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Abstract: Next generation sequencing (NGS) platforms have the ability to generate almost limitless
numbers of sequence reads starting with a PCR product. This gives the illusion that it is possible to
analyze minor variants in a viral population. However, including a PCR step obscures the sampling
depth of the viral population, the key parameter needed to understand the utility of the data set for
finding minor variants. Also, these high throughput sequencing platforms are error prone at the
level where minor variants are of interest, confounding the interpretation of detected minor variants.
A simple strategy has been applied in multiple applications of NGS to solve these problems. Prior to
PCR, individual molecules are “tagged” with a unique molecular identifier (UMI) that can be used to
establish the actual sample size of viral genomes sequenced after PCR and sequencing. In addition,
since PCR generates many copies of each sequence tagged to a specific UMI, a template consensus
sequence (TCS) can be created from the many reads of each template, removing virtually all of the
method error. From this perspective we examine our own use of a UMI, called Primer ID, in the
detection of minor drug resistant variants in HIV-1 populations.

Keywords: drug resistance mutations; unique molecular identifier; primer ID; next generation
sequencing; HIV

1. Introduction

Sanger sequencing has been used for a number of years to look at HIV-1 genotypes and it
is the standard-of-care for assessing drug resistance in the viral population in a clinical specimen.
Sanger sequencing is interpreted by looking at peaks on a sequencing chromatogram. A single position
with peaks from two different bases is considered a mixture of genotypes at that position with both
sequences being recorded. There is general agreement that Sanger sequencing is sensitive at detecting
such mixtures down to about an 80/20 mix, or a sensitivity of detecting a 20% minor variant [1,2].
Next generation sequencing (NGS) has the capacity to generate almost limitless data in the form of
large numbers of sequence reads. This has raised the possibility of detecting minor variants at a
frequency much lower than 20%, with many researchers arbitrarily choosing a 1% cut-off as a new
limit of detection for minor variants. However, these discussions invariably omit a critical piece of
information that is essential for estimating the abundance of variants within the viral population,
which is the number of viral genomes that were actually sequenced. The absence of this parameter,
and the error-prone nature of NGS platforms, is a recipe for creating data sets that are contaminated
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with artifacts that form the basis for erroneous conclusions. From this perspective we review the
limitations of sequencing HIV-1 populations using NGS and show how the incorporation of a unique
molecular identifier (UMI), which we originally called Primer ID [3,4], at the cDNA synthesis step
can easily resolve these serious limitations and give high quality and easily interpreted data with
a known depth of population sampling. The UMI is a random sequence tag incorporated into the
cDNA synthesis primer. After PCR and sequencing, all sequences with the same UMI are recognized
as coming from the same original viral genome template. The total number of unique UMIs equals the
number of viral genomes actually sequenced (which determines the sensitivity of detection of minor
variants), and the pooling of sequences with the same UMI allows the creation of a highly accurate
template consensus sequence (TCS) for each individual viral genome that was actually sequenced.
Accomplishing both of these steps is essential in order to get NGS data sets that are useful for evaluating
low abundance variants.

2. The Number of Reads and Sequence Coverage Say Nothing about Sampling Depth of a Viral
Population after PCR

“How many pages are in that book?”
“Let me look at the last page; there are 500 pages in this book.”
“Make 100 copies of 5 pages and put them in a stack; how many pages are in the stack?”
“There are 500 pages in the stack.”
“How much information is in the stack compared to the book?”
“There are 500 pages in the stack.”
“I found 1% of M184V in my clinical specimen.”
“What is the denominator for that observation?”
“I had 100,000 reads with 200X coverage.”

In order to make a claim that a drug resistant variant is present at 1%, that implies that sufficient
sampling of a viral population has been done to detect variants that are present at 1% abundance,
or 1 in 100 (with 100 being the denominator). If your sample size is 10 viral genomes that were
actually sequenced, then it is absurd to claim sampling has been done that could detect a variant at
1%. Similarly, knowing nothing about the sampling depth makes claims of sensitivity nonsensical.
However, this scenario plays out every day in the use of NGS to detect minor HIV-1 variants.

PCR is both a blessing and a curse. It is a blessing because it allows us to generate enough nucleic
acid mass for downstream manipulation (like loading your favorite sequencer). It is a curse because
while we can run the sequencer and get parameters like number of reads and per position coverage,
PCR obscures the original sample size of the population that is giving rise to the sequence. There are
two powerful artifacts that contaminate deep sequencing data sets. First, because there are so many
sequencing reads of the PCR product, the data set consists mostly of reads and rereads of the same small
number of original viral genomic templates; for example, it is easy to get 100,000 reads of a PCR product
that originally came from 10 templates. The sampling depth of the population is 10 and not 100,000.
However, the information of true sampling depth is completely lost if there is no knowledge of the
number of templates actually sequenced. This is a phenomenon called PCR resampling and it creates
artificial homogeneity in the data set if the output is defined as the number of reads [5]. The second
serious artifact is that NGS data sets are the result of a trade-off of volume over accuracy; error rates
vary between platforms but can range between 1–10% errors. This creates artificial heterogeneity in
the data set. If one compensates for PCR resampling by collapsing to haplotypes (i.e., the number
of different sequences) then these high error rates create haplotypes that do not really exist, and with
some probability that they will appear at positions of known drug resistance markers. Also, collapsing
to haplotypes loses information about identical genomes that may have existed in vivo, a different
artifactual way of distorting the denominator that defines the sampling depth.
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3. The Sampling Depth Is Not the Viral Load

“How many genomes did you sequence?”
“The viral load was 10,000 copies per mL.”

Sequencing depth is determined by the number of genomes sequenced (the denominator), not
the concentration of viral RNA in the clinical specimen. An aliquot of 1 mL at 10,000 copies of RNA
per mL has the same number of RNA genomes as 0.1 mL of an aliquot at 100,000 copies of RNA per
mL (10,000 copies of viral RNA). The sampling depth can be no greater than the number of RNA
templates that were used at the beginning (and sadly the number that actually get sequenced is much
less than the input). Understanding the sampling depth of a viral population requires knowledge that
is obscured by multiple steps.

1. How many RNA templates (i.e., the number) were put into the cDNA reaction?
2. What fraction of the RNA templates were actually copied into cDNA?
3. What fraction of the cDNAs were utilized in the PCR product?
4. What fraction of the PCR product was sampled in the sequencing data set?

If you can account for the efficiency of all of these steps then you can make a true claim that
you know what the sampling depth of the viral population was, whether you sequenced 10 or 100
or 1000 genomes, regardless of how many sequencing reads you have. It is relatively easy to get
beyond thinking about the concentration of viral RNA in a sample to the number of RNA copies
(Volume × Concentration = Mass). However, it is difficult to account for the quality of sampling with
the other 3 steps above. Below we discuss the use of a unique molecular identifier (UMI), but as a
preview of its utility we will make two points. First, the highest sequencing efficiency we ever see is
in the range of 20% of the input RNA templates that actually get sequenced. That means under the
best circumstances however many genomes you want to sequence you need to put in five times that
number of viral RNA copies at the beginning. Sadly, usually the efficiency of template utilization is
even less. Everyone has the experience of having a failed sequencing run. In this case the template
utilization was 0. Thus, the efficiency of template utilization (i.e., the fraction of input genomes actually
sequenced) varies between 0 and 20%, with 5–10% being common when using clinical specimens.
We have also modeled step 4 above. When the viral genomes are sequenced by resampling on average
30 times (i.e., 30× coverage) then more than 90% of the genomes that were sequenced are represented
in the data set of total reads [6]. This is a useful parameter when deciding how many specimen libraries
to pool in a deep sequencing run to allow a sufficient number of reads for each specimen.

4. The Number of Genomes Actually Sequenced (the Denominator) Determines the Sensitivity
of Detection

“I didn’t detect any variants in that clinical specimen you gave me at 1% sensitivity.”
“How many genomes did you sequence to get that level of sensitivity?”
“I used 100 µL.”

Above we gave the example of the absurdity of claiming detection of a variant present at 1%
if only 10 viral RNA genomes were actually sequenced (even though there were 100,000 reads and
200× coverage). This gets at the issue of the sensitivity of detection as a function of sample size.
Here of course the sample size is the number of viral genomes actually sequenced, which forms the
denominator for the value of frequency (which times 100 gives the % abundance). There is a simple
way to approximately estimate the sensitivity of sampling with the goal of saying there was a 95%
chance of detection something that was present at X% abundance. If N is the sample size (here the
number of genomes actually sequenced) then:

Detection limit or detection sensitivity can be calculated based on upper 95% confidence limit for
the Binomial proportion when no event has been observed. In the R program we can use binom.test(0,N)
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to calculate the confidence interval using Clopper–Pearson method and use the upper limit as the
detection sensitivity for N number of sequences. For a quick assessment of data, we can use 300/N to
estimate the sampling sensitivity (in %) to detect a variant with 95% confidence.

Let us go back to our desire to claim 1% sensitivity. Using this formula, it is clear that a sample
size of 300 genomes sequenced is necessary to have 95% confidence that a variant present at a true
abundance of 1% is detected; on average you should detect it 3 times with a sample size of 300 but
because sampling is random you may detect it 1, 2, 3, 4, 5, etc., times but with a 95% chance of detecting
it at least once. A separate question is the accuracy of the estimate of abundance and this is determined
by a different parameter. If you detect something one time you do not have much information about
its true abundance. To estimate that value, it is important to detect a variant multiple times to be
able to put a confidence interval on its detected abundance. In this case if you had a sample size
of 300 viral genomes sequenced and you detected a variant 3 times you could report its presence
at 1% with a confidence interval of between 0.2% and 2.9% (Exact Binomial Test). If you wanted
to improve the accuracy of estimating true abundance when trying to detect a variant at 1% then
it is necessary to increase the number of observations by increasing the sample size; for example,
sequencing 3000 genomes and detecting the variant 30 times allows you to report a variant at 1%
abundance with a confidence interval of between 0.7% and 1.4%. We will remind you that every day,
people are using NGS to make claims of 1% sensitivity [7,8] without any knowledge of the number of
genomes sequenced.

5. How to Fool Yourself into Thinking Your NGS Protocol Gives You 1% Sensitivity

“I climbed Mt. Everest, it’s that hill over there.”
“Really? It doesn’t look very high.”
“Yes, but there is a sign on top that says ‘Mt. Everest’.”

It is easy to get any NGS run to document the presence of a variant at 1% abundance and with
very high accuracy. However, this is about the same as sticking a sign on a nearby hill that says
“Mt. Everest” and then claiming you climbed it—it is not a real-world situation.

The simple way to get a great estimate of abundance is to mix two samples at high viral RNA
concentrations and then sequence many genomes without even having to validate the number of
genomes sequenced. In the extreme one can mix PCR products or tissue culture supernatants containing
two viruses, one being at 1% abundance. There will be lots of independent copies of each variant that
make it into the sequencer and it will give very accurate abundance [9]. You have climbed Mt. Everest
with your NGS protocol proving you have the ability to detect variants at 1% abundance. However,
if you do the thought experiment of diluting the input of mixed RNA templates, at some point your
ability to measure the 1% variant will diminish. Using the Poisson distribution, you can calculate
that if you sequenced 100 genomes, 37% of the time you would fail to see the 1% variant, and if you
sequenced just 10 genomes then 90% of the time you would fail to detect the variant present at 1%.
Worse yet, you might record a sequencing error as being present at 1%. Welcome to the real-world
Mt. Everest.

Clinical specimens are challenging because the amount of material is limiting (i.e., the number
of RNA copies that actually go into the sequencing reaction), and the efficiency of sequencing the
RNA genomes varies between specimens and can be poor. Just because your protocol CAN detect 1%
abundance does not mean it DID detect 1% abundance with the last clinical specimen tested. Let us
take a typical real-world scenario. You get 100 µL of a sample that has 30,000 copies of HIV-1 RNA
per mL. “Volume X Concentration” tells you that you have 3000 copies of RNA. In your protocol you
extract the 100 µL and put half into a cDNA reaction (1500 copies of RNA). Without knowing the
efficiency of cDNA synthesis you then use only half of the cDNA product in the PCR (so a max of
750 possible copies). In reality your efficiency was not bad at 10% template utilization so you wind
up sequencing 75 original RNA templates. With this level of sampling you have 95% confidence of
detecting a variant at 4%. The next sample is exactly the same but the starting viral load is 15,000
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copies per ml, so your sensitivity of detection is 8% (with 95% confidence). You previously validated
that your method could detect variants at 1% with high accuracy using virus-containing tissue culture
variants. Do you report an absence of variants at 1% even though your true sampling sensitivity
varied between 4–8% sensitivity? That would be bad form. Equally bad is not to know the sensitivity
(i.e., the sampling depth) and report your results as if you had 1% sensitivity. You can go through this
exercise but cut the viral load by 10 (“looking for low abundance variants in samples with low viral
load”) and see again how this drifts into the realm of the absurd.

6. Population Skewing during PCR with Low Template Number

“Of all the people who started the marathon only the skinny people finished in under 3 h.”

If you use NGS of HIV-1 with clinical samples you probably have to admit to yourself that (i)
you do not know how many templates you actually sequenced, and (ii) you may have sequenced
only a small number of viral RNA genomes in at least a fraction of those samples. Using a UMI it is
possible to follow the fate of each cDNA molecule through PCR (the details of the introduction of the
UMI are described below). For this discussion just imagine you can watch the fate of each copy of
viral RNA that got copied into cDNA during the PCR. Each cDNA has a unique UMI but since PCR
amplifies each cDNA that UMI (and its attached cDNA) now appear as multiple copies and thus get
sequenced multiple times. However, not all cDNAs experience the PCR exactly the same, some get
amplified more, some less, giving rise to a distribution of the number of times each original cDNA is
represented in the final sequence data set, and as you sample the PCR product as molecules that got
sequenced, two variants present at the same concentration may not get sequenced an equal number of
times. In addition to this distribution there are two other features of the data set worth noting.

Figure 1 shows a typical distribution of unique UMIs (Primer IDs) by their frequencies in the
sequence reads. Without bias we would expect the distribution of UMI frequencies to fit a Gaussian
distribution simply due to template sampling of the PCR product during sequencing (simulated as the
red curve in the figure). However, the actual distribution of Primer IDs is wider than the simulated one,
suggesting that PCR skewing is also impacting the distribution of the frequencies of representation of
the original cDNA templates. In this example, two different cDNAs can vary by 10-fold in abundance
in the sequencing data because of the PCR skewing and PCR product sampling. Thus, if there is one
copy of an interesting sequence variant among the genomes that you actually sampled, its detected
abundance in the sequenced PCR product can be skewed 3-fold higher or 3-fold lower. We have been
able to approximate this outcome with a simple model. The model assumes that PCR is only 50%
efficient at including a template in each cycle of DNA synthesis. At the starting template number of
input cDNAs, only half are copied during the first PCR cycle meaning they are now at twice the copy
number as those not used as template. If this happens at each round you can see how some sequences
by chance become over-represented in the first few rounds of PCR while some by chance do not get
utilized in the first few round and become significantly under-represented. As the copy number of
each original template increases during PCR these differences average out, making just the first few
rounds problematic. Below we discuss how the use of a UMI corrects for this problem.

However, the use of a UMI introduces two types of artifacts in the sequencing data set that need
to be understood but that are easily dealt with. First, the error-prone sequencing platforms (and PCR
mis-incorporations) can introduce sequence errors into the UMIs themselves. Remember that we track
a single cDNA by its UMI and when the same UMI is seen multiple times in the PCR product we can
ascribe those reads as having come from the same original viral RNA template. Thus, when some
of these identical copies have a sequencing error in the UMI this makes it look as if it came from a
different cDNA (we have called these offspring). Fortunately, these errors are individually present at
low abundance, thus the true UMIs (tagging the original cDNAs) are present at much higher abundance
than the offspring UMIs in the data set. These offspring UMIs are seen at the low read number but
high total number of “unique” UMIs (green dots, left side of the distribution) in Figure 1. We have
developed an algorithm using the platform sequencing error rate and the sequence coverage depth to
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filter out the offspring UMIs (and their attached sequences) from the sequence data set to remove these
artifacts [4]. We simulated the highest possible frequency of the offspring UMI/PID given the highest
frequency of actual UMI and the raw sequencing error profile, and use this as a cut-off for artifactual
UMIs (blue dotted vertical line on Figure 1). However, using this cut-off we may sacrifice some real
UMIs as we can see the parent UMI distribution is overlapping with the offspring UMI distribution
(through a simulation) on Figure 1. The latest TCS pipeline gives the users more options to adjust the
cut-off value to include/exclude more UMI/PID around the offspring cut-offs.
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Figure 1. A Typical unique molecular identifier (UMI) (Primer ID) Frequency Distribution. The raw
sequence output from a MiSeq run was sorted for individual UMIs and the number of reads for each
UMI (after PCR) is plotted versus the number of UMIs with that read number. There is a large number
of UMIs with very small read numbers (green dots to the left of the curve) representing offspring Primer
IDs, i.e., Primer IDs generated from real Primer IDs by sequencing mistakes. The middle part of the
graph shows the distribution of real Primer IDs (blue dots) and the fact that they are present in unequal
numbers in the PCR product. This is not solely due to sampling of an otherwise equal distribution in
the PCR product as a simulation of the same amount of the Primer IDs in this dataset (851) sampled
37,177 times (equal to the number of total raw reads in this dataset) to give the same mean read number
as the observed distribution shows a much narrower spread (plotted as a red line in the figure). Finally,
there are a small number of “jackpot” Primer IDs to the right (orange dots) that represent extreme PCR
skewing and/or resampling of the Primer ID/UMI population. The blue dotted vertical line shows the
offspring cut-off based on a simulation.

The second bias we observe is that a few UMIs have very high read numbers (orange dots in the
figure at the right of the distribution). We believe these are present for one of two reasons (not mutually
exclusive) and the use of a UMI solves both potential problems. These could be extreme examples
of PCR skewing; since the use of a UMI allows all sequences with the same UMI to be collapsed it
does not matter if there are more or less of any one UMI, it is still counted just once. Alternatively,
when the UMIs are incorporated it is possible by chance for two different cDNAs to be synthesized
with the same attached UMI; in this case the high read number is really the sum of two different
cDNAs. However, one of the cDNAs will be represented with a higher number of sequences reads
(by chance, given there is a distribution) and the less abundantly read cDNA will just be lost when
sequences are collapsed to create a consensus sequence for that UMI. Since deep sequencing should be
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used to sequence dozens to thousands of RNA genomes, the loss of a few template sequences in the
data curation is not a significant problem.

7. Sources of Sequencing Error in NGS Protocols

“Look at all the snowflakes, it’s all so white and homogeneous.”
“Yes, but if you look closely each snowflake is different.”

Sanger sequencing remains the gold standard sequencing method in HIV DR clinical testing
because of its high accuracy, up to 99.99% per specimen [10]. In reality this is an “apparent” accuracy
since Sanger sequencing is generating a single consensus sequence of a bulk PCR product; minor errors
in the misincorporation of the wrong chain terminating nucleotide are hidden in the bulk of correct
incorporation such that a 1% error rate would go completely unnoticed. Unlike Sanger sequencing,
NGS is error-prone as sequencing devolves down to the single template level. The sources of sequencing
errors in NGS protocols can be from misincorporation by reverse transcriptase at the very first cDNA
synthesis step (about 1 in 10,000 nucleotides), nucleotide misincorporation, the sequencing platforms
themselves, and bioinformatics/correction pipelines. The method error rate at each final nucleotide
position can be as high as 1–10%, depending on the combination of library protocol, sequencing
platform, and bioinformatics tools. If NGS is used to generate a consensus sequence for a sample or
even to look for variants at 20% abundance, then it is likely to be comparable to the accuracy attained
using Sanger sequencing (we discuss why this might be below). However, the high method error
rate when trying to sequence individual viral genomes to sample the population raises huge concerns
about the accuracy of calling minority variants.

Another type of errors is from the template switching and recombination during PCR. This type
of error may not be noticed by some of the HIV NGS DR protocols that cannot obtain mutation
linkages, also known as mutation linkages lost at the library prep step through fragmentation. But it is
particularly important for those who study the correlations between different mutation sites.

In an effort to demonstrate the background noise of a typical HIV-1 NGS DR assay and its impact
on the appearance of minority variants, we analyzed two specimens as raw sequence reads and then
as template consensus sequence (TCS) reads using a UMI (Primer ID), with each viral RNA amplified
and sequenced independently three times. The raw sequences went through the same bioinformatics
pipeline to filter out low-quality reads (i.e., APOBEC3G/F hypermutations, frameshifts, and stop
codons) as the TCS reads. Figure 2. shows selected DRM positions in the RT region of the raw and
TCS reads. Panel (a) shows the data from viral RNA extracted from particles produced from the
8E5 cell line [11,12]. 8E5 cells are clonal with a single copy of a defective proviral DNA per cell,
thus the genomes in the particles produced by the 8E5 cells are genetically homogenous, making
it an ideal control for HIV-1 NGS DR assay. Using the raw sequence reads we detected “apparent”
DRMs across the sequenced HIV RT region in the range of 0.1–1%, with the M184I mutation breaking
through the 1% cut-off in the three replicates, which would have been reported as a minority DRM
by other protocols. However, in the TCS reads we did not detect any DRMs in this homogeneous
viral population. Since the use of a UMI allows an assessment of the number of templates actually
sequenced we could tell that we had an average detection sensitivity of 0.47% in the three different
sequencing runs. Panel (b) shows the comparison of raw sequence reads (top) with UMI/Primer ID
TCS reads (bottom) from a clinical sample we have previously described [13]. In all the three replicates,
we observed the L210W mutation in the raw reads with a frequency around 10% and agreeing well
among the replicates. In addition, we also saw several other DRMs above the 1% cut-off in the raw
reads. In the first replicate the raw sequence reads contained K65R at 2.1%. The same replicate also
had 1.2% Y181C and Y181I, and in different replicates V179F reached and F77L approached the 1%
cutoff. Comparison with the UMI/Primer ID TCS analysis of the same data reveals several important
points. First, we can see that the number of unique templates sequenced varied between 67 and 97.
This level of template sampling (present in the raw reads but only determined by the UMI) explains
why for these samples there is good agreement for the variant present in the 10% abundance range



Viruses 2020, 12, 850 8 of 13

(L210W). The detection of K65R at 2.1% abundance appears to be an artifact of analyzing the raw reads.
It is not present in the UMI TCS analysis; however, because of the limited number of TCS per replicate
(67–97) there is limited sensitivity to detect a variant at 2%. Another virtue of using a UMI is that since
the replicates are also independent samplings of the viral population they can be pooled to increase the
sensitivity (81 + 67 + 97 = 239; 1.5% sensitivity of detection with 95% confidence), further suggesting
the detection of K65R is an artifact. Y181C and Y181I were detected in at least one replicate in each
analysis suggesting they are really present but at such low abundance that their detection fluctuates in
the different samplings, somsething that can be inferred only once the number of templates sequenced
is known. Finally, the detection of V179F and F77L appear to be artifacts in the raw reads since even a
single detection linked to a UMI would have been recorded in the TCS analysis (remember, these are
the same data). This points to the very significant problem that in the raw reads the detection of Y181C
and Y181I may be correct but the inclusion of K65R, F77L, and V179F would inflate the detection of
minor variants without being able to distinguish which are true and which are false. From this analysis
it should be clear that the use of a UMI does not improve the depth of viral genome sampling but
rather reveals that depth of sampling allowing the data to be analyzed with appropriate rigor and
limits. Also, these were the errors we observed in this batch of raw sequences, this does not define the
errors that will be present in the next batch of raw sequences. A better strategy is to remove the errors
with the use of a UMI.
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Figure 2. Comparison of Selected HIV-1 DRMs In the RT Region Analyzed Using Raw Sequence Reads
or Template Consensus Sequences (TCS) Created Using Primer ID. (a) Sequencing of defective HIV-1
RNA from homogenous 8E5 virus. Top panel, analysis of DRMs in the raw sequence reads with the
number of reads from triplicate sequencing runs shown (color coded); bottom panel is the same data
analyzed using the Primer IDs in the data set to create TCS, with the number of TCS in each of the
replicates shown. The dashed line in the top panel is an arbitrary 1% cutoff often used for reporting
minor variants. The dashed line in the bottom panel is the average sampling depth (95% confidence
of detection) for each of the triplicate sequencing runs. DRMs detected in the raw reads are shown.
(b) Sequencing of HIV-1 RNA from a clinical specimen. These two panels are set up the same as in (a)
with the lesser number of TCS in the data set indicated in the low panel and thus the reduced sensitivity
of detection (dashed line).

There is one other point worth making in this type of analysis. As noted above, there is an
RT error rate during cDNA synthesis of about 1 nucleotide in 10,000 bases. Since these errors are
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incorporated at the time the sequence is linked to the UMI these cannot be corrected by downstream
manipulations. This appears to be the residual error rate we can detect using the UMI/TCS approach
as defined by sequencing the viral RNA produced from 8E5 cells (this number also includes RNA
pol II error rates during RNA synthesis). This error rate can be included in the analysis of the TCS.
For example, if the amplicon being sequenced is 500 bp then every 20 TCS will have 1 artifactual
nucleotide error. In replicate 1 of the clinical specimen shown in Figure 2b there are 81 TCS and thus
about 4 random errors in the data set. It is possible to assess the frequency of a low abundance variant
relative to the residual method errors that must be present to provide a likelihood that the observed
variant is potentially the result of residual method error [6]. This type of analysis significantly adds to
the rigor of assessing the true presence of low abundance variants.

8. How Does a Unique Molecular Identifier Fix All of These Problems (It Seems Like Magic)?

“All these cars look the same. How do you know which is yours?”
“I look at the license plate.”

UMI is a simple and straightforward solution for all the issues of conventional NGS in HIV-1
DR testing that we described above. During the cDNA synthesis step, a cDNA primer is used with a
degenerate block of nucleotides to tag each RNA template with a unique ID (the Unique Molecular
Identifier or Primer ID) (Figure 3a,b). During the cDNA primer synthesis, a stretch of consecutive
nucleotides is randomized to make a library of cDNA primers that are then randomly sampled to
initiate cDNA synthesis. The “birthday paradox” (in a room of 50 people you have a 95% chance of
sampling a birthday twice), i.e., the chance resampling of the same UMI attaching to different RNA
templates, can be minimized by using a large excess in the number of possible sequence combinations
of UMIs relative to the number of input RNA templates. The number of possible combinations of
UMI is determined by the length of UMI. A degenerate block of 10 bases can generate UMIs of 410

(1,048,576) combinations. We normally use no more than 1:100 ratio of input number of templates
to UMI combinations to minimize resampling of the UMI. In clinical HIV-1 DR testing, a UMI of 11
or 12 bases long sufficient to serve this purpose. An alternative way of adding the UMI is to ligate a
degenerate oligonucleotide after cDNA synthesis [14]. After the UMI tagging, PCR amplification is
used to amplify the cDNA just like other library prep protocols. The UMI tags are included in the
amplicon during all of the downstream processes. After sequencing, the UMIs will be first tabulated by
their frequencies and processed to remove the offspring UMIs (green dots in Figure 1). As discussed
above, the over-represented UMIs due to the PCR skewing/UMI resampling (orange dots on Figure 1)
can be retained. Sequences with the same UMI will be collapsed to make a template consensus
sequence (TCS) to represent the original viral RNA template. The TCS retains any errors made by RT,
but sequencing errors introduced during PCR or during the sequencing itself, while still present in
the data set, are all lost during the creation of a consensus sequence for each template based on the
multiple reads obtained by PCR resampling. This process will also eliminate recombinants created
during PCR, and reveal the mutation linkages on the same template. Recombination during PCR
occurs when there is incomplete synthesis of a strand during one round and that incomplete strand
anneals to another strand and gets extended during a subsequent round (template switching); these
recombination events typically occur later in the PCR when the product can compete with the PCR
primers for annealing to the single strands, thus individual recombinants are of low abundance and
thus lost during formation of a template consensus sequence. Usually a consensus sequence is made
by majority rule, but this step can be made even more rigorous using a super-majority rule to define
usable TCSs [14]. The total number of different UMIs (each linked to a TCS) is the sampling depth of
that particular specimen at the sequenced region. Thus, we have the right denominator (sample size)
to calculate low level DRMs correctly. Knowing the sampling depth, we are also able to calculate the
detection sensitivity and the confidence intervals of the abundance of the detected DRMs. These are all
essential parameters needed to truly define the presence of minor variants.
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Figure 3. Illustration of Primer ID cDNA primer and how Primer ID reduces methods error (a) Primer
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errors. Colored vertical lines on the sequence reads indicate PCR mis-incorporations or sequencing
errors, and the colored horizontal block indicates the PCR recombination.

As we can see, the inclusion of a UMI for HIV-1 DR testing is not much harder than a typical NGS
protocol, with the inclusion of a UMI tagged sequencing primer and an additional purification step to
remove the unused cDNA primer so UMI tags do not get introduced during the PCR. Figure S1 shows
a brief outline of the steps we use in the Primer ID protocol. Most of the steps will be very familiar to
those using NGS for HIV-1 DR testing.

The inclusion of a UMI in the cDNA primer does require extra data processing (but not much).
In Figure S2 is a flow chart of the data processing pipeline using data taken from the MiSeq platform
and with pooling of specimen libraries using Illumina indexes. We have created a largely automated
version of this pipeline with a web-based interface to allow anyone to analyze their Primer ID data
in the context of sequencing HIV-1. Access is freely available (and encouraged) through this link
(https://tcs-dr-dept-tcs.cloudapps.unc.edu/).

Our use of the Primer ID/UMI protocol has been limited to the MiSeq platform. The current
standard use of this platform is to generate a long cDNA and amplicon spanning the regions of interest
(the coding domains for protease, RT, and integrase). That single amplicon product is then fragmented
and sequenced as fragments with “coverage” used to estimate sampling depth and with loss of linkage
between any two variants. It should be immediately obvious that there is no chance for knowing
how many templates were used to generate the long PCR product, although the long amplicon and
fragmentation allow use of the MiSeq platform which has a maximum sequence read length of about
600 nucleotides using the 300 base paired-end read protocol. To overcome the read length limitation for
this platform in the context of HIV-1 drug resistance testing, we have developed a multiplex protocol
where 4 or 5 different cDNA primers (with Primer ID) are included in a single cDNA reaction, the
multiple cDNA products are amplified (500 bp each) with a common downstream primer (encoded
at the 5′ end of the cDNA primer) and 4 or 5 gene-specific upstream primers. Using this approach
along with Illumina indexes (which identify the individual clinical specimens), we are able to generate
deep sequencing data for minor drug resistant variants across protease, RT, and integrase for up to
24 specimens in a single MiSeq run. The sequence output is first sorted by the Illumina index (i.e.,

https://tcs-dr-dept-tcs.cloudapps.unc.edu/
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each clinical specimen), then by amplicon region, then by UMI to generate TCS for analysis of drug
resistant mutations. In this approach the detected mutations within an amplicon can be interpreted for
linkage but those between amplicons cannot [15,16]. However, the multiplexing protocol may lead
to a significant loss of sequencing reads of targeted region if the number of multiplexed regions and
specimens are not calculated properly. We normally require an average number of 30 raw sequence
reads per valid Primer ID. Given an input RNA template number of 20,000 and a template utilization
of 10% (i.e., 2000 RNA templates actually get sequenced as measured by the presence of independent
PIDs), to have 4 regions sequenced, we need 240,000 raw reads. We usually see 40–50% of raw reads
either have low quality or will be discarded as “offspring” sequences. Thus, we need at least 400,000
raw sequence reads per specimen. A normal MiSeq run (mixed with 15% PhiX to increase quality) will
return around 10 million raw sequence reads, and if we pool 24 samples for each MiSeq run, the raw
sequence read numbers should be enough to recover the desired number of TCSs (in this case 2000 per
region) for each region and for each specimens. The number of specimens pooled can be adjusted
based on the estimated number of input templates, but our format of pooling 24 specimens each with 4
multiplexed regions should work for most of the HIV clinical samples. The choice of an average of 30
reads per TCS is made to ensure that most of the templates that were sequenced will appear in the TCS
data set, i.e., all sequenced templates will be sampled in the raw reads when making TCSs.

9. Why 20% Abundance Is the Useful Claim for NGS Sensitivity (and Why Sanger Sequencing
Works at This Level)

“It doesn’t matter if I grab one handful or two handfuls of these jelly beans, there is always about 20%
of the red ones.”

We have put a great deal of emphasis on sampling depth of the viral genome population
and specifically the need to know that depth to validate inferences made about minor variants.
Sampling depth comes from the number of viral genomes actually sequenced. There are protocols
where the user intentionally generates sequence from a single copy of the viral genome (end-point
dilution PCR/SGS/SGA) making the sample size of the viral genome population equal to the number of
independent amplicons sequenced. However, most PCRs are not designed to be sensitive to giving a
robust product from a single starting template. Thus, one can imagine that a typical successful PCR
that generates a detectable product (enough to sequence by Sanger sequencing) had to start with some
minimal number of templates. To have a 95% chance of detecting a variant present at 20% one needs
at least 15 sequenced genomes (300/15 = 20% sensitivity of detection). This is for detection as there
would be 3 copies on average of the variant present at 20% in the 15 copies sequenced, making its
measurement sensitive to sampling and PCR skewing. To improve accuracy of estimating abundance
at 20% lets up the number of templates sequenced (not the number of RNA templates put in the cDNA
reaction but the number actually sequenced) to 50 (this would also increase the detection sensitivity to
7%), a number that is usually reached with an input of 500–1000 copies of viral RNA into the cDNA
reaction for most specimens. Thus, protocols that start with at least 1000 copies of viral RNA (with
all of the cDNA product going into the PCR) will usually get 20% accuracy of detection, either by
sequencing the bulk PCR product using Sanger sequencing and looking for mixed peaks or by reading
the raw reads in the NGS output (although the depth of sampling will not be validated). The idea
here is that with an input of 1000 RNA copies into the cDNA reaction (and using all of the cDNA
product in the PCR), a poor template utilization of between 1.5% (i.e., 15 copies) to 5% (50 copies) will
give sampling sensitivity of minor variants in the range of 7–20% abundance within the PCR product
(assuming no skewing during PCR). However, with the higher number of templates sequenced (i.e., 50)
the confidence interval for detecting something at 20% is 10–34%, significantly better than if something
is sampled at 20% with the smaller number of templates (15), which has a wide confidence interval of
4.3–48%.

There are several points to make here. First, in the absence of using a UMI we should not
pretend we have more sampling depth than we can validate. Using the fortuitous efficiency of a
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typical PCR as the bar argues for using the same 20% cutoff for NGS data as has been used for Sanger
sequencing—unless a UMI is used. Second, at the recent WHO Workshop in Winnipeg, Richard
Harrigan argued that most of what we need to know about HIV-1 drug resistance in the clinical setting
can be learned based on 20% sensitivity of detection, suggesting either Sanger sequencing as it is
currently used or NGS without a UMI and limited to a 20% cutoff could be used going forward in
patient care. Third, if we want to explore the significance of minor variants present at less than 20%
abundance (whether it is 10% or 1% or 0.1%) it will be important to incorporate a UMI strategy to
allow the distinction of true variants from contaminating artifacts in the sequence data sets, and to
define the true depth of population sampling (the denominator) to validate the sensitivity of detection.
We recently showed that the perception of how often a variant is present in diagnostic specimens is
greatly impacted by the depth of sampling, with frequency of detection of specific variants going up
10-fold in the specimens as the deep of sampling of the specimen increased (accepted manuscript).

10. Ideas on How to Design Validation Panels for Testing 1% Sensitivity

“I have to give a report on Romeo and Juliet tomorrow. I think the teacher expects me to read the
whole play.”

There are several parameters that are of interest in validating a sequencing protocol. First, are
true variants detected? Second, are false variants observed which would confuse the interpretation of
true variants? Third, how accurately is the abundance of true variants reported? Fourth, how sensitive
are mistakes to input viral template number?

In the recent WHO validation panel, the true abundance of minor variants was not known (since
there is no validated method for their detection). Therefore to assess the various labs the “true” value
was taken as the average value obtained by all of the labs [7]. Assuming there were differences in
accuracy of the methods, such an approach would have the effect of making the less accurate results
seem better and the more accurate results seem worse, probably not the ideal goal of a validation or
testing panel.

As an alternative approach we would suggest the following. First, a set of clinical specimens
could be sequenced multiple times and at high depth (i.e., many TCS) with a UMI to provide accurate
estimates of the composition of the population. Second, culture supernatants of 8E5 cells could be
included as a negative control for false detection of variants. Third, multiple blinded aliquots of each
specimen type could be tested at increasing dilution (limiting template number) to assess quality of
template utilization. We would welcome a discussion of the strengths and weaknesses of designing
NGS validation panels for the detection of minor variants using such an approach.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/8/850/s1,
Figure S1: Library prep and sequencing steps for HIV DR assay using UMI (Primer ID). Figure S2: Bioinformatics
steps for processing Primer ID HIV DR data.
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