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Abstract: Equine herpesvirus type 1 (EHV-1) causes encephalomyelopathy and abortion, for which
cell-associated viremia and subsequent virus transfer to and replication in endothelial cells (EC)
are responsible and prerequisites. Viral and cellular molecules responsible for efficient cell-to-cell
spread of EHV-1 between peripheral blood mononuclear cells (PBMC) and EC remain unclear.
We have generated EHV-1 mutants lacking ORF1, ORF2, and ORF17 genes, either individually
or in combination. Mutant viruses were analyzed for their replication properties in cultured
equine dermal cells, PBMC infection efficiency, virus-induced changes in the PBMC proteome,
and cytokine and chemokine expression profiles. ORF1, ORF2, and ORF17 are not essential for
virus replication, but ORF17 deletion resulted in a significant reduction in plaque size. Deletion of
ORF2 and ORF17 gene significantly reduced cell-to-cell virus transfer from virus-infected PBMC to
EC. EHV-1 infection of PBMC resulted in upregulation of several pathways such as Ras signaling,
oxidative phosphorylation, platelet activation and leukocyte transendothelial migration. In contrast,
chemokine signaling, RNA degradation and apoptotic pathways were downregulated. Deletion of
ORF1, ORF2 and ORF17 modulated chemokine signaling and MAPK pathways in infected PBMC,
which may explain the impairment of virus spread between PBMC and EC. The proteomic results
were further confirmed by chemokine assays, which showed that virus infection dramatically reduced
the cytokine/chemokine release in infected PBMC. This study uncovers cellular proteins and pathways
influenced by EHV-1 after PBMC infection and provide an important resource for EHV-1 pathogenesis.
EHV-1-immunomodulatory genes could be potential targets for the development of live attenuated
vaccines or therapeutics against virus infection.
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1. Introduction

Alphaherpesviruses are ubiquitous pathogens affecting human and animal populations [1–4].
Herpesviruses have evolved an intricate relationship with their hosts [5,6]. Although host immunity
is generally successful in controlling infections and minimizing pathogenicity, herpesviruses are
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successful pathogens and a constant nuisance [7,8]. Herpesviruses employ an array of strategies
to evade host immune responses and devote a large number of their genes to block the immune
response at multiple levels [9,10]. Gene products of herpesviruses are known to subvert several cellular
pathways by virtue of their interaction with host proteins [6,11,12].

Equine herpesvirus type 1 (EHV-1) and type 4 (EHV-4) belong to the genus Varicellovirus
in the subfamily Alphaherpesvirinae and are important pathogens that infect horses [13,14].
EHV-1 predominantly causes upper respiratory tract infection [15]. Following infection and initial
replication in the respiratory epithelium, EHV-1 infects mononuclear cells, enters the systemic
circulation, and results in cell-associated viremia [16,17]. By virtue of infected peripheral blood
mononuclear cells (PBMC), EHV-1 spreads throughout the body [18]. Virus transfer from infected
PBMC to endothelial cells (EC) in the gravid uterus and central nervous system, followed by
replication in EC, is responsible for the disease outcomes: abortion and neurological disorders,
primarily myeloencephalopathy [19–21]. Although cell-associated viremia has been reported for other
alphaherpesviruses, including pseudorabies (PrV) and varicella zoster virus (VZV), EHV-1 can spread
through transient interactions between PBMC and EC without being neutralized by antibodies through
a mechanism that requires the coordination of several host and viral proteins [22–27].

The viral and host factors responsible for cell-to-cell spread have not yet been fully identified for
EHV-1. It was postulated that EC infection is established upon close contact of infected PBMC with EC
upon which cell-to-cell virus transfer can take place [28,29]. Factors favoring adhesion of the two cell
types and establishing cell-to-cell contact are essential for viral spread [30,31]. In previous studies,
we have discovered the essential role of glycoprotein B (gB) and the unique-short region 3 (US3) protein
kinase in virus transfer between PBMC and EC [32]. gB facilitates the cell-to-cell spread of EHV-1 by
promoting membrane fusion between two adjacent cells [33–35], while the unique-short protein kinase
pUS3 modulates the actin cytoskeleton and is implicated in adhesion molecule expression [36,37].

We have also identified two immunomodulatory proteins encoded by open reading frame 1 (ORF1)
and ORF17, which are the homologs of the unique-long region 56 (UL56) and UL43 of human herpes
simplex virus 1 (HSV-1), respectively [38,39]. The ORF1 and ORF17 gene products co-operate to cause
major histocompatibility complex I (MHC) down-regulation on the surface of infected PBMC [9,40,41].
Similar mechanisms have been reported for other herpesviruses [42–46]. The ORF1 and ORF17 proteins
are Golgi-associated transmembrane (TM) proteins that are expressed early during infection, co-localize
with each other, and interfere with MHC-I presentation on the cell surface [9]. The ORF2 gene product is
considered a virulence factor for EHV-1 [47]. Previous in vivo studies have revealed the involvement of
ORF1 and ORF2 in modulating cytokine and chemokine responses in infected horses and subsequently
minimizing the course of the disease [48–50].

Based on the published literature, we hypothesized that the three-immunomodulatory viral proteins
encoded by ORF1, ORF2, and ORF17 might play a role in the infection cycle of EHV-1; particularly,
virus transfer between PBMC and EC, which is an important step in virus pathogenesis. Identifying viral
proteins involved in cell-to-cell virus-spread and determining the underlying mechanisms may provide a
potential starting point to develop efficient therapeutics against EHV-1 infection. Therefore, we explored
the role of these viral proteins in virus transfer between PBMC and EC and in modulating host cellular
pathways. Our most salient findings are that (i) ORF1, ORF2, and ORF17 are dispensable for virus
replication in equine epithelial cells; (ii) the ORF2 and ORF17, but not ORF1, gene products play essential
roles in PBMC-EC spread; (iii) the ORF1, ORF2, and ORF17 gene products modulate mitogen-activated
protein kinase (MAPK) and cytokine and chemokine signaling pathways.

2. Materials and Methods

2.1. Cells and Viruses

Equine dermal (ED) cells (CCLV-RIE 1222, Federal Research Institute for Animal Health, Greifswald,
Germany) were propagated in Iscove’s modified Dulbecco’s medium (IMDM; PanTM, Biotech,
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Aidenbach, Germany), supplemented with 20% fetal bovine serum (FBS; BiochomTM GmBH, Berlin,
Germany), 1 mM sodium pyruvate (PanTM Biotech, Aidenbach, Germany), 1% nonessential amino
acids (NEAA; BiochomTM GmBH, Berlin, Germany), and P-S solution (100 U/mL penicillin: PanreacTM,
AppliChem GmBH, Darmstadt, Germany; 100 µg/mL streptomycin: Alfa AesarTM, Thermo Fisher
Scientific, Kandel, Germany (P-S). Equine EC, isolated from the common carotid artery as described
previously [51], and human embryonic kidney cells (293T) were propagated in Dulbecco’s modified
Eagle’s medium (DMEM; BiochomTM GmBH, Berlin, Germany), supplemented with 10% FBS and P-S.
Equine PBMC were isolated from heparinized blood collected from healthy, EHV-1- and EHV-4-negative
horses using Biocoll® (BiochomTM GmBH, Berlin, Germany) as described before [32]. Blood collection
was performed according to the rules of Institutional Animal Care and Committee of Berlin (Landesamt
für Gesundheit und Sociales, L 0294/13). Separated PBMC were washed in phosphate buffered saline
(PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 1.8 mM KH2PO4), re-suspended in RPMI-1640
medium (PanTM Biotech, Aidenbach, Germany) supplemented with 10% FBS, 2 mM L-glutamine
(PanTM Biotech, Aidenbach, Germany), and 1% P-S.

Mutant viruses were derived from EHV-1 strain Ab4 [52] cloned as an infectious bacterial
artificial chromosome (BAC; pAb4). pAb4 contains a mini-F cassette in which the enhanced green
fluorescent protein (EGFP) gene is driven by the human cytomegalovirus immediate early promoter [53].
Viruses were reconstituted by transfection of BAC DNA into 293T cells with polyethylenimine
(PolysciencesTM, GmBH, Hirschberg, Germany) [33]. Reconstituted viruses were propagated and
titrated in ED cells.

2.2. Engineering of EHV-1 BAC Mutants and Revertants

pAb4 was maintained in Escherichia coli GS1783 cells and grown in Luria-Bertani broth (RothTM,
Karlsruhe, Germany) supplemented with 30 µg/mL chloramphenicol [40,53]. Two-step Red-mediated
recombination (en passant) was used for genetic manipulation of the EHV-1 genome to create mutant
viruses [54]. Primers used for the generation of the mutant viruses are given in Table 1. Briefly, to create
deletions of ORF1 and ORF2, a fragment flanked by homologous arms for the desired target regions
was PCR amplified by using a kanamycin resistance (kanr) gene present in plasmid pEP-Kan-S2 [55].
Electrocompetent GS1783 cells were electroporated with the purified PCR product and incubated
at 32 ◦C for 48 hours (h). DNA from kanamycin-resistant bacterial colonies were screened by
restriction fragment length polymorphism (RFLP) analysis and compared with the restriction digestion
pattern of the parental viral BAC DNA [56,57]. Selected intermediate clones were subjected to the
second step of Red-mediated recombination to induce removal of the kanr gene from the BAC after
adding 1% L( + )-arabinose (RothTM, Karlsruhe, Germany). Final clones with gene deletions were
confirmed by RFLP analysis and specific gene sequencing of the mutation site (LGC®sequencing
service, Berlin, Germany). For virus reconstitution, 2 µg BAC DNA were transfected into 293T
cells and the reconstituted viruses were subsequently propagated in ED cells. For multiple gene
deletions from the same virus, each gene was deleted successively in the BAC before final virus
reconstitution. The single gene deleted mutant lacking ORF 1 and ORF17 was previously generated
and characterized [9,58]. Revertant viruses for the deletion mutants were constructed as described
previously [59]. For construction of revertant cassettes, plasmids encoding the target gene with kanr

gene were constructed. Briefly, target genes were PCR amplified using primers P11-P12 and P21-P22
for ORF1 and ORF2, respectively. The PCR products were digested with appropriate restriction
enzymes (RE) and inserted into pcDNA3 vector (InvitrogenTM, Karlsruhe, Germany) resulting in
pcDNA3_ORF1 and pcDNA3_ORF2 recombinant plasmids. For construction of pcDNA3_ORF1_kanr

and pcDNA3_ORF2_kanr, the kanr gene was PCR amplified from pEP-kan-S2 plasmid with P13-P14
and P23-P24 primers, respectively. The resulting PCR products were digested with appropriate
restriction enzymes and inserted into pcDNA3_ORF1 and pcDNA3_ORF2. Correct insertion was
confirmed by nucleotide sequencing. ORF17 revertant BAC was constructed by PCR amplification of
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kanr genes with ORF17 homologous arm sequences using primers (P5 and P6). The resulting PCR
product was used for a two-step Red-mediated recombination as described above.

Table 1. List of primers used for construction of mutant and revertant equine herpesvirus type 1
(EHV-1).

Primer Primer Name Nucleotide Sequence

P1 ORF17 STOP Fwd caaaggttggcttgctacatcaaggttatcaatcatgatgtaacagccagatagagagcccggtagggataacagggtaatcgat
P2 ORF17 STOP Rev gcaccagacacgagtcttcaccgggctctctatctggctgttacatcatgattgataaccttgccagtgttacaaccaattaacc
P3 ORF17 pre For seq ctttatgtgaattcaccgac
P4 ORF17 post Rev seq gttttatgactaatacctgg
P5 ORF17 Revertant Fwd caaaggttggcttgctacatcaaggttatcaatcatgatgtaccagccagatagagagcccggtagggataacagggtaatcgat
P6 ORF17 Revertant Rev gcaccagacacgagtcttcaccgggctctctatctggctggtacatcatgattgataaccttgccagtgttacaaccaattaacc
P7 ORF1 deletion Fwd tccacctgcaccttttccatctcctctccaactcgccgccaacgactgtagtaccgcaaaaggatgacgacgataagtaggg
P8 ORF1 deletion Rev aaaaataaatgcgattaacctttgcggtactacagtcgttggcggcgagttggagaggagcaaccaattaaccaattctgattag
P9 ORF1 pre Fwd seq ggctcctcccttttggctctgg
P10 ORF1 post Rev seq tctggtgctgatcggaatagtgta
P11 ORF1 BamH Fwd attggatccatgagacccgagggagtttc
P12 ORF1 EcoRI Rev cacgaattcttatttctccttcttgccgt
P13 ORF1 kana Fwd atttagccttccgctcctgtctgcttacactttacacttttctgctcgtcatgagacccgagggagtttc
P14 ORF1 kana Rev aggggtgtttgtgaaaataaacataatacaactgtgttgaaccacttgttttatttctccttcttgccgt
P15 ORF1 Revertant Fwd ttccactttctccacctgcaccttttccatctcctctccaactcgccgccatgagacccgagggagtttc
P16 ORF1 Revertant Rev gagtgcatgtaaaaataaatgcgattaacctttgcggtactacagtcgttttatttctccttcttgccgt
P17 ORF2 deletion For aaaacgactgtagtaccgcaaaggttaatcgcatttatttgcttaaacactttggagcgaaggatgacgacgataagtaggg
P18 ORF2 deletion Rev cgcccccataccccgccccctcgctccaaagtgtttaagcaaataaatgcgattaaccttcaaccaattaaccaattctgattag
P19 ORF2 pre Fwd seq taacaaacggcaagaaggag
P20 ORF2 post Rev seq taacgctgtagattgagttt
P21 ORF2 EcoRI Fwd aattagaattcttacatgcactcctttccaa
P22 ORF2 Xba Rev atatatctagaatggatccagcgtggaggag
P23 ORF2 Kan Fwd cgcggggcggccgcactaccatcggaagtttaccaggatgacgacgataagtaggg
P24 ORF2 Kan Rev ggtagtgcggccgccccgcggtgatttctagtaacaaccaattaaccaattctgattag
P25 ORF2 Revertant Fwd aaggagaaataaaacgactgtagtaccgcaaaggttaatcgcatttatttttacatgcactcctttccaa
P26 ORF2 Revertant Rev ttcaggcatacgcccccataccccgccccctcgctccaaagtgtttaagcatggatccagcgtggaggag

2.3. Growth Kinetics and Plaque Size Assay

The influence of ORF1, ORF2, and ORF17 gene deletions on virus replication was evaluated by
one-step growth kinetics. EC or ED cells were infected with Ab4 wild-type (Ab4-wt) or mutant viruses
(Ab4∆ORF17, Ab4∆ORF1, Ab4∆ORF2, Ab4∆ORF17/ORF2, Ab4∆ORF1/ORF2, Ab4∆ORF1/ORF17,
and Ab4∆ORF1/ORF2/ORF17) at a multiplicity of infection (MOI) of 0.1. Virus-infected cells were
incubated at 4 ◦C for 1 h to allow virus attachment and then at 37 ◦C for 1 h to permit virus entry.
After incubation, cells were treated with citrate buffer (40 mM citric acid, 10 mM HCl, and 135 mM
NaCl; pH 3.0) for 30 s to inactivate cell-free viruses, and then washed twice with IMDM medium
and PBS. Fresh medium was added and cells were incubated at 37 ◦C under a 5% CO2 atmosphere.
Supernatant and cell pellet were collected separately at 0, 6, 12, 24, 48, and 72 h post-infection (hpi) to
determine cell-free and cell-associated viral titers. Collected samples were titrated on confluent ED
cells, overlaid with 1.5% (w/v) methylcellulose (Sigma-AldrichTM, Taufkirchen, Germany) in EMEM,
and ultimately fixed with 4% paraformaldehyde in PBS at 72 hpi. Fixed cells were stained with 0.1%
(w/v) crystal violet solution in PBS, plaques were counted, and results were expressed as plaque-forming
units (PFU) per milliliter (mL). Data are presented from three independent and blinded experiments.
To determine cell-to-cell spread, plaques induced by Ab4-wt and mutant viruses were measured at
48 hpi on ED cells. Virus plaques were imaged using a Zeiss Axiovert.A1 fluorescent microscope,
equipped with an Axiocam 503 camera (Carl Zeiss AG, Jena, Germany). In total, 150 plaque images
were processed for each virus and actual plaque diameters were measured using ImageJ® software
(National Institute of Health, Bethesda, MD, USA).

2.4. Co-Cultivation Assay

To evaluate EHV-1 transfer from infected PBMC to EC, a co-cultivation assay was performed
as described previously [32,60]. EC were grown to confluency on collagen IV-coated 24-well plates
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(BioCoatTM, Glendale, AZ, USA). PBMC were infected with either Ab4-wt or mutant viruses at MOI
of 0.1 for 24 h. Virus-infected PBMC were sorted for EGFP expression by fluorescent-activated cell
sorting (FACS) using FACSAria (BD BioscienceTM, Heidelberg, Germany) (Supplementary Figure S1).
Sorted PBMC (2 × 104) were treated with citrate buffer as described above and overlaid on an EC
monolayer in the presence of EHV-1 neutralizing antibodies (final EHV-1 antibody titer of 1:2048) for
2 h (“contact”). Alternatively, infected PBMC were placed into a 24-well transwell TC-Inserts (0.4 µm
pore size; SarstedtTM, Nümbrecht, Germany) in the presence of EHV-1-neutralizing antibodies without
direct contact with EC (“no contact”). The “no contact” controls were used to assess the efficiency
of citrate buffer treatment (inactivation of cell-free virus) and EHV-1- neutralizing antibodies and
to ensure that there was no infection with free viruses. After incubation, PBMC were washed with
PBS, and EC were overlaid with 1.5% methylcellulose medium. The plates were incubated for 24 h
and EGFP-positive plaques on the EC monolayer were counted using an inverted Zeiss Axio Vert.A1
fluorescent microscope. The co-cultivation assay was performed with Ab4-wt and mutant viruses.
The number of virus plaques produced by Ab4-wt infected PBMC was compared with mutant viruses.
Results were interpreted from three independent blinded replicates.

2.5. Flow Chamber Assay

The flow chamber assay was performed to evaluate virus transfer from infected PBMC to the EC
under dynamic “flow” conditions as described earlier [32]. EC were grown to confluency in collagen
IV-coated flow chamber µ-slides (Ibidi® GmBH, Gräfelfing, Germany). PBMC were infected with
either Ab4-wt or mutant viruses at an MOI of 0.1 for 24 h. Virus-infected PBMC were FACS-sorted as
described above. Sorted PBMC (2 × 104) were treated with citrate buffer and re-suspended in DMEM
containing EHV-1- neutralizing antibodies. EC containing flow chamber slides were connected to
a perfusion system (Multi-Syringe Pump, World precision instruments, Friedberg, Germany) and
PBMC were allowed to flow over the EC at the physiological flow rate for mammalians (0.5 mm/s) at
37 ◦C [61]. PBMC-containing medium, flowing though the chamber slide, was collected as waste on
the other side. Following PBMC flow, EC were washed and incubated for 24 h to allow virus transfer
and the development of viral plaques. EGFP-positive plaques on the EC monolayer were counted
(Zeiss Axio Vert.A1). The “no contact” setup was always included for each experiment. The number of
plaques counted for Ab4-wt and mutant viruses were compared to evaluate the efficiency of virus
transfer between PBMC and EC under flow conditions. The experiment was performed independently
in a blinded fashion three times.

2.6. Infection of Equine PBMC Subpopulations

To determine which PBMC subpopulation (i.e., T lymphocytes, B lymphocytes, or monocytes) is
responsible for virus transfer to EC, each subpopulation was sorted, and virus spread was assessed by
the flow chamber assay. Briefly, PBMC were labeled with (1:200 diluted) primary mouse monoclonal
antibodies against equine CD3 (T lymphocyte), IgM (B lymphocyte) and CD14 (monocyte). Antibodies
were kindly provided by Dr. Bettina Wagner, Cornell University, Ithaca, NY, USA. Stained PBMC
were labeled with secondary Alexa Fluor 488-conjugated goat anti-mouse IgG antibody (InvitrogenTM,
Karlsruhe, Germany) and sorted. Sorted populations (T-, B-lymphocytes, monocytes; 2 × 104) were
infected with Ab4-wt or mutant viruses at an MOI of 0.1 for 24 h at 37 ◦C. After incubation, cells were
treated with citrate buffer, resuspended in medium containing EHV-1-neutralizing antibodies, and the
flow chamber experiment was performed as described above. Virus transfer between each PBMC
subpopulation and EC was evaluated by counting the number of viral plaques at 24 hpi and compared
between Ab4-wt and mutant viruses. The experiment was performed independently in a blinded
fashion three times.
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2.7. Equine Epithelial Cell-PBMC Contact Assay

The equine epithelial cell-PBMC contact assay was performed to assess virus transfer from epithelial
cells to PBMC, and subsequently from PBMC to EC as described previously with modifications [62].
Briefly, ED cells were seeded into a 3-µm pore size 24-well transwell insert (SarstedtTM, Nümbrecht,
Germany) and incubated at 37 ◦C for 24 h. The cells were inoculated with Ab4-wt or mutant viruses
at an MOI of 0.1 and incubated for 1 h. Infected cells were washed twice, treated with citrate buffer,
and supplemented with growth medium containing EHV-1-neutralizing antibodies. The transwell
insert was inverted, and 1 × 105 PBMC resuspended in medium containing virus-neutralizing
antibodies were added and incubated at 37 ◦C for 24 h. The virus transfer from epithelial cells to
PBMC in the presence of neutralizing antibody was assessed by counting the number of EGFP-positive
(EHV-1-infected) PBMC after 24 h using a Zeiss Axiovert.A1 fluorescent microscope. After counting,
infected PBMC were applied to confluent EC in a flow chamber setup. The experiment was performed
independently in a blinded fashion three times.

2.8. Whole-Cell Proteomic Analysis

2.8.1. Sample Preparation

Label-free quantitative proteomic analysis was performed to determine differentially expressed
proteins in PBMC infected with EHV-1. PBMC were infected with Ab4-wt or mutant viruses at
an MOI of 1. At 24 hpi, 105 PBMC were FACS-sorted. For mock-infected PBMC controls, T- and
B-lymphocytes, as well as monocytes, were mixed at percentages comparable to the populations of
infected PBMC (T- and B-lymphocytes, as well as monocytes, were mixed at a ratio of 21:13:66). After
sorting, PBMC were washed twice with PBS and stored at −80 ◦C until further processed. This process
was repeated four independent times and we ended up with 4 batches of infected PBMC.

For protein digestion and LC/MS analysis, the cell pellet of each batch was lysed in lysis buffer
(4% SDS in 50 mM triethylammonium bicarbonate buffer, pH 8.5, supplemented with 25 units
Benzonase nuclease (Merck) and 1x protease inhibitor EDTA free). Protein reduction and alkylation
were accomplished using 5 mM DTT for 30 min at 55 ◦C and 40 mM CAA for 30 min at room
temperature in the dark, respectively. Protein digestion and peptide clean-up was performed using
the single-pot, solid-phase-enhanced sample-preparation (SP3) technology [60,63]. Protein digestion
was accomplished with LysC and trypsin, both in 1:50 ratio at 37 ◦C overnight. LC/MS analysis was
performed using an UltiMate 3000 RSLC nano LC system coupled on-line to an Orbitrap Elite mass
spectrometer (Thermo Fisher, Waltham, MA, USA). Reversed-phase separation was performed using a
50 cm analytical column (in-house packed with Poroshell 120 EC-C18, 2.7 µm, Agilent Technologies,
Santa Clara, CA, USA).

For LC/MS data analysis, raw data were processed using MaxQuant software (version 1.6.1.0;
Max Planck Institute of Biochemistry, Planegg, Germany) [64] with default settings. MS2 spectra were
searched against horse or human databases supplemented with the protein sequence of EHV-1 Enzyme
specificity was set to trypsin. Cysteine carbamidomethylation was included as a fixed modification,
and methionine oxidation was used as a variable modification. The mass tolerances were set to 10 ppm
for the first search and 4.5 ppm for the main search for MS while 0.6 Da was used for MS2. Global false
discovery rates for peptide and protein identification were set to 1%. The match-between-runs and
label-free quantification options were enabled.

2.8.2. Data Analysis and Interpretation

PBMC protein expression data were obtained using the LFQ approach from MaxQuant. The data
was used to create a profile of expression levels with Perseus software (version 1.6.1.3; Max Planck
Institute of Biochemistry, Planegg, Germany) [65]. LFQ values were log2-transformed and missing
values were imputed. Student’s two-sample t-test was used to assess statistical significance of
differentially expressed protein abundances using a 1% permutation-based FDR (q-values) correction
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for multiple hypotheses testing with Perseus software [66]. Proteins that showed a fold-change of at
least 1.5 (p < 0.05) were considered differentially expressed. Differentially expressed proteins were
mapped to the gene ontology (GO) database, and the number of proteins at each GO term was computed.
The results from label-free proteomics were used as the target list. GO and Kyoto Encyclopedia of
Genes and Genomes (KEGG) annotation for each protein in the search database were retrieved from
GO (http://www.geneontology.org/) and KEGG Pathway database (http://www.genome.jp/Pathway),
respectively. KEGG pathway enrichment analysis of the correlation was carried out using p values
adjusted with Benjamini correction for false discovery rate. In the GO enrichment analysis, proteins
were classified by GO annotation into three categories: biological process, cellular compartment,
and molecular function. For each category, a two-tailed Fisher’s exact test was employed to compare
the enrichment of the differentially expressed protein against all identified proteins, and corrected
p-values < 0.05 were considered significant [67,68].

2.9. Multiplex Equine Cytokine Assay

Cytokines and chemokines released by control or EHV-1-infected PBMC were quantified using
Milliplex® MAP equine cytokine/chemokine magnetic bead-based Multiplex kit. The kits enable
simultaneous analysis of 23 cytokine and chemokine biomarkers (EMD Millipore, Billerica, MA,
USA) [69]. PBMC (1 × 106) were infected with Ab4-wt, mutant viruses at MOI of 1. Supernatants from
control, Ab4-wt/mutant (Ab4∆ORF17, Ab4∆ORF1, Ab4∆ORF2, Ab4∆ORF17/ORF2, Ab4∆ORF1/ORF2,
Ab4∆ORF1/ORF17, and Ab4∆ORF1/ORF2/ORF17) infected PBMC was collected at 3, 6, and 24 hpi.
In another experiment, 1 × 106 PBMC were infected with Ab4-wt at MOI of 1. At 24 hpi, infected PBMC
were applied over EC in a 24-well plate and incubated for 6 h. Supernatants were collected at 3 and 6 h,
and stored at−80 ◦C until used. Cytokine and chemokine quantification in the supernatant (both PBMC
and PBMC-EC) was performed as per the manufacturer’s instructions using the Milliplex® MAP
equine cytokine/chemokine magnetic bead based Multiplex kit with Luminex-based detection system
(LuminexcorpTM MAGPIX® system, Austin, TX, USA) with xPONENT® software (LuminexcorpTM,
Austin, TX, USA). All samples were run in duplicate.

2.10. Statistical Analysis

Statistical analyses were performed using GraphPad PRISM® 5.01 software (San Diego, CA, USA).
Normally distributed group samples were analyzed with a one-way ANOVA test followed by a
multiple comparisons test. For all analyses, a ‘p’ value of less than 0.05 was considered significant.

3. Results

3.1. The ORF1, ORF2 and ORF17 Genes are Dispensable of EHV-1 Replication

EHV-1 Ab4 mutants lacking ORF1, ORF2, and ORF17 genes as single, double, or triple gene
deletions were successfully generated using en passant mutagenesis. Specific gene deletions made in
the current study were confirmed by sequencing and RFLP (Figure 1A–E), and all mutant viruses
(Ab4∆ORF17, Ab4∆ORF1, Ab4∆ORF2, Ab4∆ORF17/ORF2, Ab4∆ORF1/ORF2, Ab4∆ORF1/ORF17,
and Ab4∆ORF1/ORF2/ORF17) were successfully reconstituted.

Three independent growth kinetic experiments were performed to evaluate the replicative
potential of all mutant viruses in ED and EC cells. The data revealed that all mutant viruses
replicated at levels that were virtually identical to those of Ab4-wt (Figure 2A–C). Plaque size assays
were performed to assess cell-to-cell virus spread in ED cells (Figure 2D,E). Among the different
gene deletion mutants, deletion of ORF17 significantly reduced plaque sizes compared to Ab4-wt
(p < 0.05). Similarly, deletion of ORF17 in combination with other mutations (Ab4∆ORF1/ORF17,
Ab4∆ORF17/ORF2, and Ab4∆/ORF1/ORF2/ORF17) also resulted in similar reductions of plaque sizes
(13–17%).

http://www.geneontology.org/
http://www.genome.jp/Pathway
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Figure 1. Restriction fragment length polymorphism (RFLP) analysis for characterization of constructed
BAC mutants. Purified DNAs from Ab4-wt, intermediate clone with kanamycin cassette and final
clone with gene deletion BAC were digested with Pst1 and Pvu1. Fragments in the intermediate and
final mutant clones that appeared as a result of the deletion of sequence were marked by red arrows.
Construction of (A) Ab4∆ORF2, (B) Ab4∆ORF1/ORF2, (C) Ab4∆ORF17/ORF2, (D) Ab4∆ORF1/ORF17
and (E) Ab4∆ORF1/ORF2/ORF17 BAC mutants. M—1 kb plus DNA ladder (Thermo Fischer Scientific,
Paisley, UK), wt—EHV-1 Ab4 strain wildtype virus, IM—intermediate BAC clone with kanamycin
cassette insertion, ∆—specific gene deletion and arrow—band shifts.
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Figure 2. Characterization of mutant viruses. Growth kinetics of mutant Ab4 viruses on ED cells
infected at an MOI of 0.1. (A) Infected cells and (B) supernatant were collected, and virus titers were
determined at different time points. (C) For EC cells, both cells and supernatants were collected together
at each time point and the virus titer was determined. Mean virus titers ± standard deviation are given.
(D) Mean diameters of 150 plaques were measured for each virus. The plaque diameter of Ab4-wt
was set to 100% and the mean diameter ± standard deviation is given; (n = 3; One-way ANOVA test
followed by multiple comparisons test). *—p < 0.05, **—p < 0.01. (E) Representative images of plaques
induced by the virus mutants on ED cells. Scale bar = 500 µm.

3.2. ORF2 and ORF17 Genes Are Important for Transfer to EC

Co-cultivation (Figure 3A) and flow chamber (Figure 3C) assays were performed to evaluate
virus transfer between virus-infected PBMC and EC under static and dynamic conditions, respectively.
Ab4-wt-infected PBMC were able to transfer the virus to EC in the presence of neutralizing antibodies
under both static and flow conditions as described previously [32]. No virus transfer was observed in
the “no contact” transwell setup, where infected PBMC were physically separated from EC (Figure 3B,E).
Among the single-gene deletion mutant viruses, the ORF2- and ORF17-negative Ab4 mutants exhibited
significantly (p < 0.05) reduced virus spread to EC under static conditions (co-cultivation) as evidenced
by reduced plaque numbers. Deletion of ORF2 and ORF17 genes resulted in 65% and 52% reduction
of virus transfer to EC, respectively (Figure 3D). In addition, deletions of two or three genes in the
same virus (double and triple gene deletion mutants) also resulted in a 42–65% reduction in virus
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transfer (Figure 3D). No significant difference in the rate of virus transfer was seen for Ab4∆ORF1
when compared to Ab4-wt (p > 0.05; Figure 3D). The results of the flow chamber assay mimicked those
of the co-cultivation assay in terms of virus transfer events observed for mutant viruses. Deletion of
ORF17 and ORF2 genes led to a reduction in virus transfer of 65% and 40%, respectively (Figure 3F).
Deletion of two genes in combination resulted in a 60–78% reduction in virus transfer (Figure 3F).
The Ab4∆ORF1/ORF2/ORF17 triple mutant exhibited a 76% reduction in virus transfer (Figure 3F).
Ab4∆ORF1, on the other hand, did not show a significant difference compared to the parental virus.

Viruses 2020, 12, x FOR PEER REVIEW 11 of 28 

 

 

Figure 3. Virus transfer from EHV-1-infected PBMC to EC under static and dynamic flow conditions. 
Schematic diagram of (A) the contact assay, (B) the transwell assay, and (C) the flow chamber assay. 
PBMC were infected with Ab4-wt or mutant viruses at an MOI of 0.1 for 24 h. (D) The contact assay 
was performed after sorting of infected cells. Virus plaques were counted after 24 h. (E) As a control, 
infected PBMC were placed into a transwell insert without direct contact between PBMC and EC. The 
flow chamber assay was performed for the mutant (F) and corresponding revertant (G) viruses. Data 
are presented as mean plaque numbers ± SD; (n = 3; One-way ANOVA test followed by multiple 
comparisons test). *—p < 0.05, **—p < 0.01, ***—p < 0.001. ns—not significant. 

All revertant viruses (Ab4ORF17R, Ab4ORF1R, Ab4ORF2R, Ab4ORF17R/ORF2R, 
Ab4ORF1R/ORF2R, Ab4ORF1R/ORF17R, and Ab4ORF1R/ORF2R/ORF17R) were reconstituted for 
each corresponding deletion mutant and flow chamber assays were performed. The revertant viruses 
spread from infected PBMC to EC at rates similar to those of parental virus (Figure 3G). In all cases, 
no virus transfer was seen between infected PBMC and EC under “no contact” conditions (Figure 
3E). 

Figure 3. Virus transfer from EHV-1-infected PBMC to EC under static and dynamic flow conditions.
Schematic diagram of (A) the contact assay, (B) the transwell assay, and (C) the flow chamber assay.
PBMC were infected with Ab4-wt or mutant viruses at an MOI of 0.1 for 24 h. (D) The contact assay
was performed after sorting of infected cells. Virus plaques were counted after 24 h. (E) As a control,
infected PBMC were placed into a transwell insert without direct contact between PBMC and EC.
The flow chamber assay was performed for the mutant (F) and corresponding revertant (G) viruses.
Data are presented as mean plaque numbers ± SD; (n = 3; One-way ANOVA test followed by multiple
comparisons test). *—p < 0.05, **—p < 0.01, ***—p < 0.001. ns—not significant.

All revertant viruses (Ab4ORF17R, Ab4ORF1R, Ab4ORF2R, Ab4ORF17R/ORF2R, Ab4ORF1R/

ORF2R, Ab4ORF1R/ORF17R, and Ab4ORF1R/ORF2R/ORF17R) were reconstituted for each
corresponding deletion mutant and flow chamber assays were performed. The revertant viruses spread
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from infected PBMC to EC at rates similar to those of parental virus (Figure 3G). In all cases, no virus
transfer was seen between infected PBMC and EC under “no contact” conditions (Figure 3E).

3.3. Virus Transfer to EC through Different PBMC Subpopulations

We isolated B-cells, T-cells, and monocytes from whole PBMC by FACS sorting using
population-specific antibodies. Cells were then infected with Ab4-wt and mutant viruses, and flow
chamber assay was performed. Virus infection assay in PBMC showed that B- and T-lymphocytes as
well as monocytes could be infected with Ab4-wt (Table 2) [32]. However, the subpopulation that is
mainly responsible for virus transfer to EC is still not clearly established. To address this question,
we performed flow chamber assays for each infected PBMC subpopulation, which revealed that
all three subpopulations were able to transfer the virus to EC (Figure 4A–C). Similar to the whole
PBMC population, PBMC subpopulations infected with individual mutant viruses showed significant
reductions in virus transfer to EC (Figure 4A–C), while mutants with double and triple gene deletions
showed up to 45–80% reduction in virus transfer. As seen earlier, virus transfer to EC remained
unaltered in the case of the Ab4∆ORF1 mutant.
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Figure 4. Virus transfer from EHV-1-infected PBMC subpopulations to endothelial cells under dynamic
flow condition. PBMC were infected with Ab4-wt or mutant viruses at an MOI of 0.1 for 24 h.
Infected PBMC were FACS-sorted and flow chamber assays were was performed for (A) T-lymphocytes,
(B) B-lymphocytes, and (C) monocytes. Virus plaques were counted at 24 hpi. The data represent the
mean of two independent experiments ± SD. For statistical analysis, one-way ANOVA followed by
correction for multiple comparisons test were performed; *—p < 0.05, **—p < 0.01, ***—p < 0.001.

Table 2. Ab4-wt infection of PBMC subpopulations. The data represents the mean ± SD of three
independent and blinded experiments.

Cell Marker Cell % in PBMC Rate of Infection in % % in Infected Population

CD14 Monocyte 27.1 ± 1.7 41.3 ± 2.3 66.2 ± 1.1
IgM B lymphocyte 9.8 ± 1.1 22 ± 3.2 12.9 ± 0.8
CD3 T lymphocyte 63.2 ± 2.3 5.5 ± 0.5 20.8 ± 1.5
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3.4. Mimicking the In Vivo Pathway of Virus Spread from Epithelial Cells to PBMC and from PBMC to EC

Following inhalation of EHV-1, the virus primarily replicates in respiratory tract epithelial cells,
subsequently passes through the basement membrane, establishes cell-associated viremia, and, finally,
is transferred to the endothelial epithelium [70]. To mimic EHV-1 pathogenesis in vitro and investigate
virus transfer from infected epithelial cells to PBMC and subsequently from PBMC to EC we developed
equine epithelial cell-PBMC contact assay (Figure 5A). ED cells grown on a transwell membrane were
infected with Ab4-wt or mutant viruses, PBMC suspended in medium containing EHV-1-neutralizing
antibodies were added to the inverted transwell to establish contact with ED cells. Twenty-four hours
after contact, PBMC were collected and analyzed for the rate of infection by counting EGFP-positive
cells. No significant differences in the rate of infection of PBMC were seen between parental and
mutant viruses (Figure 5B). In contrast, when we continued the flow chamber experiment with the same
infected PBMC, virus transfer to EC was greatly reduced ranging from 35% to 65% for the Ab4∆ORF2
and Ab4∆ORF17 viruses (Figure 5C). Deletion of ORF1 did not affect virus transfer at any stage.
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Figure 5. EHV-1 spread between epithelium, PBMC, and EC. (A) ED cells were seeded into 3-µm pore
size 24-well transwell inserts and incubated at 37 ◦C for 24 h. Subsequently, ED cells were infected
with Ab4-wt or mutant viruses at an MOI of 0.1 for 1 h and treated with citrate buffer. Upon infection,
transwell insert was inverted, and 1 × 105 PBMC resuspended in medium containing virus-neutralizing
antibodies were added. (B) Epithelium-to-PBMC virus transfer was assessed by counting the number
of EGFP-positive cells after 24 h. (C) Subsequently, infected PBMC were used for flow chamber assay.
The data represent means ± SD of three independent experiments. One-way ANOVA was done
followed by correction for multiple comparisons; *—p < 0.05, **—p < 0.01. ns—not significant.
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3.5. Comparative Proteomic Analysis

Four replicates of PBMC were prepared from the blood of two horses and each replicate of cells
was infected with Ab4-wt or mutant viruses at an MOI of 1. At 24 hpi, infected cells were FACS-sorted
and protein extracts were prepared from infected and mock-infected PBMC. Upon analysis, 45 viral
proteins (Table 3) and 1300 equine cellular proteins were detected and quantified. Among the
quantified host proteins, 141 proteins displayed significant differences in expression levels between
Ab4-wt-infected and uninfected PBMCs as identified by at least two high confidence (95%) peptides
with p-values ≤0.05, as calculated by Perseus software. In total, 63 cellular proteins were upregulated
and 78 proteins were downregulated. KEGG-pathway enrichment analysis of differentially expressed
proteins (p ≤ 0.05) was calculated using Benjamini-corrected Fisher’s exact test. In Ab4-wt-infected
PBMC, upregulation of several pathways including platelet activation, Ras signaling, leukocyte
transendothelial migration, endocytosis, lysosome, oxidative phosphorylation pathways, and cAMP
signaling pathways was detected. On the other hand, downregulation of proteins associated with
herpesvirus infection, chemokine signaling, spliceosome, RNA degradation, and apoptotic pathways
was observed (Table 4 and Supplementary Table S1). As mentioned above, in total 45 (18 non-structural,
24 structural, and 3 uncharacterized) viral proteins were detected in infected PBMC out of the
78 ORF-encoded proteins by EHV-1 including structural and non-structural viral proteins (Figure 6,
Table 3, and Supplementary Table S2). Among the viral proteins in infected PBMC, major capsid
protein, major DNA-binding protein, major viral transcription factor, internal repeat 6, and tegument
protein VP22 were the most abundant. Among glycoproteins, glycoprotein B and glycoprotein C were
most abundant in EHV-1-infected PBMC. There were some differences in the level of expression of
certain viral proteins (DNA primase, serine/threonine-protein kinase UL13, ORF protein 3, and gD) in
PBMC infected with Ab4-wt and the mutant viruses in proteomic analysis (Supplementary Table S3).
Future studies are required to investigate the kinetics of viral proteins in infected PBMC at different
time points and their possible role in virus transfer between PBMC and EC.

Table 3. Classification of EHV-1 proteins quantified in infected PBMC at 24 hpi.

Type Name of Viral Proteins

Nonstructural protein

Ribonucleoside-diphosphate reductase R1
Ribonucleoside-diphosphate reductase R2
DNA polymerase
Uracil-DNA glycosylase
Alkaline nuclease
Major viral transcription factor
Serine/theonine-protein kinase
Major DNA-binding protein
mRNA export factor ICP27

Nuclear egress protein 1
Nuclear egress protein 2
DNA polymerase processivity factor
DNA primase
Thymidine kinase
Packaging protein UL32
Tripartite terminase
Deoxyuridine 5-triphosphate
Internal repeat 6

Structural protein

Tegument proteins
Tegument protein UL47
Tegument protein UL46
Tegument protein VP16
Large tegument protein
Inner tegument protein Tegument protein VP22
Tegument protein UL21

Serine/theonine-protein kinase UL13
Cytoplasmic envelopment protein 2
Envelope protein UL45
E3 ubiquitin-protein ligase ICP0

Capsid proteins
Major capsid protein
Triplex capsid protein 1
Triplex capsid protein 2

Capsid vertex component
Capsid vertex component 1
Portal protein

Envelope proteins
Glycoprotein G
Glycoprotein I
Glycoprotein D
Glycoprotein H

Glycoprotein B
Glycoprotein C
Glycoprotein E

Uncharacterized proteins
ORF protein 2
ORF protein 59
ORF protein 3
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Table 4. Pathways differentially regulated in Ab4-wt- and mutant viruses-infected PBMC. PBMC were
infected with Ab4-wt or mutant viruses at an MOI of 1. At 24 hpi, infected PBMC were sorted and
proteomic analysis was performed. Pathways significantly upregulated and downregulated (based on
p-value and Benjamini-corrected Fisher’s exact test) in infected PBMC in comparison to non-infected
PBMC are given; (n = 4).

Infected Population Pathways Upregulated Pathways Downregulated

PBMC
vs.

Ab4-wt

Lysosome
cAMP signaling
Ras signaling pathway
Endocytosis
Platelet activation
Leukocyte transendothelial migration
Oxydative phosphorylation
Fatty acid elongation

Herpesvirus infection
Spliceosome
Chemokine signaling pathway
RNA degradation
Apoptosis

PBMC
vs.

Ab4∆ORF17

Lysosome
Herpesvirus infection
Oxydative phosphorylation
Protein processing in endoplasmic reticulum
Fc epsilon RI signaling
Metabolic pathways

Chemokine signaling pathway
MAPK signaling pathway
Spliceosome
RNA transport

PBMC
vs.

Ab4∆ORF1

mTOR signaling pathway
Endocytosis
Lysosome
Focal adhesion
Ras signaling pathway
Herpesvirus infection
Chemokine signaling pathway
Leukocyte transendothelial migration
Platelet activation

Spliceosome
RNA degradation
Metabolic pathways
Aminoacyl-tRNA biosynthesis

PBMC
vs.

Ab4∆ORF 2

Herpesvirus infection
mTOR signaling pathway
Regulation of actin cytoskeleton
Chemokine signaling pathway

Spliceosome
RNA degradation
MAPK signaling pathway

PBMC
vs.

Ab4∆ORF 1/ORF2/ORF17

Endocytosis
Lysosome
Herpesvirus infection
T cell signaling
Chemokine signaling pathway

Spliceosome
RNA degradation
MAPK signaling pathway

While comparing the proteome of PBMC infected with Ab4-wt or mutant viruses,
differential expression of more than 100 proteins was observed. Details of pathways differentially
modulated are shown in Table 4. Infection with Ab4∆ORF17 resulted in upregulation of proteins
associated with herpesvirus infection (lymphocyte function-associated antigen 3 [LFA-3], TNFRSF1A
associated via death domain [TRADD], recombination signal binding protein for immunoglobulin
kappa J region [RBPJ] I, RBPJ like, Proteasome 26S subunit, non-ATPase 12) and the Fc epsilon receptor
I signaling pathways. On the other hand, Ab4∆ORF17 downregulated proteins associated with
chemokine signaling (MAPK kinase 1, Ras-related protein Rap-1A, stress-induced phosphoprotein
1) and MAPK (Ras-related protein Rap-1A, Interleukin 1 alpha, Ribosomal protein S6 kinase A5)
signaling pathways. It is important to note that proteins such as LFA-3, RPBJ, RPBJL (herpesvirus
infection pathways) are involved in cytokine release, leukocyte migration, cell-to-cell adhesion,
and signaling receptor pathways. Ab4∆ORF1 infection resulted in upregulation of mTOR signaling,
focal adhesion, and chemokine signaling pathway. Ab4∆ORF2 infection resulted in upregulation of
herpesvirus infection and chemokine signaling pathways, and downregulation of MAPK signaling
pathways. Finally, the triple gene deletion mutant caused upregulation of herpesvirus infection,
T-cell signaling, and chemokine signaling pathways and downregulation of MAPK signaling and
oxidative phosphorylation pathways. (Supplementary Table S1). From the results, we concluded
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that the three viral genes modulate several host pathways in addition to the release and regulation of
cytokines and chemokines from infected PBMCs.
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proteins are given on the Y-axis; (n = 4).

3.6. EHV-1 Infection Modulates Cytokine and Chemokine Profiles of PBMC

Equine PBMC were infected with Ab4-wt or mutant viruses at an MOI of 1. Supernatants from
infected PBMC were collected at 3, 6, and 24 hpi, and the secreted cytokines and chemokines were
quantified using Milliplex® MAP equine cytokine/chemokine magnetic bead-based Multiplex kit with
Luminex-based detection system. We detected 12 cytokines in total expressed by PBMCs (naïve and/or
EHV-1-infected) out of 23 cytokines tested in the panel. All standards and quality controls were within
the specified range. In general, the release of most cytokines and chemokines was strongly inhibited
upon Ab4-wt infection of PBMC. Only FGF-2 was expressed in infected PBMC at 6 hpi (Figure 7A,B;
Table 5). In contrast, infecting PBMC with Ab4 mutant viruses resulted in the partial or complete
restoration of the expression of cytokines and chemokine as evidenced by the expression of G-CSF,
IL-1α, IL-1β, IL-8, and TNFα.

At 24 h, naïve PBMC released nine cytokines and chemokines. In contrast, PBMC infected with
Ab4-wt or Ab4∆ORF17 released only four cytokines and chemokines (FGF-2, IL-8, TNFα, and IL-1β)
(Figure 7C; Table 5). Infection of PBMC with Ab4∆ORF1 or Ab4∆ORF2 restored the release of several
cytokines. In the case of the ORF2 single deletion mutant cytokines including IL-10, IL-8, and IL-1β
were released in higher quantities. However, the deletion of ORF17 in combination with ORF2 reduced
the expression of cytokines (Table 5). All mutants with an ORF1 deletion resulted in the expression
of more cytokines (Figure 7C). IFNγ levels were higher in all ORF1 deletion mutants. It is worth
mentioning that FGF-2 expression was only observed in infected PBMC and that its concentration was
always high in the case of Ab4-wt, followed by ORF17/ORF2 and ORF17 deletion mutants at different
time points.

We were further interested in studying the cytokine release profile of EHV-infected PBMC in the
presence of EC. PBMC (1 × 106) were infected with Ab4-wt at an MOI of 1. At 24 hpi, infected PBMC
were applied over EC, and supernatants were collected at 3 and 6 h for cytokine estimation. In PBMC-EC
co-cultures, non-infected PBMC released more cytokines than virus-infected PBMC. Further, Ab4-wt
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infected PBMC in the presence of EC did not show much difference in terms of release of additional
cytokines and chemokines, except release of IL-6 (Figure 8). Overview of cytokines produced, cell source,
targets, and functions are given in Supplementary Table S4.
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Table 5. Compiled cytokine and chemokines profile.

PBMC Samples
Number of Detected Cytokines Co-Culture

Samples

Number of Detected
Cytokines

3 hpi 6 hpi 12 hpi 3 hpi 6 hpi

PBMC 5 5 9 PBMC-EC 8 10
Ab4-wt 3 1 4 Ab4-wt-EC 5 6

Ab4∆ORF17 3 4 4
Ab4∆ORF1 3 4 7
Ab4∆ORF2 4 4 8

Ab4∆ORF17/ORF2 4 6 4
Ab4∆ORF1/ORF2 3 5 7

Ab4∆ORF1/ORF17 3 4 7
Ab4∆ORF1/ORF2/ORF17 3 4 7
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Figure 8. PBMC cytokine and chemokine profile of PBMC-EC co-culture at 3 and 6 h. Equine PBMC
were infected with Ab4-wt at an MOI of 1. Infected PBMC were collected and co-cultivated with EC,
incubated for 3 and 6 h, supernatants were collected, and cytokines/chemokines concentrations were
measured using Milliplex® MAP equine cytokine/chemokine magnetic bead-based Multiplex kit with
Luminex-based detection system. Mean concentration of cytokines and chemokines were given in pg
per mL; (n = 2).

Taken together, infection of PBMCs with Ab4-wt mostly resulted in downregulation of cytokine
expression and deletion of different viral genes (ORF1, ORF2, and ORF17) clearly altered the cytokine
expression profile and restored cytokine expression partially at different time points. ORF2 gene
deletion expressed higher levels of IL-1β cytokine at all time points.

4. Discussion

EHV-1 infection of PBMC is a critical step in deciding EHV-1 pathogenesis; thereby the virus can
spread from respiratory epithelium to the endothelium without being captured by the host immune
system. As described earlier, the process of virus transfer is complex, requires coordinated action
of viral proteins, adhesion molecules expressed by both cells, and cytokines and chemokines for
facilitating inter-cellular adhesion, intra-cellular trafficking, and cellular polarity [71,72]. Several viral
proteins are involved in mediating such processes. Our previous studies revealed that gD, gB, and US3
proteins play an essential role in PBMC and EC infection as well as virus transfer between the two
compartments [32,59]. Cell-to-cell virus transfer is considered to be a mechanism of immune evasion
and immunomodulation properties of herpesviruses [73]. Earlier studies revealed that EHV-1 can
evade host immune response by modulating MHC-I expression on the surface of the infected cells [74]
with the help of the viral proteins UL49.5, ORF1, and ORF17 [9,38,40,41,75]. Further, ORF1 and
ORF2 deletion mutants showed significantly reduced virus shedding, a shorter course of pyrexia,
and modulated cytokine response with attenuation of virulence in comparison to Ab4-wt in in vivo
studies in ponies [50]. Experimental infection with ORF1 and ORF71 deletion mutants revealed a brief
period of pyrexia, low virus shedding, and decreased cytokine response (IFNα, IL-10, and soluble CD14);
however, they had comparable viremia to Ab4-wt [48]. In another study, ORF2 deletion mutant was
attenuated; however, it had strong immunogenicity without altering viremia in Icelandic horses [49,76].
Failure to induce T-cell response was suggested as a reason for viremia in both Ab4-wt and mutant
viruses infected horses [48–50]. As animal experiments were performed in non-pregnant horses and
no distinct neurological signs were observed following infection with Ab4-wt and mutant viruses, it is
unclear that cell-associated viremia with mutant viruses can result in subsequent endothelial infection
or not. With this background, we hypothesized that EHV-1 immunomodulating proteins (ORF1, ORF2,
and ORF17) are essential for virus pathogenesis and play an important role in virus spread from PBMC
to EC.
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ORF1, ORF2, and ORF17 genes of EHV-1 are dispensable for virus replication in equine cells as
confirmed by growth kinetics and plaques size assays. Double and triple gene deletion mutants also
replicated normally as with the parental virus. Only ORF17 deletion mutant showed a significant,
but slight, reduction in plaque size, ranging between 10–15%. Albeit the plaque size reductions were
less, similar plaque size reductions of UL43 (ORF17 homolog) deletion mutants were observed in HSV-1
and PrV [77,78]. Despite the non-essential character, the conservation of UL43 homologs function in
relation to plaque size within the alphaherpesviruses is interesting.

We show here that PBMC can be infected, to similar levels, with all mutant viruses without any
significant differences. Co-cultivation and flow chamber assays with parental EHV-1 virus showed
efficient virus spread from infected PBMC to EC as reported previously [32]. However, deletion of
ORF17 and ORF2 as single-gene deletion mutant significantly reduced virus transfer between PBMC
and EC under static and flow conditions. Furthermore, ORF17 and ORF2 mutants (as double and triple
gene deletions mutants in combination with ORF1) also reduced virus transfer to EC. Double and triple
gene deletions showed an additive reduction in virus transfer to EC in a flow condition compared
to static condition, which can be attributed to a synergetic effect on the functional dynamic rolling
of infected PBMC over EC. The flow chamber system creates homogenous fluid shear stress in the
endothelium similar to that observed in the blood vessel environment in vivo. Fluid flow over the
endothelium results in ranges of ion fluxes, modulation of several pathways including biochemical
pathways and gene and protein expression in both in vitro and in vivo. Specifically, shear forces
modulate cell surface transmembrane adhesion molecules via cytoskeleton by integrin-dependent
activation of MAP kinases via Ras GTPase and RhoA activation [79]. Furthermore, the rolling of PBMC
over the endothelium provides kinetics of cell-to-cell adhesion and increases the binding strength of
the interaction between the two cells [80], which was the advantage of the flow chamber system rather
than the static condition. As will be discussed later, ORF2 and ORF17 modulated the MAP kinase and
Ras GTPase pathways, which might explain the reduction of virus spread.

In the epithelium-PBMC contact assay, all mutant viruses transferred from infected epithelial cells
to PBMC similar to the parental virus. However, subsequent flow chamber assay with infected PBMC
showed reduced virus transfer to EC. It is very clear that gene deletions affected only the virus transfer
step to EC, but not from the epithelium to the PBMC. The process of cell-to-cell virus transfer from
infected epithelial cells to PBMC is relatively simple. EHV-1 undergoes full replication cycles in the
epithelium and the released infectious virus particles result in dendritic cell infection [81–83]. Since the
mutant viruses can replicate to levels comparable to parental viruses (Figure 2A–C), it was not surprising
to see no effect on virus spread between epithelial cells and PBMC. On the other hand, virus replication
in PBMC with subsequent egress is not fully identified. In addition, virus transfer between PBMC
to EC is very complex and requires the interplay of several viral and cellular molecules [31,32,84].
We assume that these viral proteins (ORF2 and ORF17) are involved in modulating several pathways
in PBMC, including cell signaling, adhesion, and immune pathways, thereby ORF2 and ORF17 gene
deletions resulted in reduced virus transfer to EC. Our findings clearly correlate with previous in vivo
findings where ORF2, ORF1/ORF71, and ORF1/ORF2 deletion mutants showed respiratory infection,
comparable viremia, but no noticeable endothelial cell infection in four different experimental studies
in horses [48–50,76].

It was shown before that all three PBMC subpopulations could be infected with EHV-1 [18,20,85,86];
however, identification of which subpopulation transfers the virus to EC is not clearly established.
Our flow chamber assay showed that all three subpopulations of PBMC (T-, B-lymphocytes,
and monocytes) could transfer the virus to EC. Gene deletions affected virus transfer from each
PBMC subpopulation to levels comparable to the whole PBMC populations. We surmised that these
viral proteins might target the same mechanisms in each subpopulation of PBMC.

EHV-1 undergoes limited virus replication in PBMC [32,85], but detailed knowledge regarding
the expression of viral proteins and virus-induced changes in host pathways is limited [87].
Although several proteomic approaches have been reported for other herpesviruses, data regarding
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EHV-1-induced widespread changes in the host cell proteome is lacking [88,89]. In our proteomic
analysis, we quantified the expression of 45 viral proteins in infected PBMC that includes structural and
nonstructural proteins belonging to immediate-early, early and late expression kinetics. Expression of
ORF2, but not ORF1 and ORF17 proteins was observed in parental EHV-1-infected PBMC. Our previous
study revealed that in cell culture, expression of ORF17 and ORF1 was detectable from 2 and 4 h
post-infection, but decreased after 8 and 16 h post-infection, respectively. Expression of ORF17 protein
was not detected after 8 h post-infection [9,40]. This can be correlated with the absence of ORF17 and
ORF1 in infected PBMC at 24 hpi. ORF2 protein was not detected in PBMC infected with Ab4∆ORF2
and Ab4∆ORF1/ORF2/ORF17 deletion mutant.

Parental EHV-1 infection upregulated proteins associated with several host pathways including
MAPK, Ras signaling, endocytosis, oxidative phosphorylation, lysosomal pathways but downregulated
herpesvirus and spliceosome pathways. MAPK pathway is involved in the manipulation of cellular
functions such as signal transduction, cell adhesion, virus replication in target cells, and cell
survival [90,91]. Ras-signaling pathway is implicated in sequential phosphorylation of at least
20 downstream molecules which transduce the signals from cell surface to nucleus including MAPK,
c-Jun amino-terminal kinases (JNK) which is essential for cell survival from apoptosis [92]. Endocytosis
pathway plays an essential role in regulating levels of many essential surface proteins such as
G-protein coupled receptors, receptor tyrosine kinases and adhesion molecules, and transporters [93].
Herpesvirus infection pathway is mediated by numerous host and viral proteins which includes
several pathways such as toll-like receptor signaling, pro-inflammatory cytokines, inhibition of
apoptosis, antigen processing and presentation, JAK-STAT, calcium signaling, nuclear factor-kappa B
(NF-κB), and B cell receptor signaling pathways [28,94,95]. Similar findings have been reported for
other herpesviruses such as HSV, human cytomegalovirus virus, and Kaposi’s sarcoma-associated
herpesvirus [92,96–100]. Upregulation of endocytosis and Ras signaling pathways and role of MAPK
pathway in EHV-1 infection have been reported before [28,101–103].

While comparing the proteomic profile of Ab4-wt and mutants infected PBMC, ORF1, ORF2,
and ORF17 gene deletions have modulated several pathways, mainly chemokine signaling, MAPK,
herpesvirus infection, and oxidative phosphorylation pathways. Ab4-wt infection downregulated
herpesvirus infection pathway, while Ab4∆ORF1/ORF2/ORF17 mutant virus upregulated this pathway.
Similar to the single gene deletion (Ab4∆ORF1 and Ab4∆ORF2), triple gene deletions modulated
several pathways including chemokine signaling pathways. A previous in vitro study showed the
potential role of MAPK pathway in EHV-1-infected PBMC. Inhibition of this pathway with a chemical
inhibitor reduced virus transfer from infected monocytes to EC [28]. In our study, ORF17 and ORF2
gene deletions downregulated the proteins associated with MAPK pathway and showed reduced
virus transfer to EC. We surmise that ORF17 and ORF2 viral proteins are involved in upregulating the
MAPK pathway thereby facilitating virus transfer to EC. As described earlier, MAPK is essentially
involved in transmitting various extracellular signals that induce cellular proliferation, differentiation,
and survival [104]. It has been reported that herpesvirus infection alters MAPK signaling to promote
virus internalization, dysregulate the cell cycle, regulate viral replication, and prevent host-cell
death [105,106]. Studying the role of ORF17 and ORF2 in modulating MAPK pathway will be the
scope of our future studies.

Parental EHV-1 infection greatly reduced cytokine and chemokine release. Higher levels of
FGF-2 in Ab4-wt infected PBMC can be correlated with activation of MAPK pathway as confirmed
by proteomic analysis. FGF-2 results in the activation of Ras-MAPK pathway, which is essential
for virus spread [107,108]. Previous in vivo studies following experimental infection with Ab4-wt
(neuropathogenic) strain showed release of fewer cytokines/chemokines at low concentration (IL-10,
CCL2, CCL3) in comparison to RacL11 and NY03 strains (abortigenic strains) [109,110]. As expected
from proteomic analysis, cytokine/chemokine estimation assay confirmed deletion of viral genes in
altering cytokine/chemokine response. ORF1 deletion showed release of more cytokines in infected
PBMC. Similar findings were confirmed by mRNA expression, cytokine quantification, and migration
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assay [38]. Furthermore, IFNγ levels were higher in all ORF1 deletion mutants. IFNγ is produced
by antigen-activated leukocytes. Secreted IFNγ activates antigen-specific immunity, innate-cell
mediated immunity, and cytokines/chemokines release. Ab4-wt infection blocks IFNγ release from
PBMC and deleting ORF1 gene resulted in release of more cytokines/chemokines which shows the
immune-modulating potential of ORF1 in Ab4 strain. ORF2 gene deletion also showed release of
more cytokines in both in vitro and in vivo [49,76]. ORF2 gene deletion resulted in expression of
higher levels of IL-1β cytokine, which is considered as a host defense against virus infection. It is a
well-known immune evasion strategy employed by HSV-1 to retain IL-1β in the intracellular space
of infected macrophages without being released to the extracellular space by blocking the function
of caspase-1, which blocks the pro-inflammatory activity of IL-1β [111,112]. We presume that ORF2
of EHV-1 also may have a similar function, thereby Ab4-wt infection in PBMC results in decreased
release of IL-1β, while ORF2 deletion restores expression. The role of ORF2 in modulating of IL-1β
secretion could be the potential area for further investigation. ORF17 gene deletion did not restore
cytokine/chemokine release completely, however, released more cytokines than parental EHV-1.

RacL11 strain, which is poorly spread to EC, naturally lacks ORF1 and ORF2 in its genome in
comparison to Ab4-wt and showed release of more cytokines upon infecting PBMC [109]. Similarly,
deletion of ORF1 and ORF2 genes in Ab4 restored expression of more cytokines, which clearly
demonstrates that ORF1 and ORF2 have a major role in cytokine production.

5. Conclusions

In conclusion, we have identified and confirmed immune evading and cytokine modulating
properties of different viral proteins of herpesviruses. Based on our flow chamber, proteomics,
and cytokine/chemokine assay, all three targeted genes were multifunctional in nature. Nevertheless,
these viral proteins are involved in more than one pathway in PBMC. We presume that ORF1 probably
plays a major role in Ras-signaling, chemokine signaling, and cell adhesion pathways. ORF2 and ORF17
are implicated in chemokine signaling and MAPK signaling pathways thereby facilitating cell-to-cell
virus spread. Furthermore, ORF1, ORF2, and ORF17 deletion mutants (alone or in combinations) were
capable of stimulating strong cytokine responses in vitro. These genes could be potential targets for the
development of live attenuated vaccine therapeutics against EHV-1 infection in equines. In addition,
identifying possible interactions and finding interaction partners for ORF1, ORF2, and ORF17 proteins
including viral and cellular proteins are the potential area of future studies.
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cytokine produced, their cell source, targets, and functions.
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