying many acute and chronic respiratory diseases [22–27]. Interestingly, these diseases
share pulmonary pathologies similar to observations reported in COVID-19 subjects [28].
These observations and supporting evidences highlight the need and potential to evaluate
whether SARS-CoV-2 infection induces transcriptional alteration of host glycosylation ma-
chinery in order to facilitate different stages of viral replication as well as to modulate host
immune response. At a preliminary stage of the hypothesis validation, we utilized high
throughput gene expression data from the Gene Expression Omnibus database repository,
generated from human subjects and cell lines infected by SARS-CoV-2 virus.

2. Materials and Methods
2.1. Gene Expression Data Selection

Gene Expression Omnibus (GEO) was queried using the search terms “(COVID-19
OR SARS-COV-2) AND gse[entry type]”, with filtering criteria “Expression profiling by
HTS” and the organism “Homo sapiens” applied. Datasets included gene expression data
generated from ex-vivo and autopsy samples from COVID-19 subjects as well as human
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cell lines (n ≥ 3) and organoids treated with SARS-CoV-2 virus (n ≥ 3). Datasets without
gene annotation were excluded.

2.2. Glycosylation Process Related Gene Set

Glycosylation machinery gene set (Glycogenes—metabolic genes, transporters and
transferases) was compiled from the GlycoGAIT database [29]. Summarily, data from
Kyoto Encyclopedia of Genes and Genomes (KEGG), ExplorEnz—The Enzyme Database,
GlycoGene database (GGdb), Consortium for Functional Glycomics (CFG), UniProt and
from the textbooks—Essentials of Glycobiology and Handbook of Glycomics was extracted
using keywords centred around different sugar moieties involved in glycosylation. Uni-
form nomenclature was maintained using HUGO Gene Nomenclature Committee (HGNC)
database as a reference. Using proteoglycan and lectin as keywords, information for gly-
can binding proteins and proteoglycans were also extracted from the HGNC database
(https://www.genenames.org/) and further cross-validating the list using the Gene group
reports from HGNC for completion. Details of the enzymatic reactions for the glycosyl-
transferase and glycosidase enzymes was enriched by manually curating the reactions
from the BRENDA enzyme database (https://www.brenda-enzymes.org/index.php) and
ExPASy bioinformatics resource portal (https://www.expasy.org/). For interactions where
the reaction information is not available the interactions were curated manually from
PubMed sources.

2.3. Data Processing, Functional Enrichment Analysis and Network Visualization

GenePattern (http://software.broadinstitute.org/cancer/software/genepattern/) [30]
and Galaxy (https://usegalaxy.org/) [31] were utilized for data processing as detailed in
their respective user manuals. Where datasets had existing processed result files available
through the GEO database these were used. Hierarchical clustering of the normalized gene
expression data was performed using the Heatmap w ggplot tool in Galaxy Version 2.2.1.
The mapping of differentially expressed glycogenes (DEGs) to known signaling pathways
and cellular processes, and gene set enrichment analysis (GSEA), were performed using
the g:Profiler web server [32]. Using the “Retrieve/ID mapping tool” [33] available in the
UniProt Knowledgebase [34] detailed gene/protein function and other related database
reference IDs were extracted for the DEGs. Pathway analysis was performed using the
Reactome biological pathways (https://reactome.org/) [35]. The induced network module
function available in ConsensusPathDB—(CPDB—http://cpdb.molgen.mpg.de/) [36] was
used to identify any possible functional relationship between DEGs coding for lectins
through the protein–protein interaction and biochemical reactions. Network analysis and
visualization was performed with Cytoscape software (http://www.cytoscape.org/) [37].

3. Results

Seven array datasets were identified from the GEO database (July 2020), with the
filter criteria of having at least three minimum samples for both control and SARS-CoV-2
treated/infected conditions (Supplementary Table S1). From these datasets, data from
biological samples and cell lines, relevant only to the upper respiratory tract infection,
were selected yielding six data points for subsequent data processing using the DESeq2
algorithm available in Genepattern genomics tool (Supplementary Table S1). From the
DESeq2 analysis results (normalized, log2 fold changed, Benjamini–Hochberg adjusted
p-value) significant genes with adjusted p value ≤ 0.1 and uncorrected p value ≤ 0.05 were
identified for each data points (Supplementary Table S2). Using the gene set from the
GlycoGAIT database (Supplementary Table S6), DEGs for each data points were identified
which constitute ~3% of the total differentially expressed genes under the selected p value
cut off, except for the lung samples (Supplementary Table S2). Data analysis of each
data points using the frequency distribution function in Excel revealed that distribution
of differentially expressed genes from the SARS-CoV-2 infected cell lines and organoids
are largely represented within the range of −0.5 to +0.5 log twofold change values. On
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the contrary for the biopsy samples (nasopharyngeal and lung) the gene distribution
was higher above the ±0.5 log twofold change cut-off values (Supplementary Table S2).
Moreover, the clustered heatmap of the DEGs revealed that the gene expression pattern
obtained from the nasopharyngeal swab and the Calu cell line show close similarity and
were also the two data sources that showed maximum number of significant differentially
expressed genes including the glycogenes (Supplementary Table S2). Higher level gene
family association of the DEGs revealed that glycosyltransferases, lectins, proteoglycans,
glycosidases and sulfotransferases as the maximum represented groups, majorly in the
Calu cell line and the nasopharyngeal samples (Figure 1A,B, Supplementary Table S3).
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Figure 1. (A) Bar chart representing the categorization of the differentially expressed glycogenes identified from the 6 SARS-CoV-2
transcriptomic datapoints. The graph is generated using the GraphPad Prism 5 software. (B) Clustered heatmap generated using the
Heatmap w ggplot (Galaxy version 2.2.1). Using a blue-white-red coloring scheme, clustering is performed using the default maximum
similarity measure and the complete hierarchical clustering measure. The row labels represent the significantly differentially expressed
glycogenes (with ≥1.5-fold change) form 6 datapoints identified from the SARS-CoV-2 infected human cell lines, organoids, ex vivo
lung and nasopharyngeal samples.

For focused analysis on glycogenes, a stringent log2 fold change cut-off values ≤−0.58
and ≥0.58 (fold change ≥ 1.5-fold) was performed. Detailed gene set enrichment analysis
of the resulting DEGs using the g:Profiler toolset, highlighted specific cellular processes
such as the glycosaminoglycan, proteoglycan, glycolipid, N-glycan and O-glycan metabolic
processes as the maximum represented biological categories (Supplementary Table S4).
Similarly, acetylglucosaminyltransferases, acetylgalactosaminyltransferases, carbohydrate
binding, sulfotransferases were the most significant and more specific GO: molecular
functions identified from the g:Profiler toolset (Figure 2A,B); Supplementary Table S4).
Combined analysis of the gene family association and gene enrichment analysis results
revealed that the maximum represented glycosyltransferase gene family were associated
with the glycolipid, N-glycan and O-glycan metabolic processes, which also included
the fucosyltransferases and sialyltransferases involved in the synthesis of diverse glycan
epitopes.

1 
 

 
(A) 
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Figure 2. (A) Manhattan plot generated from the g:profiler toolset for the functional enrichment analysis using the default signif-
icant threshold measures. The x-axis shows the functional terms grouped and color-coded by the respective data sources and the
corresponding enrichment p-values in negative log10 scale are illustrated on the y-axis. A more detailed result table below the image,
highlights the manually selected top ranking 10 functional enriched terms and corresponding p-values. (B) More detailed result of the
GO molecular function output generated from the g:Profiler tool highlighting the maximum represented categories among the input
list of differentially expressed glycogenes with their corresponding enrichment p-values in negative log10 scale.
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A genome-wide overview analysis from the Reactome database highlighted metabolic
pathways associated with glycosylation modifications and additionally a number of im-
mune related pathways including the immune-regulatory interaction between lymphoid
and nonlymphoid cells, majorly represented by the DEGs transcribing for the lectin pro-
teins (Supplementary Figure S1). Among the 56 metabolic processes that were mapped
to the Reactome database, pathways with maximum number of intersecting DEGs were
those associated with N-linked glycosylation (precursor biosynthesis, antennae elongation,
trimming and complex type N-glycan synthesis); glycosaminoglycan metabolism (chon-
droitin/keratan/dermatan/heparin sulfate metabolism); O-linked glycosylation (biosyn-
thesis and termination) and glycosylphosphatidylinositol (GPI) anchor biosynthesis. The
DEGs associated with fructosyltransferase genes where mapped majorly to the blood group
and Lewis antigen biosynthesis pathways (Supplementary Table S4). A representative
pathway image of the cellular process from the Reactome database—“Blood group sys-
tem biosynthesis”, highlighted using the gene expression data obtained from the human
nasopharyngeal swab of Covid-19 patients is given in Supplementary Figure S2.

Lectins were the second category of maximum represented DEGs identified from the
SARS-CoV-2 infected biopsy samples, cell lines and organoid relevant to the respiratory
tract tissues (Supplementary Table S3). The C-type lectin receptors (Group II and Group
V-NK cell receptor categories—CLEC) and the sialic acid binding I-type lectin receptors
(SIGLEC) were the predominant ones with upregulated gene expression pattern (Sup-
plementary Table S3). In order to delineate more detailed functional significance of the
differentially regulated lectins, we used the induced network module feature from the
CPDB database [36]. The protein–protein interaction network revealed molecular network
association of lectin DEGs with both the negative regulatory and immunostimulatory sig-
naling pathways. For example, the network captures the interaction between the galactose
binding lectins (LGALS 1/2/3) with the negative regulatory protein tyrosine phosphatase
(PTPN) signaling pathway while the CLECs and SIGLECs were found to be associated
with the immunostimulatory signaling pathways mediated by the toll like receptors (TLRs),
Killer Cell Lectin Like Receptor (KLRs), MHC class I-related molecules and the intracellular
non-receptor tyrosine kinase signaling pathways (Figure 3). Though the role of such in-
teractions needs to be experimental assessed in a SARS-CoV-2 infected airway epithelium
system, the analysis network findings highlight the prospective immunomodulatory role
of these lectins, which are well-characterized positive/negative regulators of innate and
adaptive immunity [38].

Significant DEGs, grouped under the glycosylation associated cellular function path-
ways, were also manually analyzed for the association with human pathogenic viruses
and immune system in order to understand the physiological relevance in response to
SARS-CoV-2 infection from the biological samples (biopsies and cell lines) representing
the upper respiratory tract (Supplementary Table S5). Manual compilation of the glycan
epitope association for the DEGs, enabled the identification of the clinical significance of the
transcriptomic changes for few genes in relation with immune response and viral infection
conditions (Supplementary Table S5). For example, serglycin (SRGN) (increased expression
pattern across samples), is one of the main proteoglycans of the cytotoxic granules in CTLs
and NK cells and is known to regulate the kinetics of antiviral CD8+ T-cell responses.
Moreover, serglycin proteoglycan with sulfated glycosaminoglycans of either heparin, hep-
aran sulfate or chondroitin sulfate types attached to it is a major regulator of the mast cell
secretory granule homeostasis [39]. Recent studies reported the presence of activated mast
cells in the lungs of deceased patients with COVID-19, which are correlated with the release
of pathogenic mediators linked to pulmonary edema, inflammation and thromboses [40].
Given the heparan sulfate-dependent enhanced attachment and infection of SARS-CoV-2
virus [41], it will be interesting to evaluate a model where serglycin as a critical mediator
between SARS-CoV-2 infection, mast cell activation and the pulmonary pathology.
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CPDB database and visualized using Cytoscape network. Transcriptomics data from the SARS-CoV-2 infected human
nasopharyngeal swab sample was used to highlight the graph with red color indicating upregulated genes and the green
color indicating the downregulated genes. The protein–protein interaction network, drawn in red color, reveals the
association of lectins with both the positive and negative immune regulatory pathways.

Similarly, increased expression of major genes involved in Core-2 O-glycan synthesis
correlate with a recent report regarding the SARS-CoV-2 spike RBD protein glycosylation by
host cell lines. The increased gene expression pattern of β-1,4 N-acetylgalactosaminyltrans-
ferase 2 (B4GALNT2), involved in the synthesis of Sd(a): (Neu5Acα2,3-[GalNAc-β1,4]Gal-
β1,4-GlcNAc) antigen and the fucosyltransferases as well as α-2,3-sialyltransferases in-
volved in the synthesis of Sialyl Lewis x/a (sLex/a): (Neu5Acα2,3-Galβ1-4-[Fucα1-3]-
GlcNAcβ) antigens, may suggest the intriguing possibility of expression of these antigens
in the upper and lower tract of airway epithelium. The role of Sd(a) and sLex/a antigens as
glycan ligands in regulating the adhesion and infection of airway epithelium by human
and avian influenza viral strains is well reported (Supplementary Table S5). These antigens
also plays a crucial role in regulating the lytic function of cytotoxic T lymphocytes as well
as leukocyte adhesion and migration and hence might also correlate with the SAR-CoV-2
infection and immune overdrive (Supplementary Table S5).

Upregulated expression of genes encoding lectins which are previously reported to
function as adhesive receptors for SARS-CoV-2 (such as SIGLEC5, MASP2, CLEC4M)
were identified. Among them the mannose binding lectin serine protease 2 (MASP-2) has
also been implicated in the altered lectin complement pathway resulting in accelerated
inflammatory responses and lung damages involved in COVID-19 pathogenesis [42]. Few
other C-type, I-type and S-type lectins in the list were found to be either induced by or
associated with the adhesion of other viral strains such as the influenza virus, Ebola virus,
Hepatitis C virus, Human Immunodeficiency Virus. Among Galectins, increased expres-
sion of LGALS9 elicited by SARS-CoV-2 infection correlate with that observed during the
HIV-1 infection which was reported to mediate T-cell inflammation and exhaustion [43]
as is the case with COVID-19. From an immune regulatory perspective, previous reports
implicate both positive and negative regulatory functions for various DEGs belonging to
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the lectin family. The regulatory functions broadly include negatively regulating antivi-
ral signaling, NK cell cytotoxicity, coagulation cascade and T-cell exhaustion while the
positive regulatory functions include activation of the pro-inflammatory responses from
lymphocytes, neutrophils and monocytes as well as immune cell infiltration, cell adhesion,
motility and migration (Supplementary Table S5).

The downregulated DEGs primarily represent the biological processes involved in
glycan precursor biosynthetic pathways such as the N-glycan precursor biosynthetic pro-
cesses, O-linked biosynthetic process, GPI-anchor biosynthesis as well as fucose, mannose
and galactose metabolism (Supplementary Table S5). Defective GPI-anchor biosynthetic
pathway as well as the N-glycan chain transfer to the nascent polypeptide chain were
shown previously to affect the infectivity of pathogenic viruses like HIV-1 and Hepatitis
C virus [40,41]. Whether this downregulated expression pattern represent an adaptive
feedback mechanism can only be speculated and can be subjected to targeted experimental
validation to explore the regulatory mechanism under SARS-CoV-2 infection condition.

4. Discussion

Similar to the strategies previously applied for curbing the spread of viral infections,
current research efforts are directed towards the development of therapeutic antibodies
and vaccines for effective COVID-19 treatment [44,45]. Kinetics of immune response from
mild, moderate to severe COVID-19 patients ranges from augmented humoral and cellular
immunity to lymphopenia affecting CD4+ T cells, CD8+ T cells, B cells and natural killer
cells [46–49]. Furthermore, the degree of lymphopenia and pro-inflammatory cytokine
storm was reported to be higher in severe COVID-19 patients and correlated with the
adverse outcomes such as immune mediated lung injury and acute respiratory distress
syndrome in these patients [50–53]. Reduction in the level of ACE2, following the bind-
ing and internalization of SARS coronavirus is considered as a critical factor that alters
Renin-angiotensin system and concomitant disease pathogenesis such as lung oedemas,
elevated macrophage infiltration, cytokine production and endothelial dysfunction [54,55].
The exponential growth in the cytokine storm in lung tissues and systemic circulation
beget the pulmonary pathology of SARS-CoV-2 infection alveolar damage with cellular
fibromyxoid exudates, desquamation of pneumocytes and hyaline membrane formation
which are the salient features of ARDS [52,56]. A recent review on the altered expression
of different cytokines in COVID-19 patients concluded that SARS-CoV-2 infection could
be characterized by the depletion of antiviral defenses (such as delayed IFN-α and -β
response as well as an elevated production of inflammatory cytokines [57]. Further to,
altered procoagulant–anticoagulant pathways associated with the cytokine storm also
drives the development of microthrombosis, disseminated intravascular coagulation, and
multi-organ failure as evidenced in severe cases of COVID-19 subjects [58,59]. Despite
extensive characterization of the altered immunological features underlying the spectrum
of disease associated with COVID-19, the role played by alteration in glycosylation PTM
remains to be addressed.

Glycan binding proteins (GBPs) and the glycoconjugate structures play a crucial
modulatory function in regulating the host immune responses under diverse inflamma-
tory diseases [60]. In case of COVID-19 acute respiratory infection, several recent studies
evidenced the essential role of glycoconjugate structures such as heparan sulfate and sialo-
sides (sialic acid-containing carbohydrates) in mediating the attachment and infection of
SARS-CoV-2 virus [61–63]. This enticed the attention of researchers in devising therapeutic
strategies to curtail the virus infection [41,64]. Additionally, it has also been reported that
infectious SARS virions harness host histo-blood group antigens on S proteins [65], which
might presumably modulate the interaction with host cell glycoprotein receptors through
carbohydrate–carbohydrate interactions [66]. The current transcriptomic based research
analysis is aimed to generate a hypothetical view of the alteration in glycan machinery,
which could be used to explain the relevance of glycosylation underlying the lung pathol-
ogy and immune responses reported in COVID-19 subjects. Given the maximum number
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of gene representation from the nasopharyngeal samples followed by the Calu cell line, in-
terpretation of the DEGs relevance is largely based on the gene expression pattern observed
from these samples. Results from our manual literature-based analysis reveals a common
pattern of glycan epitope structures shared between SARS-CoV-2 virus and other various
pathogenic viruses for adhesion and infection of the host cells. Schematic representation of
these diverse glycan epitope host ligands for pathogenic virus (Supplementary Table S5,
Figure 4).
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Figure 4. Overview of diverse glycan epitopes that act as host ligands for pathogenic virus attachment and infection. The
figure represent the results generated from our manual literature search highlighting the involvement of glycan structures
as host ligands for major pathogenic viruses. Among these, the red highlighted boxes represent potential glycan epitope
structures that was predicted to change in response to SARS-CoV-2 infection, based on the transcriptomic data analysis,
thus suggesting a possibility of shared features in glycan structures during viral infection that might aid in viral attachment
and infection.

Increased expression pattern of major fucosyltransferases across the nasopharyngeal
and lung samples as well as the cell lines may indicate a tendency of the SARS-CoV-2
infection to augment the inflammatory response by increasing the expression of glycan
epitopes such as blood group antigens and Lewis X antigens that regulate the immune
cell attraction to infected tissues [67–69]. The gene expression pattern of sialyltransferase
from the nasopharyngeal samples was also insightful into the potential immunomodula-
tory nature of SARS-CoV-2 virus. Gene expression data from the nasopharyngeal sample
showed an interesting pattern regarding the sialyltransferases, wherein there was an in-
crease in expression of genes coding for α-2,3 sialyltransferases and α-2,8 sialyltransferases
concomitant with decreased expression of genes coding for α-2,6 sialyltransferase enzymes
involved in the synthesis of sialyl-Tn antigen. From an immune perspective, these sialyl-
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transferases are known to generate sialylated glycans involved in immune cell trafficking
and inflammatory response [70,71]. Previous glycomic analysis of the human lung and
respiratory tract tissues revealed predominant expression of N- and O-glycans expressing
α-2,3/α-2,6/α-2,8 linked sialoglycans [72,73]. Moreover, immunomodulatory and viral
adhesive functions were also attributed for these sialoglycans expressed in the human lung
and respiratory tract tissues. The expression pattern of sialyltransferase reported in this
study correlate with that of the metaplastic mucous cells in ferret airways infected with
human H1N1 influenza virus [74].

Based on these findings we hypothesize that SARS-CoV-2 infection results in the in-
creased expression of α-2,3 and α-2,8 linked sialic acid structures in the human respiratory
tract tissues aiding viral replication as observed in other similar avian viruses [75]. Similar
to the alteration in bronchial mucins reported for patients suffering from chronic bron-
chitis and cystic fibrosis it will be interesting to evaluate whether human airway mucins
from SARS-CoV-2 infected individuals express increased levels of sLex epitope, related
to inflammation and infection [76]. Increased expression of B4GALNT2 gene, coding
for the core enzyme involved in the synthesis of Sd(a) antigen, across different samples
infected with SARS-CoV-2 is an interesting observation. Previous studies ascertained
diverse cellular roles for B4GALNT2 associated Sd(a) antigen expression on cell surfaces
which includes—prevention of H1N1 viral infection, reducing metastasis of cancer cells,
lytic function of cytotoxic T-lymphocytes [77]. Hence, targeted gene expression studies
as well as glyco-profiling of the airway epithelium infected with SARS-CoV-2 virus can
validate whether Sd(a) antigens predominate sLex antigens and the increased expression
of B4GALNT2 is an adaptive mechanism to reduce the severity of the infection.

Gene expression pattern and the induced network model analysis results of the in-
flammatory CLECs and the anti-inflammatory SIGLECs mentioned in the current report is
in alignment with the clinical phenotype of cytokine storm, neutrophil extracellular trap
formation as well as the functional exhaustion of lymphocytes reported in severe cases
of COVID-19 patients [46–49,78,79]. Increased gene expression pattern of inflammatory
CLECs in the nasopharyngeal samples may represent the molecular markers of innate
immune function of airway epithelial cells and immune components [80,81]. However,
dual anti-inflammatory function have also been attributed to few CLECs such as CLEC7A
(Dectin-1) and CLEC4E (Mincle) depending on the ligand and its interaction with the pat-
tern recognition receptors [82]. Similarly, the anti-inflammatory function of differentially
expressed SIGLECs to attenuate immune responses, may be an adaptive mechanism for
preventing lymphocyte exhaustion or cell death under heightened inflammatory condi-
tions [83]. Further to, a suppressive function of host antiviral innate immune response
has also been attributed to few SIGLECs (such as the SIGLEC1 protein) [84], which can be
hypothesized to be induced by the SARS-CoV-2 infection conditions for evading the host
innate immune response. Manual compilation of previous scientific reports also enabled us
to identify the functional role of few differentially regulated lectins as potential adhesion
receptors for various viral strains including the SARS-CoV-2 virus. Summarized view
of the differentially expressed lectins and proteoglycans along with its previously estab-
lished regulatory role on innate and adaptive immune responses could aid in exploring
the role of glycoconjugate structures in dysregulated airway mucosal immunity elicited by
SARS-CoV-2 infection [85].

In the current study, results from the gene expression pattern are largely influenced
by the nasopharyngeal swab samples. Since the nasopharyngeal swab samples represent a
collection of diverse epithelial and immune cell types, cell type-specific analysis is essential
to delineate the diverse inflammatory and anti-inflammatory functions of these glycogenes.
Further analysis of the inflammatory pathways in conjunction with the experimental vali-
dation of the immune regulatory lectins should provide greater insights into the molecular
mechanisms underlying compromised innate immune response in severe cases of COVID-
19 patients [85]. Lectins such as CLECs and SIGLECs have been considered as potential
immunotherapeutics in the field of cancer immunology and other chronic inflammatory
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diseases [86,87]. Small molecules generated for these lectins could be even explored for
therapeutically modulating COVID-19 immune dysregulation.

5. Conclusions

The current transcriptomic based study provides meaningful insights into the na-
ture of gene expression alteration in glycosylation enzymes, proteoglycans, lectins and
potential glycan markers that can be selected for targeted experiments to understand the
immunomodulatory functions underlying SARS-CoV-2 infection. A list of potential CLECs,
SIGLECs and Galectin lectins have been highlighted in the current research, which can be
experimentally evaluated to modulate the cytokine storm or the lymphopenia pathology
reported in COVID-19 subjects.
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Genepool; Figure S1: Reacfoam—DEGs from the SARS-CoV-2 infected human nasopharyngeal swab;
Figure S2: Blood group system biosynthesis pathway overlayed with the DEGs identified from the
SARS-CoV-2 nasopharyngeal swab samples.
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