
viruses

Article

Lytic Cell Death Mechanisms in Human Respiratory
Syncytial Virus-Infected Macrophages: Roles of
Pyroptosis and Necroptosis

Lori Bedient 1, Swechha Mainali Pokharel 1 , Kim R. Chiok 1 , Indira Mohanty 1,
Sierra S. Beach 2, Tanya A. Miura 2 and Santanu Bose 1,*

1 Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State
University, Pullman, WA 99164, USA; lori.bedient@wsu.edu (L.B.); s.mainalipokharel@wsu.edu (S.M.P.);
k.chiokcasimiro@wsu.edu (K.R.C.); indira.mohanty@wsu.edu (I.M.)

2 Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA;
beac7858@vandals.uidaho.edu (S.S.B.); tmiura@uidaho.edu (T.A.M.)

* Correspondence: santanu.bose@wsu.edu

Received: 3 July 2020; Accepted: 20 August 2020; Published: 25 August 2020
����������
�������

Abstract: Human respiratory syncytial virus (RSV) is the most common cause of viral bronchiolitis
and pneumonia in infants and children worldwide. Inflammation induced by RSV infection is
responsible for its hallmark manifestation of bronchiolitis and pneumonia. The cellular debris created
through lytic cell death of infected cells is a potent initiator of this inflammation. Macrophages
are known to play a pivotal role in the early innate immune and inflammatory response to viral
pathogens. However, the lytic cell death mechanisms associated with RSV infection in macrophages
remains unknown. Two distinct mechanisms involved in lytic cell death are pyroptosis and
necroptosis. Our studies revealed that RSV induces lytic cell death in macrophages via both of these
mechanisms, specifically through the ASC (Apoptosis-associated speck like protein containing a
caspase recruitment domain)-NLRP3 (nucleotide-binding domain, leucine-rich-containing family,
pyrin domain-containing-3) inflammasome activation of both caspase-1 dependent pyroptosis and
receptor-interacting serine/threonine-protein kinase 3 (RIPK3), as well as a mixed lineage kinase
domain like pseudokinase (MLKL)-dependent necroptosis. In addition, we demonstrated an
important role of reactive oxygen species (ROS) during lytic cell death of RSV-infected macrophages.
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1. Introduction

Respiratory syncytial viruses (RSV) are among the most common causes of viral pneumonia in
neonatal, elderly, and immunocompromised humans worldwide. Human RSV infection in children
under five years of age leads to over three million hospitalizations and nearly 60,000 in-hospital
deaths annually [1]. Elderly or immunocompromised individuals such as organ transplant recipients,
HIV (Human Immunodeficiency virus) -infected persons, or those with comorbidities such as asthma
or chronic obstructive pulmonary disease are considered especially prone to infection and are more
likely to be hospitalized [2,3]. Antiviral treatment for RSV infection is largely limited by expense and
lack of efficacy data in those populations most at risk. Despite extensive research, an effective vaccine
remains elusive [4,5].

RSV-induced pneumonia results from an exaggerated pro-inflammatory response triggered
by excessive cytokine and chemokine release from infected inflammatory immune cells [6–10].
RSV-infected alveolar and exudative macrophages within the airway are instrumental in the induction
of these excessive pro-inflammatory cytokines leading to fulminant pneumonia. In addition to cytokine
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and chemokine release, lytic cell death of infected cells including macrophages has similarly been
shown to amplify the inflammatory response following infection with various pathogens [11–14]. In the
case of RSV, cell debris generated by this cell death results in the physical obstruction of small airways
by accumulating cellular fragments and leads to the classic lesion of bronchiolitis [15]. These cellular
fragments then act as potent danger associated molecular patterns (DAMPs) to further amplify the
“cytokine storm” and existing airway inflammation [8,16,17].

Lytic cell death is an inflammatory cell death caused primarily by two cellular mechanisms:
pyroptosis and necroptosis [12,13,18]. Pyroptosis occurs as a sequela of inflammasome activation
through the downstream activity of Caspase-1 on Gasdermin D, the central component of pyroptotic
membrane pore formation leading to osmotic-induced membrane rupture [12,19]. Caspase-1 also
causes cleavage of pro-IL-1β into mature IL-1β, a process not intrinsically linked to potential
pyroptotic cell death. Necroptosis occurs through the activity of the necrosome, a complex of
three key proteins: receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting
serine/threonine-protein kinase 3 (RIPK3), and mixed lineage kinase domain like pseudokinase
(MLKL) [13,20,21]. However, necroptosis can also occur via a RIPK1-independent mechanism following
activation of the RIPK3-MLKL pathway [22–24]. Activation of MLKL occurs via phosphorylation by
RIPK3, leading to migration of the activated form of MLKL to the plasma membrane to create pores for
osmotic rupture.

Our lab has previously demonstrated the role of RSV infection in inflammasome activation
and IL-1β release in macrophages [25,26]. Since inflammasome activation serves as a precursor for
pyroptosis-mediated lytic cell death [12], these results suggest that pyroptosis may be involved in
lytic cell death of RSV-infected macrophages. Although recent studies have demonstrated necroptosis
as the functional pathway in recruited neutrophilic cell death during RSV infection [27], lytic cell
death mechanisms are both pathogen and cell-specific. While macrophages play a pivotal role
in the development of airway inflammation during RSV infection [28,29], the specific roles of
necroptosis and pyroptosis in inducing lytic cell death in RSV-infected macrophages are not presently
known. Additionally, reactive oxygen species (ROS) play an important role in RSV infection and
pathogenesis [30,31]. Our lab and others have demonstrated a role of ROS in regulating infection and
innate immune responses in RSV-infected macrophages [25,32]. However, the role of ROS in lytic cell
death during RSV infection has not yet been investigated.

In the present study, we demonstrated that RSV-infected macrophages induce both pyroptosis
and necroptosis. Pyroptosis was induced via Caspase-1 following activation of the ASC-NLRP3
inflammasome. We also demonstrated that necroptosis induces lytic cell death in RSV-infected
macrophages through the RIPK3-MLKL pathways. Moreover, we show that ROS play a key role
in positively regulating lytic cell death of RSV-infected macrophages. These results indicate that
both pyroptosis and necroptosis are involved during ROS-dependent RSV-induced lytic cell death
in macrophages.

2. Materials and Methods

2.1. Virus and Cells

Human respiratory syncytial virus (RSV; A2 strain) was purified, as described previously [25,26,33–35].
Recombinant human RSV expressing mKate2 protein (RSV-mKate2) was propagated from pSynk-A2
as described previously [36,37]. pSynk-A2 and helper plasmids were provided by Dr. Martin Moore
(Emory University) and BSRT7/5 cells were provided by Dr. Ursula Buchholz (National Institutes of
Health). The human monocyte cell line (THP-1) (ATCC, Manassas, VA, USA; catalog no. TIB-202) was
cultured in 1640 RPMI, 10% FBS (Fetal Bovine Serum), 100 IU/mL Penicillin, 100 µg/mL Streptomycin,
1 mM sodium pyruvate, 10 mM HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid], and 50 µM
β-mercaptoethanol (Sigma Aldrich, St. Louis, MO, USA). THP-1 cells were plated in 48 well plates at a
concentration of 2 × 105 cells/well, differentiated by treatment with 100 nM phorbol 12-myristate 13-acetate
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(PMA) (Sigma Aldrich), and allowed to incubate for 24 h. Undifferentiated, unattached cells were then
removed by washing with PBS after 24 h and cells were allowed to incubate for an additional 24 h in the
PMA-free medium prior to infection. ASC-deficient THP-1 (THP-1-ASC-def) cells (catalog # thp-dasc),
NLRP3-deficient THP-1 (THP-1-NLRP3-def) cells (catalog # thp-dnlp), and positive-control THP-1 wild-type
(THP-1-WT) cells (catalog # thp-null) were purchased from InvivoGen, San Diego, CA, USA.

2.2. Cell Treatment and Infection

Differentiated THP-1 cells were pre-treated with the reconstitution vehicle (vehicle control) or a
specific inhibitor for 2 h. After 2 h pre-treatment, cells were infected with RSV (Multiplicity of infection
or MOI = 1) as described previously [25,26,33–35]. Briefly, cells were incubated with RSV for 1.5 h in a
serum-free, antibiotic-free OPTI-MEM media (GIBCO, Waltham, MA, USA). Following adsorption,
cells were washed with PBS and infection was continued in the presence of serum containing complete
media with either vehicle control or the inhibitors. In order to analyze IL-1β production following RSV
infection, THP-1-WT, THP-1-ASC-def, and THP-1-NLRP3-def cells were infected with RSV (MOI = 1)
for 16 h. Cells were treated with the ROS inhibitor diphenyleneiodonium chloride (Enzo, Farmingdale,
NY, USA, catalog # BML-CN240-0010) (10 µm), Caspase-1 inhibitor Ac-YVAD-CHO (Enzo, catalog
# ALX-260-027) (20 or 40 µm), Z-VAD-FMK Pan-caspase inhibitor (Invivogen, catalog # tlrl-vad)
(25 or 50 µm), RIPK3 inhibitor GSK ‘872 (Tocris, Bristol, UK, catalog #6492) (20 or 40 µM), MLKL
inhibitor necrosulfonamide (Tocris, catalog # 5025) (10 or 20 µm). Caspase-3 inhibitor Ac-DEVD-CHO
(Sigma Aldrich, catalog # A0835) (100 µM). IL-1β production from THP-1-WT, THP-1-ASC-def,
and THP-1-NLRP3-def cells was measured following treatment of cells with LPS (Invivogen, catalog #
tlrl-eblps) (100 ng/mL) for 4 h, followed by nigericin (Invivogen, catalog # tlrl-nig) (15 µM) treatment
for 30 min. In some experiments DMSO (Dimethyl sulfoxide) (Sigma Aldrich) was used as a vehicle
and vehicle control.

2.3. Western Blotting

Cell lysates collected from mock and RSV-infected macrophages were subjected to Western Blot
analysis to detect caspase-3 cleavage following caspase-3 activation. Caspase-3 cleavage was analyzed
by performing Western blotting with caspase-3 antibody (cell signaling technology, Danvers, MA,
USA, catalog # 9662). The actin antibody was purchased from Bethyl Laboratories, Montgomery, TX,
USA (catalog # A300–485A). In some experiments, THP-1 cells were pre-treated with caspase-3 inhibitor
Ac-DEVD-CHO (100 µM) for 2 h, followed by 48 h treatment with 1 µM, 2 µM, and 5 µM Thapsigargin
(Cayman chemicals, Ann Arbor, MI, USA, catalog # 10522). THP-1 cells infected with RSV-mKate2
(MOI = 2) were subjected to Western blot analysis with anti-RFP antibody (RF5R) (ThermoFisher
Scientific, Waltham, MA, USA, catalog # MA5-15257).

2.4. ELISA

IL-1β levels in the medium supernatant were assessed by using an IL-1β specific ELISA kit
(Invitrogen, Carlsbad, CA, USA, catalog # 88-7261-22).

2.5. LDH Assay

The LDH-Cytotoxicity Assay Kit II was purchased from Biovision, Milpitas, CA, USA (Catalog #
K313-500) and used per manufacturer instructions. Based on the manufacturer’s instruction, we used
cell lysates as a high control. For the assay, medium supernatant collected from the mock infected and
RSV-infected cells were incubated with LDH Reaction Mix. At the high control (i.e., the cell lysates as
pointed above) absorbance of 2.0 OD (optical density), the absorbance of the experimental samples
(i.e., the medium supernatants from mock and RSV-infected cells) was measured at 450 nm by using a
micro-plate reader. LDH release values shown in Figures 2b, 3a,b, 4a,f and 5 were calculated based on
the following formula:
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(a) “RSV + vehicle” values were calculated by subtracting OD of vehicle treated RSV-infected cells
from OD of vehicle treated mock cells.

(b) “RSV + inhibitor” values were calculated by subtracting OD of inhibitor treated RSV-infected
cells from OD of inhibitor treated mock cells.

The LDH release value shown in Figure 4d was calculated based on the following formula:

(a) “Null + RSV” value was calculated by subtracting OD of RSV-infected null cells from OD of mock
null cells.

(b) “ASC def + RSV” value was calculated by subtracting OD of RSV-infected ASC def cells from OD
of mock ASC def cells.

(c) “NLRP3 def + RSV” value was calculated by subtracting OD of RSV-infected NLRP3 def cells
from OD of mock NLRP3 def cells.

2.6. Statistical Analysis

LDH release data were statistically analyzed using the Student’s t-test in Graphpad PRISM
software (version 8.3.0).

3. Results

3.1. RSV Induces Lytic Cell Death in Macrophages

RSV mediated lytic cell death has not been investigated in macrophages. Therefore, we used the
human monocyte THP-1 macrophage cell line to study lytic cell death following RSV infection. First,
we evaluated THP-1 cell susceptibility to RSV infection by infecting these cells with a recombinant
RSV that expresses mKate2 protein (RSV-mKate2) [36,37]. RSV infection was monitored in THP-1 cells
by performing Western blotting with anti-RFP antibody which detects the mKate2 protein. THP-1 cells
are susceptible to RSV infection since we detected expression of mKate2 in THP-1 cells as early as 4 h
post-infection (Figure 1a).
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Figure 1. Lactate dehydrogenase (LDH) release during respiratory syncytial virus (RSV) infection of the
human monocyte cell line (THP-1) macrophages. (a) THP-1 macrophages infected with RSV-mKate2
(MOI = 2) for 0 h–16 h were subjected to Western blotting with anti-RFP antibody. Western blot data
shown is representative of three independent experiments with similar results. (b) THP-1 macrophages
were infected with RSV (MOI = 1) and LDH release was measured at 4 h, 8 h, 12 h, 16 h, and 24 h
post infection (n = 16 technical replicates from two independent experiments). % LDH release was
calculated by using high control (cell lysate) value as 100% LDH release. * p and ** p ≤ 0.05 compared
to mock using a Student’s t-test.
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Lactate dehydrogenase (LDH) is released from cells as a consequence of lytic cell death and can
be readily quantified using an LDH assay. Therefore, lytic cell death was measured by analyzing the
levels of LDH in the medium supernatants of RSV-infected THP-1 macrophages. In order to study lytic
cell death kinetics following RSV infection, we measured LDH release from RSV-infected THP-1 cells at
4 h, 8 h, 12 h, 16 h, and 24 h post infection. Our results revealed 16 h post-infection as an optimal time
point for LDH release from RSV-infected cells (Figure 1b) and we therefore chose a 16h post-infection
time point for subsequent experiments.

3.2. RSV Mediated LDH Release Is Mainly Due to Lytic Cell Death

Cell death may occur from lytic (pyroptosis and necroptosis) or non-lytic (apoptosis) mechanisms.
Since apoptosis is a non-lytic mechanism of cell death, LDH release from the cytoplasm is considered
minimal. Although the apoptosis inhibitor Ac-DEVD-CHO efficiently blocks apoptosis in macrophage
cell lines like THP-1 [38], it has no effect on LDH-releasing macrophages undergoing lytic cell
death [39,40]. This key distinction allows for the in vitro use of an LDH assay to broadly characterize
non-lytic from lytic cell death mechanisms. Nevertheless, the role of apoptosis in LDH release was
explored in RSV-infected THP-1 macrophages through inhibition of caspase-3, the key executioner
apoptosis caspase in both extrinsic and intrinsic pathways. Caspase-3 is indeed activated by RSV in
THP-1 cells as we observed caspase-3 cleavage, a hallmark of caspase-3 activation, in RSV-infected
cells (Figure 2a). Inhibition of caspase-3 by Ac-DEVD-CHO led to only 18% reduction in LDH release
from RSV-infected THP-1 cells (Figure 2b). The activity of Ac-DEVD-CHO was confirmed through
Western blot analysis showing marked inhibition of caspase-3 cleavage in the presence of the apoptosis
inducer thapsigargin (TG) (Figure 2c).

The loss of LDH release following caspase-3 inhibition during RSV infection could be attributed
to possible mechanistic crosstalk between apoptosis and necroptosis and/or induction of secondary
necroptosis. In the absence of scavenger cells to complete phagocytosis of apoptosis-initiated cells,
cells may undergo secondary necroptosis with similar morphological and chemical changes as found
in primary necroptosis: cell membrane permeability, lysosomal rupture, and cellular swelling [41–44].
Caspase-8 activation can induce caspase-3 dependent apoptosis but can also induce caspase-3 cleavage
of Gasdermin E similar to that seen in caspase-1 dependent pyroptosis through the cleavage of
Gasdermin D [45]. This form of pyroptosis, termed incomplete pyroptosis, may account for the loss of
LDH release when caspase-3 is inhibited. Nevertheless, our studies demonstrated that LDH release
from RSV-infected macrophages is primarily due to lytic forms of cell death (i.e., pyroptosis and
necroptosis) rather than apoptosis.

3.3. Roles of RIPK3-MLKL in RSV-Induced Necroptosis

First, we investigated the potential role of necroptosis during lytic cell death of RSV-infected
macrophages. Necroptosis occurs through the activity of the receptor-interacting serine/threonine-protein
kinase 3 (RIPK3) and mixed lineage kinase domain like pseudokinase (MLKL) pathway [13,46]. Activation
of RIPK3 recruits and phosphorylates MLKL [47], which oligomerizes to form a pore-forming structure
that migrates to the cell membrane and initiates cell death. We therefore used RIPK3 and MLKL inhibitors
individually to identify the key mechanistic components of the necroptotic pathway. To investigate RIPK3′s
role, we treated THP-1 macrophages with the RIPK3 specific inhibitor GSK’872 which binds directly to its
kinase domain. GSK’872 treatment resulted in a dose-dependent, significant 17% and 54% reduction in
lytic cell death at the 20 µM and 40 µM concentrations, respectively (Figure 3a). Conversely, inhibition of
RIPK1 by necrostatin-1 marginally reduced LDH release from RSV-infected macrophages (data not shown).
This result suggests RIPK3 is the major kinase during RSV-mediated necroptosis induction in macrophages.
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activated caspase-3. (b) Human THP-1 macrophages were infected with RSV (MOI = 1) in the presence 

Figure 2. LDH release during RSV infection of macrophages is primarily due to lytic cell death.
(a) Human THP-1 macrophages infected with RSV (MOI = 1) for 0 h–16 h were subjected to Western
blotting with anti-caspase-3 antibody that can detect both the full length and cleaved fragments
of activated caspase-3. (b) Human THP-1 macrophages were infected with RSV (MOI = 1) in the
presence of either vehicle (water) or the caspase-3 inhibitor Ac-DEVD-CHO (100 µM). LDH release
was measured (at OD of 450 nm) at 16 h post-infection infection (n = 16 technical replicates from two
independent experiments). * p ≤ 0.05 using a Student’s t-test. (c) Untreated (UT) and THP-1 cells
treated with indicated concentrations of thapsigargin (TG) in the presence of either water (vehicle
control) or caspase-3 inhibitor Ac-DEVD-CHO (100 µM) for 48 h were subjected to Western blotting
with anti-caspase-3 antibody that can detect both the full length and cleaved fragments of activated
caspase-3. TG is soluble in DMSO and therefore, a lane for DMSO + water was included for the Western
blot analysis. Western blot data is representative of two-three independent experiments with similar
results. Caspase-3i: caspase-3 inhibitor Ac-DEVD-CHO.

Next, the effect of the MLKL inhibition was investigated through the treatment of THP-1 cells with
the MLKL inhibitor necrosulfonamide. While necrosulfonamide does not prevent phosphorylation
of MLKL by RIPK3, it does bind to MLKL at its cysteine residue site and prevents migration of the
polymerized MLKL complex to the cell membrane, thereby inhibiting cell lysis. Treatment of the cells
with necrosulfonamide resulted in a 64% reduction in lytic cell death (Figure 3b). Thus, our results
with necrosulfonamide demonstrated a positive regulatory role of MLKL during lytic cell death of
RSV-infected macrophages.

3.4. RSV Induces Caspase-1 Dependent Pyroptosis

IL-1β production as a result of RSV-induced ASC-NLRP3 inflammasome activation in
macrophages [25,26] and lung epithelial cells [48] has been well-documented. However, the role of
ASC-NLRP3 inflammasome in pyroptotic cell death during RSV infection in macrophages remains
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undetermined. We investigated the potential role of the ASC-NLRP3 inflammasome in RSV-induced
pyroptotic cell death through the caspase-1 inhibitor Ac-YVAD-CHO. Caspase-1 is activated by
the multimeric ASC-NLRP3 inflammasome complex [49,50]. Treatment of RSV-infected THP-1
macrophages with two concentrations of Ac-YVAD-CHO, a caspase-1 inhibitor, led to a dose-dependent
decrease in LDH release. At the highest concentration, lytic cell death decreased in the inhibited cells by
46% (Figure 4a). It is likely that the remaining 55% lytic cell death occurs via necroptosis since inhibition
of the necroptotic pathway by RIPK3 inhibitor led to a 54% loss of lytic cell death (Figure 3a). However,
the observed decrease in lytic cell death solely with caspase-1 inhibition does indicate the role of the
caspase-1 dependent pyroptosis pathway in promoting lytic cell death in RSV-infected macrophages.
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Figure 3. Necroptotic cell death of RSV-infected macrophages via RIPK3-MLKL pathway. (a) Human
THP-1 macrophages were infected with RSV (MOI = 1) in the presence of either vehicle (DMSO) or
RIPK3 inhibitor GSK’872 (20 µM and 40 µM). LDH release was measured (at OD of 450 nm) at 16 h
post-infection (n = 16 technical replicates from two independent experiments). * p ≤ 0.05 using a
Student’s t-test. (b) Human THP-1 macrophages were infected with RSV (MOI = 1) in the presence
of either vehicle (DMSO) or MLKL inhibitor Necrosulfonamide (20 µM). LDH release was measured
(at OD of 450 nm) at 16h post-infection (n = 14 technical replicates from two independent experiments).
* p ≤ 0.05 using a Student’s t-test.
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Figure 4. Caspase-1 and ASC-NLRP3 inflammasome is required for pyroptotic cell death of macrophages
during RSV infection. (a) Human THP-1 macrophages were infected with RSV (MOI = 1) in the
presence of either vehicle (DMSO) or caspase-1 inhibitor (caspase-1i) Ac-YVAD-CHO (20 µM and
40 µM). LDH release was measured (at OD of 450 nm) at 16 h post-infection infection (n = 12 technical
replicates from two independent experiments). * p ≤ 0.05 using a Student’s t-test. (b) Wild-type (null),
ASC deficient (ASC def), and NLRP3 deficient (NLRP3 def) THP-1 macrophages were treated with LPS
(100 ng/mL) for 4 h, followed by 30 min treatment with nigericin (15 µM). IL-1β release was measured
by ELISA (n = 16 technical replicates from two independent experiments). * p and ** p ≤ 0.05 using
a Student’s t-test. (c) Null, ASC def, and NLRP3 def THP-1 macrophages were infected with RSV
(MOI = 1). At 16 h post-infection, IL-1β release was measured by ELISA (n = 16 technical replicates from
two independent experiments). * p and ** p≤ 0.05 using a Student’s t-test. (d) Null, ASC def, and NLRP3
def THP-1 macrophages were infected with RSV (MOI = 1). LDH release was measured (at OD of
450 nm) at 16 h post-infection infection (n = 16 technical replicates from two independent experiments).
* p and ** p ≤ 0.05 using a Student’s t-test. (e) Null, ASC def, and NLRP3 def THP-1 macrophages were
infected with RSV-mKate2 (MOI = 2) for 16 h. Equal levels of total protein from the cell lysates of Null,
ASC def, and NLRP3 def cells were subjected to Western blotting with anti-RFP antibody. Western
blot data shown is representative of three independent experiments with similar results. (f) Human
THP-1 macrophages were infected with RSV (MOI = 1) the presence of DMSO (vehicle control),
RIPK3-dependent necroptosis inhibitor GSK’872 (40 µM), Caspase-1 dependent pyroptosis inhibitor
ZVAD-FMK (50 µM), or the combination of these inhibitors (GSK ‘872 + ZVAD-FMK). LDH release was
measured (at OD of 450 nm) at 16 h post-infection (n = 14 technical replicates from two independent
experiments). * p ≤ 0.05 using a Student’s t-test.
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3.5. RSV Induces ASC-NLRP3 Inflammasome Dependent Pyroptosis

Given the role of caspase-1 in lytic cell death induction during RSV infection of macrophages
(Figure 4a), we further sought to determine the role of individual inflammasome complex components
in the induction of pyroptosis. The inflammasome is a multimeric protein complex composed of a
“backbone” protein NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), an adaptor protein
ASC (apoptotic-associated speck-like protein containing a CARD) and pro-caspase 1. Activation
of the inflammasome first requires priming by a PAMP (pathogen-associated molecular patterns,
e.g., LPS) that activates the corresponding PRR (pattern recognition receptor, e.g., toll-like receptor
4 or TLR4). This “first signal” induces upregulation of genes for pro-IL-1β, NLRP3, and other
pro-inflammatory cytokines [49,50]. If a second signal is then encountered (e.g., reactive oxygen species,
K+ efflux, etc.), the inflammasome components assemble through CARD-CARD and PYD-PYD domain
interactions [49,50]. In the case of the ASC adaptor protein, this CARD-CARD interaction allows
cleavage of pro-caspase-1 to generate active caspase-1. While caspase-1 is considered the rate-limiting
step in the cleavage of pro IL-1β to active IL-1β, its other role involves the cleavage of Gasdermin-D
and induction of pyroptotic cell death. Despite the dual role of caspase-1, production of IL-1β is not
intrinsically linked to eventual pyroptotic cell death.

To further characterize the role of inflammasome activation in inducing pyroptotic lytic cell
death of RSV-infected macrophages, we used ASC- or NLRP3-deficient THP-1 cells and THP-1 control
(wild type null) cells. ASC- and NLRP3- deficient cells are defective in inflammasome activation and
we utilized these cells previously to assess the role of the inflammasome during human parainfluenza
virus-3 infection [51]. As expected, due to the inability of ASC- and NLRP3- deficient cells to activate
the inflammasome, these cells failed to produce IL-1β in the presence of the well-known ASC-NLRP3
inflammasome inducer LPS (first signal) and nigericin (second signal) (Figure 4b). Similarly, infection
of these cells with RSV yielded a drastic loss of IL-1β production since NLRP3 and ASC are required
for RSV-mediated inflammasome activation (Figure 4c) [25]. To evaluate the role of the NLRP3-ASC
inflammasome in RSV induced lytic cell death, we infected ASC- or NLRP3-deficient THP-1 cells and
THP-1 control null cells with RSV and measured LDH release. NLRP3-deficient and ASC-deficient
cell infection resulted in drastic loss of lytic cell death (Figure 4d), consistent with their central
role in the inflammasome and caspase-1 activation. LDH release was inhibited by 72–75% in ASC-
and NLRP3-deficent macrophages (Figure 4d). To investigate the infection status of these cells,
we infected control null, ASC-deficient, and NLRP3-deficent cells with mKate2-expressing RSV
(mKate-2-RSV) [36,37]. We detected similar levels of mKate2 protein in deficient macrophages and
control cells (Figure 4e). Therefore, loss of IL-1β production (Figure 4c) and LDH release (Figure 4d)
from RSV-infected ASC- and NLRP3-deficient cells were not due to reduced infectivity of these
cells compared to the control (null) cells. These results demonstrate the critical role of ASC-NLRP3
inflammasome-dependent caspase-1 activation in promoting pyroptotic cell death in RSV-infected
macrophages. It is important to mention that the lack of ASC and NLRP3 led to 72–75% inhibition
(Figure 4d) in LDH release compared to the approximately 54% inhibition (Figure 3a) observed with
necroptosis inhibitor targeting RIPK3. Thus, it is plausible that the ASC-NLRP3 inflammasome may
also partially contribute (by 20–25%) to activation of the necroptosis pathway during RSV infection.
Indeed, a role of ASC-NLRP3 inflammasome in inducing RIPK3-MLKL mediated necroptosis has been
recently reported [45].

The pan-caspase inhibitor ZVAD-FMK inhibits pro-apoptotic caspase-3 and pro-pyroptotic
caspase-1. ZVAD-FMK also blocks caspase-8, an inhibitory caspase in the necroptotic pathway.
Therefore, blocking caspase-8 activity by ZVAD-FMK leads to induction of necroptosis through
removal of its inhibitory activity on RIPK3 [52,53]. Despite this potential inductive effect, ZVAD-FMK
(50 µM) treatment led to a marked decrease in LDH release (Figure 4f). We observed 52% lytic cell
death inhibition with ZVAD-FMK treatment. The combined roles of pyroptosis and necroptosis were
further investigated through treatment of RSV-infected macrophages with a combination of GSK’872
(40 µM) and ZVAD-FMK (50 µM), addressing both RIPK3-dependent necroptosis and caspase-1
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dependent pyroptosis in induction of lytic cell death, respectively (Figure 4f). The treatment of infected
macrophages with the combination of these inhibitors was compared to the effect of individual inhibitor
treatment alone. Inhibition of RIPK3 via GSK’872 resulted in a 47% reduction in LDH release (Figure 4f)
consistent with previous results highlighting the significance of RIPK3 in induction of necroptosis
(Figure 3a). Treatment with ZVAD-FMK resulted in a 52% reduction in LDH release (Figure 4f).
Treatment of RSV-infected macrophages with the combination of these inhibitors, however, resulted in
a 77% reduction in lytic cell death (Figure 4f). Together, our studies have uncovered the RIPK3-MLKL
necroptotic pathway and ASC-NLRP3-caspase-1 pyroptotic pathway as key mechanisms that facilitate
lytic cell death of macrophages during RSV infection.

3.6. Role of ROS in RSV-Induced Lytic Cell Death

Reactive oxygen species (ROS) such as hydrogen peroxide and hydroxyl ions are created through
the reduction of oxygen during molecular processes. ROS play an important role in both pyroptosis and
necroptosis [54–60]. In pyroptosis, ROS commonly serve as the second signal leading to inflammasome
activation, which forms as a precursor to caspase-1 activation, Gasdermin D cleavage, and subsequent
membrane rupture. ROS is induced during RSV infection and has been previously shown to trigger
NLRP3 inflammasome activation in RSV-infected macrophages [25]. Additionally, recent studies have
illustrated that ROS positively regulates both RIPK1-dependent [54,59] and RIPK1-independent [24]
necroptosis following activation of RIPK3-MLKL pathway. Thus, it is possible that ROS may also
regulate lytic cell death processes during RSV infection in macrophages by modulating both pyroptosis
and necroptosis. To determine if inhibition of ROS would dampen lytic cell death, THP-1 cells were
treated with diphenyleneiodonium chloride (DPI), a potent ROS inhibitor. Blocking ROS during RSV
infection resulted in a 72% decrease in LDH release (Figure 5). This result highlighted the pivotal role
of ROS in promoting lytic cell death in RSV-infected macrophages.
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Figure 5. Reactive oxygen species (ROS) regulates lytic cell death of RSV-infected macrophages. Human
THP-1 macrophages were infected with RSV (MOI = 1) in the presence of either vehicle (DMSO) or ROS
inhibitor diphenyleneiodonium chloride (DPI) (10 µM). LDH release was measured (at OD of 450 nm)
at 16 h post-infection (n = 16 technical replicates from two independent experiments). * p ≤ 0.05 using
a Student’s t-test.

4. Discussion

RSV is an enveloped, single stranded, non-segmented, and negative-sense RNA-encoding virus
in the Pneumoviridae family. RSV is a major cause of inflammatory respiratory disease in at-risk
populations including infants, toddlers, the elderly, and immunocompromised people worldwide [1–3].
Secondary bacterial infections frequently exacerbate clinical disease through amplified inflammation,
accumulation of necrotic epithelial and immune cellular debris, and pulmonary edema resulting
in extended hospitalizations and even death. Cellular debris generated due to cell lysis directly
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contributes toward physical bronchiolar obstruction [15]. In addition, the release of cellular components
(e.g., ATP, S100A9 protein, 25-hydroxycholesterol) during cell lysis act as DAMPs to further drive
the amplification of inflammation through activation of pro-inflammatory signaling cascades in the
surrounding tissue-resident cells [8,16,17,35]. Together, this positive feedback cycle results in plugs
of accumulating dead epithelial and immune system cells, their cellular fragments and recruited
inflammatory cells within the lumen of airways. Given the lack of a vaccine despite extensive efforts
and few effective anti-viral treatments, management of RSV-induced bronchiolitis and pneumonia
may rest in treatment of the response rather than the cause.

RNA viruses like influenza A virus induce lytic cell death via both pyroptosis and necroptosis [61–63].
However, the exact mechanism of lytic cell death in RSV-infected macrophages was unknown. In this study,
we investigated the individual roles of pyroptosis and necroptosis in lytic cell death of macrophages during
RSV infection. Neutrophils, the other major immune cell recruited in RSV infection, have recently been
shown to undergo necroptosis after infection [27]. This same study showed that RSV induces the production
of ROS in neutrophils. Although macrophages are indispensable for the early innate immune inflammatory
response during RSV infection, no studies thus far have characterized the lytic cell death pathways or the
role of ROS in their induction during RSV infection of macrophages. In the current study, we identified both
an ASC-NLRP3 inflammasome-caspase 1 dependent pyroptotic pathway and RIPK3-MLKL necroptotic
pathway contributing to lytic cell death of RSV-infected macrophages. These studies suggest an important
role of both necroptosis and pyroptosis in contributing to RSV-associated airway disease by amplifying lung
inflammation through the generation of cellular debris following lysis of RSV-infected macrophages.

Cell death mechanisms are categorized as either non-lytic and therefore non-inflammatory
or lytic and therefore pro-inflammatory, respectively. Apoptosis is the best characterized of the
non-lytic cell death processes. Little, if any, inflammation is generated from this form of cell death.
In contrast, the mechanisms of both pyroptosis and necroptosis are lytic and therefore pro-inflammatory.
However, these mechanisms have distinct differences in their molecular machinery that create
potential opportunities for drug target development. Pyroptosis occurs as a sequela of inflammasome
mediated downstream activity of caspase-1 on Gasdermin D, the central component of pyroptotic
membrane pore formation, leading to osmotic-induced membrane rupture [12,19]. Necroptosis occurs
through the activity of the necroptosome, a complex of three key proteins: receptor-interacting
serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3
(RIPK3), and mixed lineage kinase domain like pseudokinase (MLKL) [13,20,21]. Central to necroptosis
is the stepwise phosphorylation of each of these components. Autophosphorylation of RIPK1 results
in the phosphorylation and activation of RIPK3. Activated RIPK3 in turn recruits and phosphorylates
MLKL, which oligomerizes to form the pore-forming compound that migrates to the cell membrane
and creates pores like that in pyroptosis. However, necroptosis can also be induced by a RIPK1-
independent mechanism, whereby RIPK3 complexes with either TRADD, DAI, or TRIF to self-activate,
culminating in MLKL activation and necroptosis [22–24]. Additionally, the ASC-NLRP3 inflammasome
can also directly activate RIPK3 (independent of RIPK1) leading to MLKL activation and subsequent
necroptosis [45]. Current in vivo therapy development efforts have revolved around inhibition of
principally necroptosis and its key components RIPK3 and MLKL [64–67]. Early study highlighted the
beneficial effects of RIPK3 and MLKL inhibitors on inflammation in animal models of disease ranging
from ischemic injury to autoimmune disorders and neoplasia [68,69]. Further investigation in the use
of these types of pharmaceuticals in infectious disease such as RSV-induced pneumonia is warranted
given the poor progress in vaccine development.

In the current study, we demonstrated that both pyroptosis and necroptosis are integral pathways
in the lytic cell death of macrophages infected with RSV. Using a caspase-1 inhibitor, we highlighted
the role of this enzyme in lytic cell death during pyroptosis. We also used NLRP3 and ASC deficient
THP-1 cells to demonstrate a key role of the NLRP3-ASC inflammasome in induction of pyroptosis.
In the studies involving the necroptosis pathway, we utilized inhibitors of RIPK3 and MLKL and
demonstrated that each is significant in the induction of lytic cell death in RSV-infected macrophages.
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We further investigated the role of ROS, a second signal for inflammasome activation and positive
modulator of RIPK3. Our studies revealed a critical role of ROS in promoting lytic cell death pathways
in RSV-infected macrophages.

Interestingly, both ASC- and NLRP3-deficient macrophages exhibited 72–75% loss of lytic cell
death following RSV infection (Figure 4d). In contrast, loss of lytic cell death with necroptosis
inhibitor (i.e., RIPK3 inhibitor) and pyroptosis inhibitor (i.e., caspase-1 inhibitor) was 54% and 46%,
respectively (Figures 3a and 4a). Thus, inhibition of lytic cell death with ASC- and NLRP3-deficient
cells was relatively higher compared to loss of lytic cell death following inhibition of RIPK3-mediated
necroptotic pathway. In light of a recent study showing RIPK3-MLKL necroptotic pathway induction
by ASC-NLRP3 inflammasome independent of caspase-1 [45], our result suggests a possibility
of ASC-NLRP3 inflammasome not only inducing pyroptosis during RSV infection but partially
contributing to necroptosis induction during infection via caspase-1 independent mechanism. It is
important to note that blocking pyroptosis by using caspase-1 inhibitor reduced lytic cell death by
46% (Figure 4a), which may infer that 46% inhibition in lytic cell death observed with ASC- and
NLRP3-deficent cells could be due to loss of pyroptosis, while the rest 26–29% could be due to loss
of necroptosis. Furthermore, it should be taken into consideration that difference in inhibition level
could arise due to two different approaches (i.e., using inhibitor treated cells vs. using deficient
cells) utilized to investigate pyroptosis vs. necroptotic lytic cell death. Thus, our results suggest that
RSV induced lytic cell death in macrophages occurs by both necroptosis and pyroptosis following
activation of the RIPK3-MLKL and ASC-NLRP3 inflammasome/caspase 1 pathways, respectively.
Furthermore, ASC-NLRP3 inflammasome may also play a role in partially inducing necroptosis via
caspase-1 independent mechanism.

Based on our results, we postulate several mechanistic scenarios leading to lytic cell death in
RSV-infected macrophages via pyroptosis and necroptosis. RSV activates TLR2 in macrophages and
triggers ROS generation in infected macrophages [25]. In fact, both TLR2 and ROS are required for
ASC-NLRP3 inflammasome activation in RSV-infected macrophages [25]. Thus, TLR2 activation by RSV
and ROS generation during infection will promote formation of ASC-NLRP3 inflammasome complex
that activates caspase-1 for Gasdermin-D mediated pyroptosis. RSV also activates TLR4 [70,71] and
TLR3 [72] in macrophages. TLR4 and TLR3 activation triggers a RIPK1-independent, TRIF-dependent
RIPK3-MLKL necroptotic pathway [22]. Thus, activation of TLR4 and TLR3 by RSV may result
in formation of a RIPK1-independent, RIPK3-TRIF complex that activates MLKL for necroptosis
induction. Furthermore, drastic reduction in lytic cell death in RSV-infected ASC- and NLRP3-deficent
macrophages suggests that the ASC-NLRP3 inflammasome may also play a partial role in inducing
necroptosis. This possibility exists since the ASC-NLRP3 inflammasome activated the RIPK3-MLKL
necroptotic pathway [45]. This occurred in caspase-1 deficient or caspase-1 inhibited cells [45]. Viruses
like influenza A virus and vaccinia virus encode proteins (e.g., NS1 of influenza A, serpins of vaccinia
virus) that can inactivate caspase-1 [73]. Thus, RSV may also encode protein(s) that disrupt caspase-1
activity during infection, thus triggering an ASC-NLRP3 inflammasome mediated activation of the
necroptotic pathway. In the future we will study whether RSV NS1 protein can also disrupt caspase-1
activity similar to influenza A NS1 protein. Additionally, analogous to its role in pyroptotic pathway,
ROS generated during RSV infection may contribute to necroptotic cell death via a RIPK1-independent,
TRIF-dependent RIPK3-MLKL necroptotic pathway, as shown previously [24].

In summary, our studies have demonstrated that both pyroptosis and necroptosis pathways are
involved in lytic cell death during RSV infection of macrophages and that ROS generated during
infection are involved in positively regulating lytic cell death of RSV-infected macrophages.
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