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Abstract: Emerging evidence indicates that reactivation of BK polyomavirus (BKPyV) in the kidney
and urothelial tract of kidney transplant recipients (KTRs) may be associated with cancer in these
sites. In this retrospective study of a single center cohort of KTRs (n = 1307), 10 clear cell renal
cell carcinomas and 5 urinary bladder carcinomas were analyzed from 15 KTRs for the presence
of BKPyV infection through immunohistochemistry and fluorescent in situ hybridization (FISH).
Three of these patients had already exhibited biopsy-proven polyomavirus-associated nephropathies
(PyVAN). Although the presence of BKPyV large-T antigen was evident in the urothelium from
a kidney removed soon after PyVAN diagnosis, it was undetectable in all the formalin-fixed and
paraffin-embedded (FFPE) blocks obtained from the 10 kidney tumors. By contrast, large-T antigen
(LT) labeling of tumor cells was detected in two out of five bladder carcinomas. Lastly, the proportion
of BKPyV DNA-FISH-positive bladder carcinoma nuclei was much lower than that of LT-positive
cells. Taken together, our findings further strengthen the association between BKPyV reactivation
and cancer development in KTRs, especially bladder carcinoma.
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1. Introduction

Immunosuppressive treatment of kidney transplant recipients (KTRs) is a well-known
risk factor for infectious diseases and their complications, including infection-related ma-
lignancies [1–4]. A causal link has been established between the following tumors and viral
infections, as examples: (i) anogenital cancer and human papillomavirus (HPV); (ii) Merkel
cell carcinoma and Merkel cell polyomavirus (MCPyV); (iii) immune suppression-related
non-Hodgkin lymphoma and Epstein–Barr virus (EBV); and (iv) Kaposi’s sarcoma and KS
herpesvirus (KSHV/HHV8) [5–9]. In addition, a yet to be confirmed association between
human polyomavirus (HPyV), especially BK polyomavirus (BKPyV), infection/reactivation
with renal (native) or urinary tract (ureter and urinary bladder) carcinoma development
has been proposed [5,9–14].

HPyVs are small non-enveloped icosahedral particles with circular double-stranded
DNA genomes of ≈5 kb, divided into three regions: the early region, which encodes the
large-T and small-t antigens (LT and sT, respectively); the late region, which encodes the
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virion structural proteins (VP1, VP2); and the control region, which encompasses the origin
of replication and transcription regulatory elements. BKPyV can cause lytic infection of
renal tubule cells, resulting in the loss of these cells. Furthermore, uncontrolled BKPyV
infection contributes to polyomavirus-associated nephropathy (PyVAN) in KTRs [15–17].
A growing body of evidence also suggests a correlation between BKPyV infection and
urothelial carcinoma in KTRs, affecting either the transplanted organ or the urinary tract of
the recipient [18,19].

The central oncogenesis mechanism of HPyV involves disruption of the tumor sup-
pressor genes p53 and pRb, mediated by the early viral gene products, including the
LT [15,18]. In addition, emerging evidence indicates that BKPyV LT can promote tumor
formation, in part through the upregulation of members belonging to the APOBEC3 family
of cytosine deaminases [20].

In this long-term retrospective study of a single center cohort of KTRs, we looked for
evidence of HPyV infection in urinary tract and renal tumors by means of immunostaining
and fluorescent in situ hybridization (FISH). Our aim was to determine the extent of HPyV
reactivation in the anatomical sites where these tumors had arisen in order to establish a
potential association between the ubiquitous virus reactivation in the context of long-lasting
iatrogenic immunosuppression and cancer development.

2. Materials and Methods
2.1. Study Design, Inclusion Criteria, and Samples

This study was a retrospective analysis of prospectively collected data obtained from
patients from a single Kidney Transplant Center at the University Hospital in Novara,
starting from its opening in November 1998 to June 2020. The study population included
adult patients undergoing first or subsequent living- or deceased-donor kidney transplan-
tation (KTx). No patient received simultaneous combined organ transplantations. A strict
pre-transplant screening for malignancy and pre-malignant lesions was performed at our
center in order to exclude patients with active neoplasia, in accordance with local and
national guidelines.

All patients were informed at the time of transplantation or surgery that their clinical
data would be used for research purposes, and all patients signed a written informed
consent form. The study approval was obtained from the Ethics Committee of “Maggiore
della Carità” Hospital, ASL BI, ASL NO, ASL VCO Protocol 1037/CE, Study No. CE 169/16.

Tissue sections were obtained from formalin-fixed and paraffin-embedded (FFPE)
blocks, previously collected and stored in the University Hospital medical material archives.

2.2. Immunohistochemistry and Fluorescent in Situ Hybridization (FISH)

Consecutive 5 µm sections obtained from FFPE tissues were processed for immuno-
histochemistry using the automated immunostainer BenchMark ULTRA Stainer (Ventana
Medical System, Tucson, AZ, USA) using the anti-Large T SV40 (clone MRQ-4) and anti-
p16INK4a (clone E6H4) (Ventana Medical System, Tucson, AZ, USA). LT-positive cases were
further tested by DNA-fluorescent in situ hybridization (FISH), using a probe derived
from nick translation (Biotin Nick Translation Mix, Roche, Basel, CH, USA) of the plasmid
containing the entire BKPyV type I (Dunlop) genome (ATCC number 45025). Briefly, tissue
sections were dewaxed and heated in a pressure cooker in antigen retrieval buffer (Vector
Laboratories, Burlingame, CA, USA) at 750W for 15 min, followed by an additional step at
350W for 10 min. Probe and target DNA were denatured simultaneously for 5 min at 90 ◦C
prior to hybridization. BKPyV probes were detected through tyramide signal amplification,
according to the manufacturer’s instructions (PerkinElmer Life and Analytical Sciences
Inc., Shelton, CT, USA). Images were acquired using a digital scanner (Pannoramic MIDI;
3D Histech Kft., Budapest, Hungary).
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3. Results and Discussion

A total of 1307 KTxs were performed in 1288 patients (aged 51.3 ± 12.5 years;
63.6% males). Transplanted kidneys were mainly obtained from deceased donors (94.2%).
During a mean follow-up period of 8.45 ± 3.9 years after KTx, the cumulative malignancy
incidence was 0.4%, 0.9%, and 1.3% at 1, 5, and 15 years after transplant, respectively.
The mean time from transplant to the primary lesion of the kidney or urinary tract was
4 ± 4.3 years.

In our study cohort, 15 urinary tract malignancies or clear cell renal cell carcinomas
(ccRCCs) arose in 15 KTRs. As reported in Table 1, they comprised eight ccRCCs from
native kidneys, two ccRCCs from transplanted kidneys, and five carcinomas from the
bladder. Unfortunately, data for BKPyV viremia were only available for nine of the study
participants and revealed that eight of them had documented viremia at the time of
cancer diagnosis, while both LT-positive bladder cancer patients displayed a clinical history
characterized by numerous episodes of BKPyV reactivation over an extended period of time
(Figure 1). Three of these patients (3/15; 20%) had already exhibited PyVAN, whereas no
patient had presented with PyVAN after cancer development. Interestingly, the percentage
of urinary tract cancer patients with a previous diagnosis of PyVAN (3/16, total number of
biopsy-proven PyVAN cases in the study cohort; 18.75%) was significantly higher than the
percentage of KTRs with no history of PyVAN (12/1285; 0.93%).
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Figure 1. Patients’ clinical history timelines highlighting BK polyomavirus (BKPyV) reactivation.

Next, tissue sections from the aforementioned surgical specimens, as well as sur-
rounding normal tissues, were immunolabeled with anti-LT antibodies (pan-polyomavirus
antigen), and those found to be LT-positive were also processed by FISH analysis using the
BKPyV genome as a probe.
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Table 1. Clinical history of patients developing kidney and urinary tract cancer.

Patient Birth Year KTx Date Tumor Type and Grade Pathological Stage PyVAN Notes

1M 1952 2008 2010: Clear cell RCC FG 2 T1a No
2010: Graft failure /second transplant
2010: Acute promyelocytic leukemia
2015: Death

2M 1969 2008 2010: Clear cell RCC FG 3 T1b No
3M 1948 2003 2004: Clear cell RCC FG 2 T1a No 2020: Death

4M 1954 2008 2008: Papillary RCC type 1
FG 2 T1a No

5M 1965 2005 2006: Clear cell RCC FG 3 T1a No 2011: Acute HBV infection

6F 1969 2006 2011: Clear cell RCC FG 4
(graft) T3b N2 2007 2007 and 2011: CIN

2011: Graft failure

7M 1954 2007 2009: Clear cell RCC FG 2 T3a No 2009: Graft failure
2010: Death

8M 1969 2001 2007: Clear cell RCC FG 2
(graft) T1a M1 No 2006: Viral enteritis

9M 1949 2003 2004: Clear cell RCC FG 2 T1a 2004 2004: Graft failure
2010: Death

10M 1942 2006 2006: Clear cell RCC FG 2 T1a No
2006: Pneumonia and CMV
reactivation
2006: Death

11M 1948 2000 2010: LG urothelial
carcinoma Ta No

2001: CMV disease (hematological)
2002: Skin cancer and VZV
reactivation
2006: Skin cancer
2007: MGUS IgG-k (plasma cells at
BMB: 5%)
2014: Sepsis
2018: Death

12M 1940 2001 2001: HG In situ urothelial
carcinoma No 2005: Prostatic cancer (Gleason 6)

2009: Graft failure

13M 1954 2000 2010: LG Urothelial
carcinoma T1 2001

14M 1947 2018 2020: HG Urothelial
carcinoma No

15F 1954 2005 2020: HG Urothelial
carcinoma T3a N2 No 2020: Death

KTx: Kidney transplantation; RCC: renal cell carcinoma; FG: Fuhrmann grade; CIN: cervical intraepithelial neoplasia; PyVAN: polyomavirus-associated nephropathy; HBV: hepatitis B virus; CMV:
cytomegalovirus; SCC: squamous cell carcinoma; AK: actinic keratosis; VZV: varicella zoster virus; LG: low-grade; MGUS: monoclonal gammopathy of undetermined significance; BMB: bone marrow biopsy;
HG: high-grade; M: male; F: female.
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All the ccRCCs resulted negative for LT expression in tumor cells (data not shown).
LT labeling was only detected in the urothelium (Figure 2a,b) from patient 9. In addition,
the FISH signal in these cells was quite strong and diffused, with the presence of large
dots, very much resembling sites of intense viral genome replication (Figure 2c). Although
these finding may not be surprising given the patient’s very recent diagnosis of PyVAN
in the kidney graft 3 months earlier, they appear to be biologically relevant as they show
massive BKPyV infection in both kidneys. Importantly, even though the virus was no
longer detectable in the tumor cells, it is likely that this earlier infection might have con-
tributed to virus-mediated tumorigenesis, a hypothesis supported by our previous findings
showing that PyVAN in patients 6 and 9—namely, patient 2 and 1 in Peretti et al. [21]—was
associated with donor-derived de novo infections with BKV-Ib2 or BKV-IV that, during
the development of nephropathy, acquired mutations to elude the host immune response.
Indeed, the dominant VP1 mutations detected in both patients were consistent with DNA
damage induced by APOBEC3B, a cytidine deaminase upregulated following infection
with various RNA and DNA viruses. This would also be consistent with several reports
showing that BKPyV infection can specifically induce APOBEC3B in vitro and in vivo,
thereby leading to genome instability and eventually cancer development [20,22,23].Viruses 2020, 12, x FOR PEER REVIEW 5 of 8 
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Figure 2. Detection of polyomavirus large-T antigen and BKPyV DNA in the ureter of a native
kidney removed from patient 9 due to the presence of a clear cell renal cell carcinoma. (a) Scan
of a tissue section stained for large-T antigen (scale bar: 500 µm). (b) Region corresponding to
the blue square highlighted in panel (a) (scale bar: 100 µm). This section was counterstained with
hematoxylin to visualize cell nuclei. (c) Serial section stained for BKPyV genome by fluorescent in
situ hybridization (FISH) (red) (inset: magnification of the white square). The white arrows indicate
FISH-BKPyV-positive nuclei. This section was counterstained with 4′,6-diamidino-2-phenylindole
(DAPI) (blue) to visualize cell nuclei (scale bar: 100 µm).

Two of the five urinary bladder carcinomas showed positive LT labeling. Patient 13
had developed documented PyVAN nine years prior to the onset of bladder carcinoma,
and BKPyV reactivation remained detectable as viremia before and after cancer surgery.
The clinical history of patient 15 was remarkable as she had experienced repeated episodes
of BKPyV viremia over the course of 15 years, from transplant to cancer surgery.

As shown in Figure 3, the majority of the tumor cells from these two invasive high-
grade transitional carcinomas displayed very strong LT labeling. Consistent with LT being
overexpressed in dysplastic cells, we were also able to detect sustained p16INK4a expression
in both carcinomas. The same labeling pattern for both LT and p16INK4a expression was
also observed in tissue sections from the transurethral resection of the bladder tumor
(TURBT), performed before cystectomy (data not shown). Some LT-positive cells were also
found in the urethra, very likely shed from the infected urothelium (data not shown). In the
tumor from patient 13, the nuclear FISH signal was mostly restricted to superficial/external
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urothelial cells (Figure 3c, red square vs. internal blue square), where viral genome
amplification was taking place. In the tumor from patient 15, several clusters of cells with
nuclear FISH signal were randomly distributed throughout the tumor (Figure 3g). The
uniform LT labeling of these two bladder carcinomas, similar to that reported by previous
studies [18,24–27], suggests that deregulated LT expression may be associated with the
transformation process. Consistent with the fact that in tumor cells virus replication is
supposed to be quite low, the proportion of cells with FISH signal was significantly lower
than that of cells displaying LT labeling. Altogether, our observations strengthen the notion
that BKPyV may contribute to malignancies in its respective sites of infection, implicating
the need for further investigations into this potential cancer-causing factor in KTRs.
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bladder carcinomas. (a) Scan of a tissue section of the urinary bladder carcinoma from patient 13
labeled for LT (scale bar: 1000 µm). (b–d) These panels correspond to the black square highlighted
in (a). (b) Magnification of LT labeling (scale bar: 100 µm). (d) Scan of a serial section labeled for
p16INK4a (scale bar: 100 µm). These sections were counterstained with hematoxylin to visualize cell
nuclei. (c) Serial section stained for BKPyV genome by FISH (red) (scale bar: 100 µm). The regions
shown in the insets correspond to the red (superficial) and blue (internal) squares (scale bar: 10 µm).
This section was counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (blue) to visualize cell
nuclei. (e) Scan of a tissue section of the urinary bladder carcinoma from patient 15 stained for
LT (scale bar: 1000 µm). (f–h) These panels correspond to the black square highlighted in (e). (f)
Magnification of LT labeling (scale bar: 100 µm). (h) Scan of a serial section stained for p16INK4a

(scale bar: 100 µm). These sections were counterstained with hematoxylin to visualize cell nuclei. (g)
Serial section stained for BKPyV genome by FISH (red) (scale bar: 100 µm). The regions shown in
the insets correspond to the white square (scale bar: 10 µm). This section was counterstained with
4′,6-diamidino-2-phenylindole (DAPI) (blue) to visualize cell nuclei.
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