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Abstract: Influenza A virus subtype HINI has caused global pandemics like the “Spanish flu” in
1918 and the 2009 HIN1 pandemic several times. HIN1 remains in circulation and survives in mul-
tiple animal sources, including wild birds. Surveillance during the winter of 2018-2019 in Korea
revealed two HIN1 isolates in samples collected from wild bird feces: KNU18-64 (A/Greater white-
fronted goose/South Korea/KNU18-64/2018(HIN1) and WKU19-4 (A/wild bird/South Ko-
rea/WKU19-4/2019(H1NT1). Phylogenetic analysis indicated that M gene of KNU18-64(H1NT1) isolate
resembles that of the Alaskan avian influenza virus, whereas WKU19-4(H1IN1) appears to be closer
to the Mongolian virus. Molecular characterization revealed that they harbor the amino acid se-
quence PSIQRSIGLF and are low-pathogenicity influenza viruses. In particular, the two isolates
harbored three different mutation sites, indicating that they have different virulence characteristics.
The mutations in the PB1-F2 and PA protein of WKU19-4(HIN1) indicate increasing polymerase
activity. These results corroborate the kinetic growth data for WKU19-4 in MDCK cells: a dramatic
increase in the viral titer after 12 h post-inoculation compared with that in the control group HIN1
(CA/04/09(pdm09)). The KNU18-64(HIN1) isolate carries mutations indicating an increase in mam-
mal adaptation; this characterization was confirmed by the animal study in mice. The KNU18-
64(H1N1) group showed the presence of viruses in the lungs at days 3 and 6 post-infection, with
titers of 2.71 + 0.16 and 3.71 + 0.25 log10(TCID50/mL), respectively, whereas the virus was only
detected in the WKU19-4(H1IN1) group at day 6 post-infection, with a lower titer of 2.75 + 0.51
log10(TCID50/mL). The present study supports the theory that there is a relationship between Ko-
rea and America with regard to reassortment to produce novel viral strains. Therefore, there is a
need for increased surveillance of influenza virus circulation in free-flying and wild land-based
birds in Korea, particularly with regard to Alaskan and Asian strains.
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1. Introduction

Based on 18 hemagglutinin (HA) and 11 neuraminidase (NA) surface proteins, influ-
enza viruses are classified into a wide array of subtypes, some of which are a public health
threat [1]. Sixteen HA subtypes (H1-H16) and 9 NA subtypes (N1-N9) are avian influenza
viruses (AlVs), whereas subtypes H17N10 and H18N11 have only been detected in bats
[2].

H1 AlVs are a type of influenza A virus that can be transmitted from birds to mam-
mals; these viruses can co-circulate among wild birds, pigs, and human beings [3]. Influ-
enza viruses are isolated from human for the first time in 1930s [4]. Since then, the HIN1
subtype virus in particular has caused two seriously deadly pandemics in human beings
including the 1918 “Spanish flu” pandemic and the 2009 HIN1 pandemic [5]. The 1918
HINT1 flu pandemic originated from an avian population and, subsequently, infected por-
cine and human populations at approximately the same time, although it was not patho-
genic in birds [6]. In 1979, avian-like HIN1 viruses entered the Eurasian swine population
and co-circulated with the classical swine virus in Eurasia [3,7]. The 1957 and 1968 pan-
demics, which were caused by subtypes H2N2 and H3N2, respectively, replaced the
HI1N1 virus in the human population until its reappearance in 1977. Since then, the HIN1
virus has been circulating in humans along with the seasonal H3N2 virus [8]. A novel
HIN1 virus emerged in 2009 worldwide and was introduced in Korean with a unique
gene constellation of avian-, porcine-, and human-origin segments. It caused a pandemic,
despite the existing human immunity to seasonal HIN1 [9,10]. The low genetic diversity
among the viruses suggests that the introduction into humans was caused by a single
event or multiple events involving similar viruses [11].

Historically, several highly pathogenic AIVs (HPAI) have infected poultry in Korea,
indicating that Korea’s geographic location facilitates the reassortment of avian influenza
[12-14].

In Korea alone, HPAI outbreaks have been reported five times since 2003 [13,15-18].
Especially, HSNS virus represent the fifth and last HPAI outbreak in January 2014. In ad-
dition, H5N8 HPAI viruses were detected from 38 wild birds in 200 poultry farms in Korea
in 2014 [19]. Meanwhile, the H5N1 HPALI virus caused the other four outbreaks in 2003,
2006, 2008, and 2010. During these outbreaks, HPAI viruses were transmitted in poultry
and live bird markets [20]. Wild birds serve as the reservoir of influenza A virus in nature.
While viruses are normally nonpathogenic in wild birds, domestic birds and mammals
sometimes suffer significantly morbidity and mortality upon its transmission [21]. There-
fore, persistent surveillance of the infectious influenza A subtype (H1N1) virus in birds
and swine is important to prevent or control transmission of AIV to human in Korea.

In the current study, we conducted a genetic analysis and a molecular characteriza-
tion of two isolates of avian HIN1 found in 2018, and we hypothesized the reassortment
events that led to the generation of these viruses.

2. Materials and Methods
2.1. Sample Collection

During the winter season from November 2018 to March 2019, fresh samples of the
feces of wild migratory birds were collected from a wild field near riverside in Chuncheon
and Kangwa province of Korea. A total of 1800 fresh fecal dropping samples were packed
at 2-8 °C and sent to a laboratory within 1 day for further analysis. KNU18-64 (A/Greater
white-fronted  goose/South Korea/KNU18-64/2018(HIN1)) and WKU19-4 (A/wild
bird/South Korea/WKU19-4/2019(H1N1)) samples were isolated from the feces of water-
fowl obtained from Chuncheon, Korea (37° 55’ 03.12", 127° 44' 15.75") on 7 November
2018, and from Kanghwa, Korea (37° 45’ 11.4", 126° 30’ 13.3") on 17 March 2019 (Figure
S1).
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2.2. Virus Isolation

As described previously [22], the fecal samples were resuspended in phosphate-buff-
ered saline (PBS; pH 7.4), then thoroughly vortexed and centrifuged for 10 min at
3000rpm. The supernatants were collected and filtered using a 0.45-um membrane (GVS
Syringe, Nova-Tech, Kingwood, TX, USA) prior to inoculation into 10-day-old specific-
pathogen-free (SPF) chicken embryos (Seng-Jin Inc., Eumsung, Korea). The allantoic fluid
was harvested from the embryos after incubation for 3 days at 37 °C in a humidified at-
mosphere. The presence of the virus was determined by screening for viral HA activity
via a hemagglutination assay [23]. The results of the HA activity tests were confirmed by
reverse-transcription PCR (RT-PCR) using pan-influenza A MP primers [24].

2.3. Viral Genome Extraction and RT-PCR to Confirm the Virus and Identify the Host

To confirm the presence of the virus, the total viral RNA was extracted from the in-
fected allantoic fluid using a Qiagen® Viral RNA Isolation kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions [25]. The mixed total RNAs were reverse-
transcribed and the virus was confirmed the matrix gene (MP) coding sequence of influ-
enza A virus amplified by PCR according to the World Health Organization guidelines
[24]. Cytochrome c oxidase I (COX1), a 648-bp region of the mitochondrial gene, was am-
plified from DNA extracted from the fecal samples, and was used as a DNA barcode to
identify animal species as described previously [26].

2.4. Next-Generation Sequencing (NGS) using lllumina HiSeq X

NGS was conducted by GnC Bio (Daejeon, Korea) using HiSeq X as previously de-
scribled [27]. Briefly, the RN A was evaluated using an Agilent RNA 6000 Pico Kit (Agilent,
Santa Clara, CA, USA), and quantified using a BioPhotometer® spectrophotometer (Ep-
pendorf, Hamburg, Germany). The complementary DNA (cDNA) library of the influenza
RNA was generated using a QIAseq FX Single Cell RNA Library Kit (Qiagen, Venlo, The
Netherlands). The concentration of the cDNA was determined using a LightCycler® qPCR
system (Roche, Penzberg, Upper Bavaria, Germany), and the library size was checked us-
ing a High Sensitivity D5000 ScreenTape system (Agilent). First, the library was loaded
into a flow cell, where fragments were captured on a lawn of surface-bound oligos com-
plementary to the library adapters. Each fragment was amplified into distinct clonal clus-
ters by bridge amplification. When cluster generation was complete, the templates were
used for sequencing. lllumina SBS technology utilizes a proprietary reversible terminator-
based method that detects single bases as they become incorporated into DNA template
strands. Because all four reversible, terminator-bound dNTPs were present during each
sequencing cycle, natural competition minimized their incorporation bias and greatly re-
duced raw error rates, compared to those in other technologies. The method provided
highly accurate base-by-base sequencing that virtually eliminated sequence-context-spe-
cific errors, even within repetitive sequence regions and homopolymers. The sequencing
data were then converted into raw data for analysis [28].

2.5. Viral Genomic and Phylogenetic Tree Analyses

Phylogenetic analysis was performed using the MEGA 6.0 ((Molecular Evolutionary
Genetics Analysis version 6.0, Pennsylvania State University, PA, USA) software package
with the maximum-likelihood method, and the tree topology was evaluated by 1000 boot-
strap iterations [29]. In the present study, the closest relative reference virus sequences
were found using the online BLAST resource from the National Center For Biotechnology
Information (NCBI https://www.ncbi.nlm.nih.gov/) and the Global Initiative on Sharing
All Influenza Data (GISAID https://www.gisaid.org/) [22].
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2.6. Determination of 50% Tissue Culture Infectious dose (TCIDso) and 50% egg Infectious dose
(EIDso)

To characterize viral pathogenicity, Madin-Darby canine kidney (MDCK) cells ob-
tained from the American Type Culture Collection (ATCC, Manassasa, VA, USA) were
used to determine the TCIDso titers of the viral isolates via enzyme-linked immunosorbent
assay (ELISA), as reported previously [30]. Briefly, a flat-bottomed 96-well cell culture
plate was coated with 10* MDCK cells, and incubated at 37 °C in 5% CO: until 90% con-
fluence was reached. Each viral stock was serially diluted ten times and used to inoculate
the cells, which were then incubated for 3 days at 37 °C in 5% CO2. After incubation, the
supernatant was removed by vacuum, washed three times with cold PBS, and fixed with
cold acetone. After performing the ELISA, the TCIDso titers were calculated using the Reed
and Muench method [31]. To evaluate the infectious particles in each viral stock, the EIDso
titers were determined by serially diluting the viral stocks ten times and using them to
inoculate 10-day-old SPF-embryonated chicken eggs. Subsequently, infective amniotic—
allantoic fluid (AAF) was harvested on Day 4 after inoculation, and HA activity was used
to determine the 50% egg infectious dose [32].

2.7. Viral Growth Kinetics in MDCK Cells

The growth kinetics of the following viral strains were evaluated in vitro: A/Greater
white-fronted  goose/South ~ Korea/KNU18-64/2018(HIN1) (abbreviation: KNU18-
64(HIN1)); A/wild bird/South Korea/WKU19-4/2019(HIN1) (abbreviation: WKU19-
4(HIN1)); and A/California/04-005-MA/2009(H1IN1) (abbreviation: CA/04/09(pdm09)
(HIN1)). To accomplish this the MDCK cells in the monolayers were infected with the
viruses at a multiplicity of infection (MQI) rate of 0.01 plaque-forming units per cell. After
incubation for 1 h, the supernatants were removed, washed twice with PBS, and continu-
ously cultured in infected media containing L-1-p-tosylamino-2-phenylethyl chlorome-
thyl ketone-treated trypsin. The viral titers in the culture supernatants were determined
at 12, 24, 36, 48, and 72 h post-infection (hpi) via a TCIDso assay, as previously described
[28].

2.8. Animal Study

Six-week-old female BALB/c mice were purchased from Orient Bio (Seongnam,
Gyeonggi, Korea). To evaluate the pathogenicity of each isolate in a mammalian host,
BALB/c mice were intranasally infected with various EIDso viral concentrations (104 105,
or 10¢ (EIDso/mouse) (n = 5)), and the weight changes and survival rates of the mice were
recorded for 15 days post-infection (dpi).

Finally, the BALB/c mice were intranasal challenged with each viral isolate at a con-
centration of 10° EIDso (n =5) (i.e., KNU18-64, WKU19-4, and a control group infected with
A/California/04/2009 (CA/04/09)(pdm09)), and the weights and survival rates of the mice
were recorded for 15 dpi. To evaluate virus shedding in the lung, at 3, 6, and 15 dpi, the
lungs of three mice were collected and weighed, and the viral titer in each lung was de-
termined by TCIDso assay. To examine the histopathology of the infected lungs, at 3, 6,
and 15 dpi, the lungs from three mice were placed in 10 % formalin/saline. Lung tissues in
10% formalin/PBS were processed and embedded in paraffin, and 4-5 um sections were
cut from the paraffin-embedded lung tissues, and mounted on glass slides. An histological
examination of the lung sections was carried out by standard hematoxylin and eosin
(H&E) staining and light microscopy (magnification x 100). This study was approved by
the Animal Ethics Committee of the Wonkwang University (WKU19-64), December 19,
2019 and all methods were carried out in accordance with relevant guidelines and regu-
lations.
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2.9. Statistical Analysis

All the data were statistically analyzed using GraphPad Prism version 5.0 (GraphPad
Software, La Jolla, CA, USA). Two-way analysis of variance (ANOVA) was used to assess
the viral replication kinetics in the MDCK cells, and one-way ANOVA was used to com-
pare the weights of the virus-infected mouse lungs.

3. Results
3.1. Genome Characterization of Two HIN1 Isolates

The isolate genome sequences were then deposited at GenBank (accession numbers
MN584878 to MN584885 for the KNU18-64 isolate, and MT821115 to MT821122 for
WKU19-4). The GenBank accession numbers of the eight gene segments and the highest
nucleotide identities from the GenBank database are shown in Table 1, with sequence
identities of 98.07 to 99.64% with regard to the H1N1 isolates investigated in the present
study.

The putative gene segments of the KNU18-64 and WKU19-4 isolates are illustrated
in Figure 1, based on their nucleotide identities and the phylogenetic tree.

As described in Figure 1, the HA genes in both KNU18-64 and WKU19-4 most closely
resemble the Mongolia avian HIN1 strain (A/duck/Mongolia/520/2015(H1NT1).

The KNU18-64(H1N1) isolate from the East Asian wild bird flyway appears to have
been reassorted, because the internal genes PA, NP, and NS most closely resemble those
of the Chinese wild bird influenza virus, and PB2 is closest to the PB2 gene from the H3N6
isolate found in Vietnamese ducks.

Moreover, the NA and PB1 genes of this isolate are similar to those of the original
Korean virus.

The internal MP gene of this KNU18-64 isolate is similar to the corresponding gene
in the H12N5 isolate from Alaska.

This implies that these viruses were reassorted during the intersection of the wild
bird flyway between the East Asian-Australian Flyway (EAAF) and the West Pacific Fly-
way.

The WKU2019-4(H1NT1) isolate most closely resembles the HIN1 Mongolian isolate,
with high similarity between the respective HA and NA genes, and it also has three inter-
nal genes (PB1, NP, and MP) that are closest to the original avian influenza virus strains
from Hokkaido, Japan (H3N2 and H8N4 from ducks).

Furthermore, this virus also includes three other genes (PB2, PA, and NS) that are
similar to those of the influenza virus from Korea and China.

These two new isolated viruses (KNU18-64 and WKU19-4) represent two different
reassortments of the HIN1 subtype virus that were present in the migratory bird popula-
tion during the winter of 2018-2019.
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Table 1. Virus strains from the GenBank database with the highest nucleotide identities with the two HINT1 isolates investigated in the present study.

A/Greater White-Fronted Goose/South Korea/KNU18-64/2018(H1N1) A/Wildbird/South Korea/WKU19-4/2019(HIN1)
Reference
n Reference Genebank train
gene Genebank ID strain Highest similarly Strain Reference Per. Ident (%) enesa stralt Highest similarly Strain Reference Per. Ident (%)
segment . ID Accession
Accession ID
1D
. MNO049531. A/common
LC053481.1 A/duck/Vietnam/LBM798/2014(H3N6)  99.08(2280/2280) 1 teal/Shanghai/JDS120613/2018(H10N4) 99.259(2259/2280)
MT821115. MK592490.
PB2  MNG584878.1 MNI171439.1  A/duck/Jiangsu/S1665/2015(H5N3)  98.86(2293/2280) 110 . > 5? 90 A/duck/Hokkaido/56/2017(HI12N2)  98.86(2280/2280)
. . MK592458. .
KU881717.1 A/Anseriformes/Anhui/L.259/2014(HIN1) 98.86(2280/2280) 1 A/duck/Akita/51019/2017(H5N3) 98.64(2280/2280)
A/aquatic bird/South MK592547. .
194.1 .08(2274/2274 A H 154/2017(H3N2 .56(2274/2274
MG38619 Korea/swO07/2015(H5NS) 99.08(2274/2274) 1 /duck/Hokkaido/W154/2017(H3N2)  99.56(2274/2274)
PB1, PBIF2 MNS584879.1 MH130136.1 Afwild waterfowl/Korea/F56- 08.77(22074/2274) MTB21116. MKSIZSSL 4 e/ Hokkaido/W144/2017(HBN2)  99.56(2274/2274)
1/2017(H6N2) 1 1
. MK592515. .
KX121186.1 A/bean goose/Hubei/SZY200/2016(H11N9) 98.77(2274/2274) 1 A/duck/Hokkaido/W105/2017(H5N2) 99.56(2274/2274)
. MH579404.
MH547049.1 A/Anas falcata/China/D257/2015(H11N8) 98.93(2151/2151) 1 A/mallard/Korea/CL45/2017(H4N6) 99.12(2151/2151)
. . MT821117. MH727479. A/wild goose/dongting
PA 4880.1 MK943289.1 A, HN-2525/201 A47(2151/2151 .98(2151/2151
MN584880 943289 /duck/Viet Nam/HN-2525/2015(mixed) 98.47(2151/2151) 1 1 lake/121/2018(H6N2) 98.98(2151/2151)
. MN703036. A/duck/Cambodia/10T-24-1-
KF454809.1 A/mallard/Mongolia/1551/2010(H3N1)  98.47(2151/2151) 1 D14/2018(mixed) 98.31(2151/2151)
LC121396.1 A/duck/Mongolia/520/2015(H1NT1) 98.53(1726/1701) MT821118 LC121396.1  A/duck/Mongolia/520/2015(H1NT1) 99.06(1701/1701)
HA MN584881.1 KY402065.1 A/hooded crane/Korea/1176/2016(H1N1) 98.12(1701/1701) 1 "LC121276.1  A/duck/Mongolia/154/2015(HIN2) 98.88(1701/1701)
LC121276.1 A/duck/Mongolia/154/2015(HIN2) 98.12(1732/1701) KY402065.1 A/hooded crane/Korea/1176/2016(HIN1) 98.65(1701/1701)
A/Anser MK978905.
KT717283.1 .53(1497/1497 A/duck/Hokkaido/X9/2016(H8N4 .2(1497/1497
831 ¢ balis/China/Anhui/L144/2014(H6NT) 2 0o(497/1497) 1 /duck/Holdkaido/X9/2016(H8N4) 99-2(1497/1497)
A/goose/Inner Mongolia/IM- MT821119. A/common teal/Hong
NP MN584882.1 KR010412.1 192/2014(H5N1) 99.4(1497/1497) 1 KF259820.1 Kong/MPM1670/2011 (H7N7) 99.13(1497/1497)
KT717243.1 AlAnser 99.33(1497/1497) KF259825.1 Afwild waterfowl/Hong 99.06(1497/1497)

fabalis/China/Anhui/S104/2014(H6N2) Kong/MPL1006/2011(H7N?7)
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Afwil fowl/Korea/F14-
MH130116.1 /Wldvsv/;:)elr 6‘(’;; 6{\13”5‘/ 98.94(1429/1410) LC121398.1  A/duck/Mongolia/520/2015(HINT)  98.94(1410/1410)
MT821120.
NA  MN584883.1 MH791653.
MH130132.1  A/bean goose/Korea/F54-8/2017(H6N1) ~ 98.87(1424/1410) 1 . A/duck/Bangladesh/34191/2017(H3N1) ~ 98.58(1410/1410)
MH130124.1  A/bean goose/Korea/F27-6/2017(H6N1)  98.87(1410/1410) KY402067.1 A/hooded crane/Korea/1176/2016(HINT)  98.51(1410/1410)
A/Mallard/Alaska/AH0029066S.7.A/201 K978907.
MN2537201 /Mallard/ aSk;{lZNOS(; 90665.7.A/2016( g6 661007/982) M 91890 A/duck/Hokkaido/X9/2016(FH8N4) 99.49(982/982)
A/green-winged MT821121.
M2, M1  MNB584884.1 KY130619.1 teal/Alaghaf292/201 L(HING) 98.07(995/982) KY635666.1 A/duck/Bangladesh/26980/2015(H7N9)  99.19(982/982)
A/American
Y120628.1 07 2 KY 1A Bangladesh/27042/2015(H7 18(982/982
CY120628 wigeon/California/31802010(HsN)  2307(095/982) 635509.1 A/duck/Bangladesh/27042/2015(H7N9)  99.18(982/982)
. . . . MN483241. A/White-fronted Goose/South
KX867861.1  A/wild bird/Jiangxi/P419/2016(HI6NS)  99.16(864/838) ) Korea/KNU18.119/2018(E7N7) 99.64(855/838)
A/black-tailed MT821122. MH727484. A/wild goose/dongting
EP, NS1 4885.1 KY635798.1 .05(84 64
NEF, NS1 - MN584885 6357981 sdwit/Bangladesh/24734/2015(H7N5) 0 -00(B49/838) 1 1 lake/121/2018(FI6N2) 99-64(838/838)
KT266946.1 A/duck/Guangxi/113/2012(FH6N8) 99.28(864/838) MT0910541' A/duck/Bangladesh/38292/2019(H2N2)  99.52(852/838)
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Alduck/Mongolia/520/ Al/hooded crane/ Alwild Waterfowl/ Korea/
2015(H1N1) Korea/1176/2016(H1N1) F14-5/2016 (H6N1)

Al/duck/Hokkaido/
X9/2016(H8N4)

A/duck/Hokkaido/
W154/2017(H3N2)

Alcommon
teal/Shanghai/JDS1
20613/2018(H10N4)

Alwild goose/ dongting

lake/121/2018
AN (H6N2) /

Figure 1. Putative origins

North America
lineages

-> NA > o f X
- Alaquatic bird/South
- A/Mallard/Alaska/AH0029

\_066S.7.A/2016(H12N5) /

1
1/ Eurasian lineages ™\
QPP

i

i Korea/sw007/2015(H5N3;

Alduck/Vietnam/
LBM798/2014 (H3N6)

Almallard/Koreal . "

CL45/2017(H4NSG) . . Alwild bird/
Jiangxi/P419/2016(H6N8)
P 7
- v
—_- - ~ - -
NP, M, PB1, PB2, NS . PB2,PA, NP, NS
{ AlAnas falcata/
China/D257/2015
(H11N8)
s D v

Ry « Al/Anser fabalis/

\ China/Anhui/L144/2014
South Korea N (HENT)

of the genes comprising the KNU18-64 (A/Greater white-fronted goose/South Korea/KNU18-

64/2018(HIN1)) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1)) strains.

We carried out phylogenic analyses of the eight genes from both viral strains to assess
their genetic relationships with those of domestic poultry and wild birds in Korea and
neighboring countries using data from the NCBI and GISAID with selected sequence with
more than 99% and 90% of query cover and identity, respectively. The results revealed
that eight genes (PB2, PB1, PA, HA, NP, NA, M, and NS) in our HINI1 strains were dis-
tributed in East Asian lineages and a North American avian lineage. The phylogenetic
data revealed that the HIN1 influenza strains investigated in the present study are of
avian origin, and are phylogenetically distant from the HIN1 swine virus and the human-
infecting strain. This substantial divergence from the swine- and human-infecting strains
is demonstrated in Figure 2 by the sizable distance between the novel isolates (represented
by black branches) and the swine strain (yellow branches) and human-infecting strain
(purple branches).
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@® KNU18-64
B WKuU19-4
w— Avian host
Swine host
=== Human host

Sequence in green: Korea strain

@ KNU18-64
B WKu19-4
w——  Avian host

- & n
L=
Swine host

wee Human host
Sequence in green: Korea strain

MG770176 Alaquatic bird/South Korea/sw0052016 2016/11/07 4 (HA)
MG770168 Alaquatic bird/South Korea/sw008/2016 2016/11/07 4 (HA)
MG770160 Avaquatic bird/South Korea/sw004/2016 2016/11/07 4 (HA)
MG770152 AVaquatic bird/South Korea/sw003/2016 2016/11/07 4 (HA)
Awild brd/Korea/SK14/72014(HINT)HA

MG770144 Alaquatic bird/South Korea/sw0022016 2016/11/07 4 (HA)
Awild birdWuhan/WHHNS82014(HIN1T)HA

Awild bird/Wuhan/WHHN162014(HINT)HA
AAnseriformes/Anhu/L252014(HINT)HA

AAnserformes/AnhuL25972014(HINTHA
A2014HINHA

AlduckHokkaido/W9/2015(HIN1)HA
AlduckMongolia/15472015(HIN2)HA
18

B(HIN1)HA

@ A/Greater white-fronted g
Ahooded crane/Korea/1176/2016(HINTHA
AduckMongoka/520/2015(HINT)HA

Il AWild birdWKU2019-4/2019(H1N1)HA
Apintail Tawan/'WB2478/2017(HIN3HA
Alduck/Hokkaido/201/2014(HINT)HA
AAnserformes/AnhuVS61/2014(HIN2)HA
AAnserformes/AnhuiL167/2014(HIN1)

Algoose/Zhejiang/1120085/2014(HIN2)
AJduck/Hokkaido/327/2009(HIN3)HA
AlduckHokkaido/111/2009(HINS)HA

Aenvironment/Korea/UPO218/2008(H1NG)HA

Alpintail/Aomorny/1130/2008(HIN3)HA

I_ Awild duck/Korea/SH29/2008(HIN3)HA
Awild duck/Korea/SH1472006(HIN3)HA

= A/duck/Korea’U1472007(HIN3)HA

Alduck/KoreaU11/2007(HIN2)HA

= Avild duck/Korea/PJ25/2006(H1N3)HA

Aenvironment/Korea/CSM12/2007(H1IN2)HA

—i
0010

AMallard/Sweden/816/2014(H1N1)NA
- AlduckMoscow/4970/2013(HINTINA
2012(H1N1)NA

public of
Alruddy ownceaau?iwzoa(usu

Alrnusc semarmsusssfzo S(HEN1)NA
%wwzswzors(mmm

Nttxk/FwanlJFﬂfZOM(HlNl%A

Alwild waterfowl/Korea/M 129/2014(HEN1)NA

A -1922014(H5NI)NA

‘duc 4

Alcommon t 3&

Alcommon t eal/Nan;lNJ—ZﬂQO I»BNl)NA

Alcommon WNJ-280/201 1)NA
A/Anser fabalis/China/AnhuL221/2014(HEN1)NA
AAnser | AnhuiL256/2014(HEN1)NA

NG\KKWWIZOIS(HIN1M

A/duckHokkaido/201/2014(H1N1)

Ajaquatic bird/South Koreales;hggl F2015(H7N1)NA
1

AAnserifs 14(HINT)NA
Alwild bird/Korea/SK14/2014(HIN1)NA
Alwid 1

A
MG770154 Ajaquatic bird/South Korea/sw003/2016 2016/11/07 6 (NA)
MG770170 Aaquatic bird/South Korea/sw008/2016 2016/11/07 6 (NA)
MG770178 A/aquatic bird/South Korea/sw005/2016 2016/11/07 6 (NA)
MG770146 Alaquatic bird/South Korea/sw002/2016 2016/11/07 6 (NA)
144/2014(HEN1)NA

fabalis/Chinal,
A/Anseriformes/AnhuVS107/2014(HINT)NA
MG770162 Alaquatic bird/South Korea/sw004/2016 2016/11/07 6 (NA)
/Anseriformes/) 14(HIN1

A/Grey TealVictona/GT001/2017(HIN1)NA
Abean goose/Korea/F27-6/2017(H6N1)NA
Abean goose/Korea/F54-8/2017(H6N1)NA

Ahwild waterfov/Korea/F 14-5/2016(HEN1)NA
Alchicken/Zhejiang/1667/201 7;%N1

duck/Minois/160S1650/2016(HEN1)NA
Y ous-Winged G\llSO\lhc Nasﬁall7M803781120|7(N1)NA
k/Hokkaido/W9/2015(H
Anorthern WWAIaska/UGA" 782015(%1
15-6994/2015(HEN1
1
KY402067 Ahooded craNne Korea/1176/2016 2016/01/13 6 (NA)

1 NA
Id bird WKU2019-4/2019(H1N1)NA

Eaxwiwzm 7(H3N1)NA
Alduc 7203201 H7N3NA
golia/575/2018(H3N1

= = Alchic 1664/2017(HBNT)NA
Saraater white frontad goose/South KoreaKNU18-6412018(HIN1INA
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illwmxmwwzwmu(nsuamz
Alduck/HokkaidoW280/2014(HSN3)PB2
MGT770165 Aaquatic brd/South Korea'sw008/2016 2016/11/07 1 (PB2)
Awid brdKorea'SK142014(HIN1PB2
MG770173 Alaquatic brd/South Korea'sw0052016 2016/1107 1 (PB2)
MGT70157 Alaquatic brd’South Korea'sw00472016 2016/11/07 1 (PB2)
MGT770149 Alaquatic bird’South Korea'sw00/2016 2016/11/07 1 (PB2)
MG770141 Alaquatic brd/South Korea'sw0022016 2016/1107 1 (PB2)
AAnser fabaks/China/Anhul/L 972014(HEN2)PB2
AAnser fabaks/China/Anhu/L 144720 14(HEN1)PB2
AAnser fabaks/China/AnhulL 63°2014(HEN2)PB2
W Awild 82
AlduckHokkaido/5672017(H12N2)PB2
Alcommon tealShanghai/JDS 12061372018(H10N4)PB2
Alduck/Akita/510192017(HSN3)PB2
AlduckHokkaidoW 1652015(H11N6)PB2
AlduckHokkaido/162/2013(H2N1)PB2
AlduckHokkaido/152015(H3N8)PB2
AlduckHokkaido/1272015(H3N8)PB2
AlduckHokkaido/17/2015(H3N8)PB2
AlduckHokkaido/132015(H3N8)PB2

—
00050

Alduck/M 380/2019(H4N6)PB1
I @ A white-fronted g /South Korea/KNU18
Aaquatic bird/South Korea/sw007/2015(H5N3)PB1
Awild waterfowl/Korea/F 56-1/2017(HEN2)PB1
Abean goose/Hubei/SZY200/2016(H11N9)PB1
I A/duck/Cambodia/C8W6EM1/2018(H10N7)PB1

® A/duck/Cambodia/C70W14M/2018(H7NS)PB1
| E AlchickenTaiwan/A4/2019(H5N2)PB1
€ AlchickenTaiwan/A3/2019(HSN2)PB1

bd.

00050

— A/duck/Mongolia/154/2015(H1N2)PB1

Alduck/Mongolia/326/2015(H10N3)PB1
_[ Alduck/Mongolia/245/2015(H10N3)PB1
= A/duck/Mongolia/520/2015(H1N1)PB1

Alduck/Bangladesiv31227/2016(HEN2)PB1
Alshoveller duck/Shanghai/JDS1108-37/2017(H6N1)PB1

A/duck/Hokkaido/W154/2017(H3N2)PB1
A/duck/Hokkaido/W144/2017(H3N2)PB1
AJduck/Hokkaido/W105/2017(H5N2)PB1

-4 A/Whooper swans/Hokkaido/W3/2017(HSN2)PB1
A/Whooper swans/Hokkaido/W78/2017(H5N2)PB1
A/duck/Hokkaido/W103/2017(HSN2)PB1
A/Whooper swans/Hokkaido/W14/2017(HSN2)PB1

00020

18(HIN1)PB1

B A/wild bird/South Korea/WKU2019-4/2019(H1N1)PB1
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Aews takc st Chea D251 2015041 NP
" i

»e
Avser ok e A 14201401 1

AN tarn | BT 2014905 1

Agoosetrrer Mongoba i 19220140€N1 1

N 12000 I
" Anormem shoveler Horg KongiL 133201000001
10

Amusc oy dxkVetrami
Ak OIS
AR 12CL e

Ao
7 L Aok angune 20 pomare

e
R Mongoks 82201 JHONT NP
ASuckMongoka' 120201404 10N NP
MGT70161 Alaquatic brd'South Korea/sw0042016 1107 § (N9)
MGTT0177 Alaquatic brd'South Korea/sw0052016 07 § (NP)
MGT70153 Alaquatic brd'South Korea/swO0Y2016 07 5 (NP)
1107 5 (NP)

UGTT0145 Alaquatic brd South Korea/swi02/2016
Awiid birdKorea SK142014(HIN1)NP

Noquatic bedScuth Korea'sw001201 50N NP
Awid watertondKaoreaF 14.52016HGN1 NP
Awid bra Whan WHMNSE 201404 INT NP

Aaquatc bedSouth Karea/swOT 201 SHNI NP
Amatard Korea 219201 4N NP
Awid waterfomt Korea'F 718
Awaterdowt Korea S 3532016
Awhte frorted goose Korea 463201 T(HENINP
Awid watertowt Korea'F 61201 TN N

Awatertont Korea SO1 720 16HINT 2

Atean gooseKorea ¥ 548201 7(HEN1 NP

Atean gooseKorea® 27 L201 T(HENI 1P
" ASxkMongola 1227201 SGONIINP

Awid Socki Jange 19631 2000HTNT I
AN S 2 1OOW200WHINT 1P

NN
AprtatiKorea't 1 TV2000HINT P

A brd Korea/AD2/201 1 (H10N4 1
Awid bec/Korea k017201 1(H1CNNS
Amatard Korea'1 2002010041088 P

(HING P
IHINT NP

1TNONP

3 e
Awid watertowtHong Ko MPL 1006201 1 (HTNT P
0 | AswanHokkado 481107201 TSI
Aswan Hokkado' 4811027201 T(HENEINS
AswanHokkado 481103201 T(HEE NS

AGUC Moo XH 20
AprtalTawan WB24T8201 TOINI NP

MGT70169 Aaquatc brd’South Korea'sw00B2016 20161107 § (NP)

W Awild bird KoreaWKU2019-L201H(HINT NP
e

60-8N)
AMandarn Guck/South Korea WKNU18-122018041 IN9 N

— A'mallard Mongoka/15512010(H3N1)PA

MHS47049 1 AAnas fakcata/China/D257/2015(H11NS)PA
——
@ AGreater white-fronted

= ANelvet scoterMonQolaB883V/2009(HANG)PA
L 1(H3NS)PA

EAmcwmnm| 1(HINGPA

Aruddy shelduck/Mongoka/1787/2011(HINS)PA

B ——
0000
Alcommon /350 17(HSNG)PA
Al 9(HAN2)PA
] AwaterdowlKorea’S017/2016(HTNT)PA
Aduc 7(HAN2)PA

Awild goose/dongting lake/121/2018(HEN2)PA

L Alduck/Cambodia/14T-24-1.D1172018(N4)PA
Alduck/Cl 362/2017(HSN3)PA

AmallardKorea'CLA5/2017(HANS)PA
A 0 101834/2017(H11N2)PA
W Awild (HIN1)PA
AlchickenTaiwanA4/72019(HSN2)PA
Alchicken/TaiwanvA32019(HSN2)PA

Alcommon tealShanghai/NH1026152018(H12N2)PA
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[ ] r— AWid birdiJiangxi/P4192016(HENS)NS
H e MINS11815.1 Influenza A virus (Awid duck/South Korea/KNU 18-102/2018(HZNOINS
® white-fronted g »

Ablack-tailed godwitBangladesv247342015(HTNSINS
—| C MN988777.1 Influenza A virus (A/chicken/Taiwan/A3 20 19(HSN2INS
E) MN9I88785.1 Influenza A virus (A/chicken/Taiwan/A4720 19(HSN2)NS

e Alduck/Quang Ninh/1422013(H3NGINS
szmmm IN3NS
KX028843.1 Influenza A virus (A/duck/Zhepang/7270972013(H1 IN3INS

ABS07876.1 Influenza A virus (A/duck/VietnanVL BM30072012(H10N2)NS
IA_OJ&/JIJM7793QOIJ(M:&NS

KP416819 1 Influenza A virus (A/duck/ianga/22215/2013(HTN3INS
KP286957 1 Influenza A virus (A/duck/iangi/34846/2013(mixed)NS

KP416736.1 Influenza A virus (A/duck/Jiangxi/201892013(H7N3)NS

[S—

00020

W Awid J2019- (HINTNS
-L MH727484 1 Influenza A virus (Awild goose/dongting lake/121/2018(HEN2)NS
E MT090541.1 Influenza A virus (A/duck/Bangladesty38292/20 19(H2N2)NS
MT020234 1 Influenza A virus (A/duck/Mongolia/867/20 19(H3NSINS
Alduck/Bangladestv39729201X(HEN4INS
L Aduck/Bangladeshv363912018(HANGNS

Alduck/hangswSE02612018(HSNINS

» I MT020202 1 Influenza A virus (A/duck/Mongola/620 19(H7NT)NS
MT020162.1 Influenza A virus (A/duck/Mongola/ 120 19(H7N7)NS

MN207988 1 Influenza A virus (AtealEgyptMB.D-6980P2016(H7N3NS

c - MN208056.1 Influenza A virus (A/northern shoveler/EgyptMB-D-695C/2016(HTN3INS
MN208004.1 Influenza A virus (Anorthern shoveler/EgyptMB.-D-6900P2016(H7TN3)NS

. MN208041.1 Influenza A virus (A/northern shoveler/EgyptMB-D-690C/2016(HTN3INS
® «KnNU1s-64 ——— KY635444 1 Influenza A virus (AV/duck/Bangladesh2469472015(HTN1)NS
WKU19-4 e RONSOTExINONS
| — Alduck/Cambodia/12T-24-1. onrzow(mmms
w— Avian host § A AHIININS
Swine host — A« 38297/2019(H1 IN3INS
SOWSM
Human host Aduck/C o 12018(HTNAINS -
Sequence in green: Korea strain —A AHANOR
—t
00020

Figure 2. Phylogenetic trees based on the nucleotide sequences of HA (A), NA (B), PB2 (C), PB1 (D), NP (E), PA (F), MP
(G), and NS (H). The trees were generated by the neighbor-joining method using MEGA 6.0 software with bootstrap
replication (1000 bootstrap iterations). The KNU18-64 strain (A/Greater white-fronted goose/South Korea/KNU18-
64/2018(H1INT1)) is indicated by blue circles and the WKU19-4 strain (A/wild bird/South Korea/WKU19-4/2019(HIN1)) is
indicated by red boxes. The avian, swine, and human hosts are represented in black, orange, and purple, respectively. The
Korean strains are shown in green.
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In the present study, the HA genes of KNU18-64 and WKU19-4 were closely related
to those of avian HIN1 subtype isolates obtained from Mongolia in 2015, with identities
of 98.53% and 99.06%, respectively (Table 1). As with the HA gene, the WKU19-4 NA gene
most closely resembles that of the avian HIN1 subtype isolates obtained from Mongolia
in 2015, whereas the KNU18-64 NA gene most closely resembles the Korean H6N1 strain
obtained in 2016 (Figure 2A,B). The phylogenetic tree and the genomic highest identities
demonstrate that the PB1, PB2, NP, and MP genes of the WKU19-4 isolate may have been
introduced into Korea by Japanese strains with percentile identities of 98.86%, 99.56%,
99.2%, and 99.49%, respectively. However, the PA and NS genes of this isolate most
closely resemble those of the Chinese/Eurasian lineage. Except for the MP gene, which
closely resembles that of a North American lineage obtained in 2016, the KNU18-64 isolate
internal gene sequences (PB2, PB1, PA, NP, NS) resemble those of the Eurasian/Mongo-
lian/Chinese isolate (Figures 2C-G). This implies that the HIN1 virus detected in Mongo-
lia in 2015 subsequently migrated to Korea and that since 2016, there have been some
reassortments with Japanese and Eurasian strains to generate WKU19-4 and KNU18-64.

3.2. A/Greater White-Fronted Goose/South Korea/KNU18-64/2018(H1IN1) and A/Wild
Bird/South Korea/ WKU19-4/2019(H1N1) were Generated as a Result of Reassortment Events

After tracking each gene segment ancestor of two isolates KNU18-64 (HIN1) and
WKU19-4 (H1IN1) by a combination of the results obtained by the phylogenetic trees and
genomic homology, we developed a hypothesis for the ancestor of each gene segment as
shown in Figure 3. The ancestors of PB2 and NP gene of KNU18-64 isolate was identified
in 2014 in China and Vietnam, they may have been introduced into China-Mongolia by
migratory wild-bird during 2014-2015. In here, the reassorment may have happened with
the donor virus A/duck/Mongolia/520/2015 (HIN1) (MN520-H1N1) before the movement
of wild-bird to Korea during migration season 2016-2017. During this miratory season
into Korea, MN520-HIN1 virus may have donated HA and NA gene to A/hooded
crane/Korea/1176/2016(H1N1). The intercontinental migration of the wild bird from the
East Asian—Australian Flyway (EAAF) and the West Pacific Flyway may have been in-
volved in the transmission of the MP gene from Alaska strain into Korea in 2017-2018,
and KNU18-64 may have been generated during this period.

Meanwhile, WKU19-4 may have been generated later with the reasorment of viruses
from Japan-China with Korea strains during migration season 2018-2019.
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A/Mallard/Alaska/AH0029

A 066S.7.A/2016(H12N5)

A/Anser fabalis/ A/Anas falcata/ - "

China/AnhuilL144/2014 China/D257/2015 an 9;‘:'1"; I'z’gfé o

(H6N1) (H11N8) iangx (HGN8)
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S
- 2016-2017 2017-2018
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A/Greater white-fronted goose/South
Korea/KNU18-64/2018(H1N1)

A/duck/Vietnam/ A/duck/M lia/ Al ic bird/South :
bt ¥ Alwild waterfowl/Korea/ F14-
LBM798/2014 (H3NG) 52012015(HIN1)  Korealsw007/2015(H5N3) ‘512016 (H6N1)
Alcommon
B Almallard/Korea/CL teal/Shanghai/JDS12061
45/2017(HaNe) 3/2018(H10N4)
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Mongolia « Korea Japan — Korea China < Korea

Alwild bird/South Korea/WKU19-4/
2019(H1N1)

O . i
Alduck/Hokkaido/X9/2016(H8N4)  A/duck/Hokkaido/W1 Alwild goose/dongting
5412017(H3N2) lake/121/2018(H6N2)

Figure 3. Hypothesis for the ancestor of each gene segment evolution of KNU18-64 (A/Greater white-fronted goose/South
Korea/KNU18-64/2018(H1N1)) (A) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1)) (B) strains.

3.3. Molecular Characterization of the HIN1 Isolate

The amino acids in the HA protein (positions 94, 116, 121, 134, 139, 142, 221, and 222;
H5 numbering) represent adaptive mutations that enable the virus to bind preferentially
to a-2,6-linked sialic acid and enhance viral fusion [33-37].

All the isolates investigated in the present study are characterized as low pathogenic-
ity avian influenza viruses, harboring the amino acid sequence PSIQRS{GLF. In addition
to the HA cleavage site, the mutation sites for efficient binding to avian-like a-2,3-linked
sialic acid receptors and the NA stalk region non-deletion sites supported the low-patho-
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genicity of these isolates (Table 2) [38]. However, the NA from both of our isolates con-
tained isoleucine at positions 26 and 223, and asparagine at position 373, indicating in-
creased virulence in mammals [39-43].
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Table 2. Comparison between the hemagglutinin (HA) receptor-binding sites and neuraminidase (NA) of the two novel
avian HINT1 isolates and those of human, swine, and avian HIN1 isolates.

HA Receptor-Binding Residues (H5 Numbering) NA
Deleted
Virus Strain . D221G/ Range K/S37 G394
Cleavage Sites D/E94N I116M S121N A134V G139R S142G N Q222L from 50— M26I 1106V T2231 AN D
70
A/wild bird/South No dele-
Korea/WKU2019- PSIQRS! GLF ~ E I S A G s G Q ‘; fle I 1 I N G
4/2019(H1N1) ©
A/Greater white-
fronted goose/South No dele-
Korea/KNU18- PSIQRS! GLF E I S A G S G Q tion I I I N G
64/2018
A/wild bird/Ko- No dele-
rea/SK14/2014 » PSIQRS! GLF E I S A G S G Q tion I I I N G
A/duck/Mongo- No dele-
lia/520/2015 b PSIQRS! GLF E I S A G S G Q ton I I I N G
. . No dele-
A/California/04/2009 < PSIQRS! GLF D I S A G S D Q ton I \% I N G
A/swine/Shan- No dele-
PSIQRS! GLF E I A E I I
dong/1207/2016 SIQRSL G S G S Q tion v N G

2 The representative avian HINI1 strain that was isolated from the feces of migratory birds in the Republic of Korea during
the winter of 2014-2015 [44]. ® Mongolia strain with HA and NA sequences that most closely resemble the corresponding
sequences in the two isolates of the present study. < Human pandemic HIN1 isolate. ¢ HIN1 strain that originated in swine

[45].
The analysis data of the internal protein segment mutation sites are presented in Ta-
ble 3, which indicates that both KNU18-64 and WKU19-4 contain mammalian pathogenic-
ity-related mutations which are present in the HINT1 isolates in both swine and human.
In addition, both isolates have three distinct mutation sites at PB1-F2 and PA, impli-
cating that they might possess different virulence. For instance, asparagine at the amino
acid position 66 in the PB1-F2 of KNU18-64 is substituted with serine in that position of
WKU19-4, leading to increased virulence in mammal. Meanwhile, KNU18-64 isolate car-
ried unique mutation of PA at position 328, implicating the higher virulence of WKU19-4
over KNU18-64.
However, multiple unique mutations present in human- and swine HIN1 (PB2-
A5881/V, PB2-GQ590/591SR/K, PA- L336M, PA- F277S, PA- K356R, NP-R305K, NP-F313V,
NP-I353V, NP-Q357K, M1-V15I, M1-A166V, M2-S31N, M2-L55F, NEP/NS2-M311) were
not found in both isolates, supporting their still low pathogenic traits.
Table 3. Molecular characteristic of two novel isolate influenza A (H1H1) virus.
Viral Amino Acid W4 K64 SK14 M520 CA/04/0  SW/12 Comments Reference
Protein 9 07
Mammalian host adaptation, Hu-
E627K E E E E E E man host mﬁr?(er, Enhanced Poly- [46-51]
merase activity, Increased viru-
lence in mammals
T63I (with I I I I I Enhanced polymerase activity, In- [51]
PB1 M677T) creased virulence in mice
L8OV v v v Enhanced polymerase .actlv.lty, In- [52]
PB2 creased virulence in mice
K251R R R R R R R Increased virulence in mice [41]
T271A T T T T A A Human host marker (bohst-speaﬁc (53]
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resistance to the adamantane anti-
M2 S31IN S S S S N N virals and are sensitive to oselta- [53]
L55F L L L L F F mivir and zanamivir [85]
Enhanced Transmission
Increased virulence in mammals,
A/P42 !
/P25 5 5 5 5 Antagonism of IFNinduction [86]
D74N D D D D S S Increased virulence in mammals [87]
T/D/z\;ﬁ/Al N N N N N Increased virulence in mammals [86]
NS1 V149A A A A A A A Pathogematy in mice, Antago- [88]
nism of IFN induction
N/G205R/K
(with Decreased IFN antagonism, Con-
NEP/NS2 S S S S N K ferred enhanced in-contact trans- [62]
Mb511, T48N; missibility in guinea pigs
PB2 A469T)
NEP/ . .
NS2 M311 M M M M M I Increased virulence in mammals [86]

*H3 numbering. W4: A/wild bird/South Korea/WKU2019-4/2019(H1N1); K64: A/Greater white-fronted goose/South Ko-
rea/KNU2018-64/2018; SK14: A/wild bird/Korea/SK14/2014; M520: A/duck/Mongolia/520/2015; CA/04/09: A/Califor-
nia/04/2009 infected-human isolate; SW/1207: A/swine/Shandong/1207/2016 Swine infected isolate; (-) Isolate that do not
have PB1-F2, PA-X; (*) new mutation site; Sequence in Bold: mutation that only presented in the mammalian isolates;
sequence in Underline: mutation that differs between isolates K64 and W4.

3.4. Replication of HIN1 in Mammalian Cells

Because the genetic information implied that the two new reassortments of HIN1
would increase replication efficiency, the viral replication of these two isolates was tested
in vitro. To evaluate the growth kinetics of the two isolates, a human-origin virus A/Cali-
fornia/04/2009(H1N1), which infects other mammals was used as a control. The control
HINT strain replicated more efficiently in MDCK cells than KNU18-64 (A/Greater white-
fronted goose/South Korea/KNU18-64/2018(HIN1)) or WKU19-4 (A/wild bird/South Ko-
rea/WKU19-4/2019(H1N1)) (Figure 4). There is a dramatic increase in the viral titer after
12h post-inoculation of WKU19-4 to 4.5 logio (TCIDso/mL), whereas KNU18-64 has similar
pattern with A/California/04/09. This result may be explained by the molecular character-
istic, the mutations in WKU19-4(H1N1) at amino acid position 66, in which asparagine is
substituted with serine in the PB1-F2 protein, and a new substitution at position 321 of the
PA segment, in which asparagine is substituted with isoleucine, indicate increasing viru-
lence in mammals and increasing polymerase activity.

Virus growth kinetic in MDCK cell

- —~ CA/04/09(pdm09)

ok % % %k % % % %k * Kk

Tt -e- KNU18-64
- WKU19-4

Virus titer (Log10 TCIDso/mL)

Hour post-infection (hpi)

Figure 4. In vitro growth properties of KNU18-64 (A/Greater white-fronted goose/South Ko-
rea/KNU18-64/2018(H1IN1)) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1IN1)) in
Madin-Darby canine kidney (MDCK) cells. Virus titers were determined by the 50% tissue culture



Viruses 2021, 13, 30

Body weight (%)

KNU18-64
- 10* EID,
* 10° EIDgy
- 10° EIDg,
04
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Day post-infection (day)
10° EIDy/mouse
i
-+~ CA/04/09(pdm09)
- KNU18-64
- WKU19-4

204
10

Body weight (%)
g

infectious dose (TCIDso) assay. The cell monolayers were infected with the viruses at a multiplicity
of infection (MOI) rate of 0.01, and incubated for 72 h. Every 12 h, the virus titers were determined
by a TCIDso assay, and an enzyme-linked immunosorbent assay (ELISA) was performed with anti-
influenza nucleoprotein to detect infected cells. The virus titers are the means + standard devia-

tions (SD) (n=3).

3.5. Pathogenicity in Mice

As previously described, the mouse model is widely used to determine the patho-
genic potential of the influenza virus in mammals [89]. To assess the pathogenic potential
of the new isolate in mammals, multiple concentrations of the virus (from 10* to 10¢
EIDso/mouse) were used to determine the virulence of each new HINT1 isolate in the mice.
After intranasal inoculation with these virus titers, changes in the body weights and sur-
vival rates of the 6-week-old female BALB/c mice were monitored for 15 dpi (Figure 5A,B).
As shown in Figures 5A,B, the body weights of the mice did not decrease in either of the
KNU18-64- or WKU19-4 infected groups. The infected mice displayed no severe clinical
signs, such as ruffled fur, depression, or labored breathing, and each mouse was still alive

at 15 dpi (data not shown).
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Figure 5. Pathogenicity of the two HINT1 isolates in vivo. For each isolate, BALB/c mice were intranasally infected with
different EIDso concentrations of the virus (104 105, and 10° EIDso/mouse). Changes to the weights of the mice are shown
for KNU18-64 (A) and WKU18-4 (B), and the survival rates were noted. The BALB/c mice were intranasally challenged
with 10° EIDso of each virus, and a HIN1 (2009) strain isolated from humans (CA/04/09(pdm09)) was used as a control
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virus. Weights of the mice (C); virus titers in the lung (D); survival rates (E); mean of lung weights (F) (1 = 3); Body weights
are presented as percentages of the original weight (1 =5).

Normal

CA/04/09
(pdm09)

KNU18-64

WKU19-4

To determine the virulence of the new H1IN1 isolates in mammalian host, presence
of each virus was detected in the lung of mice. Of all the mice infected with the control
CA/04/09(pdm09) (H1N1), or challenged with KNU18-64 or WKU19-4, there was only sig-
nificant weight loss in the control group CA/04/09 (Figure 5C), two mice died at 7 dpi in
the control group (Figure 5E). In contrast, all the mice in the KNU18-64- and WKU19-4-
infected groups had decreased slightly in weight by 3 dpi (e.g., the mice in the WKU19-4
group retained 98.97% of their body weight), but they quickly recovered and all the mice
survived for at least 15 days.

Viral load shedding in the lungs of the mice at 3, 6, and 15 dpi was determined by
TCIDso assays, and the results are presented in Figure 5D and Figure S3. As shown, the
mice in the control group CA/04/09 had significantly higher virus titers in their lungs than
the mice in the KNU18-64 or WKU19-4 groups at 3 dpi (4.33 + 0.31; 2.71 + 0.16; 0 loguo
(TCIDso/mL), respectively) and at 6 dpi (4.5 +0.17; 3.71 +0.25; 2.75 + 0.51 logo(TCIDso/mL),
respectively), and no viruses were detected at 15 dpi in any of the groups. The raw data
of the TCIDso assay are provided in Figure S2.

It is worth noting that there were no significant changes in body weight, despite the
mutation characteristics of the new isolates. Therefore, we carried out histopathological
examinations of the lungs of the mice in each group. The H&E-stained sections of the
KNU18-64-, WKU19-4-, and CA/04/09(pdm09) HIN1-infected lungs revealed that neutro-
phils had penetrated the alveolar air spaces at 3 and 6 dpi (Figure 6). The KNU18-64- and
WKU19-4-infected lungs exhibited cellular accumulation compared to the lungs of the
normal mice at 6 dpi. Furthermore, the lungs of the KNU18-64- and WKU19-4-infected
mice increased significantly in weight compared to those of the normal mice at 3 dpi (Fig-
ure 5F) although it becomes non-significant at 6 and 15 dpi as presented data in Figure S4.
The real lung morphology of this experiment is presented in the Figure S5.
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Figure 6. Histology of lung inflammation determined by hematoxylin and eosin (H&E) staining. For each isolate, BALB/c
mice were intranasal infected with EIDso concentrations of the virus at 105 EIDso/mouse. The uninfected control (normal);
CA/04/09(pdm09) (HIN1)-, KNU18-64 (HIN1)-, and WKU19-4 (HIN1)-infected mouse lungs were collected and stained
with hematoxylin and eosin (H&E) at 3, 6, and 15 days post-infection (dpi) (scale bar, 100 um; original magnification x

100).

4. Discussion

As a precaution, the prevalence of a newly emergent strain should be reported early,
and broad surveillance of the HIN1 strain is a requirement. In the present study, we ana-
lyzed the molecular characteristics and virulence of two new H1IN1 influenza virus strains
of avian origin, which were isolated from the feces of migrating wild birds in Korea during
the winter of 2018-2019.

Recently, an avian-origin HIN1 strain (A/SK14/2014) was reported in Korea. Com-
pared to this isolate, the HA gene from both of our current isolates (KNU18-64 and
WKU19-4) are closely related to a Mongolian strain (H1N1-2015) of avian origin (Figure
2A). Meanwhile, the HA gene from the previously reported strain is closer to a Chinese
H1N4 virus of avian origin [44].

Phylogenetic data analysis revealed that the NA gene segment of the WKU19-4 iso-
late closely resembles that of a Bangladesh strain from 2017, whereas KNU18-64 closely
resembles the Korea avian influenza virus H6N1 from 2017 [90].

According to the phylogenetic tree of the NA gene, the American avian influenza
virus H6N1 strains from 2015 appears to be closest to that of KNU18-64 strain. Interest-
ingly, MP gene of KNU18-64 is closest to those in the Alaskan—-American strains, indicat-
ing that the KNU18-64 isolate is related to the Alaskan-American influenza A viruses of
avian origin, as previously reported [28,91].

Analysis of the TCID50, plaque assay, and/or results of quantitative reverse-tran-
scription PCR with mathematical modeling is a powerful approach to the detailed char-
acterization of viral replication in vitro [22,28]. In the present study, the new isolates ex-
hibited different degrees of virulence, which can be explained by their molecular mutation
characteristics, as demonstrated by the kinetic growth dynamics of each virus shown. The
WKU19-64 virus appeared to replicate rapidly in the mammalian MDCK cells, and its
replication decreased dramatically and stabilized after 1 dpi. In contrast, the KNU18-64
isolate exhibited dynamic kinetic growth similar to that of the positive control infected
with the human-origin HIN1 (the CA/04/09 group). This may have been because the
WKU19-4 isolate also contains a new substitution of asparagine for isoleucine at position
321 of the PA segment, which may be related to the increase in polymerase activity that
caused the virus to replicate dramatically at 12 hpi.

As shown in Figure 6, both of the new isolates exhibited moderate pathogenicity in
mice, with significantly lower virus titers in the lung after 3 and 6 dpi compared to the
control, which was infected with human-origin HIN1 (the CA/04/09(pdm09) group). In
the case of WKU19-4, the virus was only observed at 6 dpi, with the lowest titer of 2.75 +
0.51 log1o (TCIDso/mL). The KNU18-64 isolate appeared more pathogenic in mice; the ki-
netic virus titers were significantly higher than in WKU19-4 at both 3 and 6 dpi (2.71
0.16 logio (TCIDso/mL) and 3.71 + 0.25 logo (TCIDso/mL)], respectively. This result appears
to corroborate the results of the molecular characterization section; the KNU18-64 isolate
carries two individual mutations in the PA protein (phenylalanine is substituted with ser-
ine at position 227, and lysine is substituted with arginine at position 328), which lead to
increased virulence in and the adaptation to mammals.

The present study suggests that the two HIN1 AIV isolates found in Korean both in
the same season generated by reassortment events occurred following the co-circulation
of Eurasian as well as Alaskan strains. Therefore, intensive surveillance of low pathogenic
AlVs in wild migratory birds is an important tool to detect major AIVs which could
threaten human health in Korea.
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