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Abstract: Zika virus (ZIKV) is an important arbovirus, responsible for recent outbreaks of Guillain
Barré Syndrome and Congenital Zika Syndrome (CZS). After thousands of CZS cases, ZIKV is
under constant surveillance in Brazil. Reliable and robust detection techniques are required to
minimize the influence of host inhibitors from clinical samples and mosquito pool samples. Reverse
transcription Digital Polymerase Chain Reaction (RT-dPCR) is a technique that allows the accurate
quantification of DNA targets with high sensitivity, and it is usually less affected by inhibitors than
RT-qPCR. This study aimed to assess the influence of mosquito tissue, RNA extraction and cDNA
synthesis in ZIKV PCR detection. Samples containing 0, 3 and 10 mosquitoes were spiked with
ZIKV MR766 and serially diluted prior to RNA extraction and RT-dPCR for ZIKV. Two reverse
transcription protocols were tested. Assay sensitivity allowed the detection of 1.197 copies/µL.
A higher correlation between dilution factor and target quantification was observed in 10 mosquito
pool samples. The lower quantification in samples diluted without mosquitoes highlights the
critical role of the reverse transcription step in RNA detection, since it could be attributed to reverse
transcriptase variable performance in samples with low overall RNA concentration. The results
in mosquito pools indicate that mosquito tissues do not inhibit ZIKV RT-dPCR, and the RT-dPCR
technique has good sensitivity and robustness for ZIKV detection in mosquito pool samples regardless
of mosquito tissue concentration.
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1. Introduction

Arthropod transmitted flaviviruses are highly adapted to arthropod vectors at the species level,
causing several degrees of disease outcomes. Mosquito borne flaviviruses derived from Aedes sp. have
been transmitted throughout several continents over time and on several occasions. Flaviviruses,
as most arboviruses, are established in sylvatic cycles involving animals and zoophilic arthropods
as vectors. Spillover events involving forest dwelling mosquitoes infecting people can give rise
to epidemics, with variable degrees of pathogenicity depending on the virus and the population
affected [1]. Several strategies have been employed to investigate and recognize flaviviruses circulating
in mosquitoes in sylvatic environments, and vector competence studies rely on viral detection in
mosquito pools [2].

Zika Virus (ZIKV, Flavivirus: Flaviviridae) has become an important pathogen worldwide since
the recent outbreaks that occurred in French Polynesia, Yap island and Northeastern Brazil, causing
Guillain Barré Syndrome (GBS) and Congenital Zika Syndrome (CZS), respectively [3,4]. Since the CZS

Viruses 2020, 12, 827; doi:10.3390/v12080827 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0002-4108-8796
https://orcid.org/0000-0001-5804-7045
http://www.mdpi.com/1999-4915/12/8/827?type=check_update&version=1
http://dx.doi.org/10.3390/v12080827
http://www.mdpi.com/journal/viruses


Viruses 2020, 12, 827 2 of 7

outbreak, ZIKV has been established in Brazil and is one of the arboviruses under constant surveillance,
which is performed by detection in mosquito pools and clinical samples. The influence of host material
in viral quantification and quality of viral nucleic acid purification could impair viral detection and
quantification, consequently impairing surveillance systems. Reverse Transcription Digital Polymerase
Chain Reaction (RT-dPCR) is a robust technique that allows for genomic copy number estimation with
very narrow confidence intervals, target detection in very low concentrations and accurate analysis
of variation in target number according to different treatments. The goal of this study was to assess
the quantification of ZIKV genomic copies in mosquito pools containing 10, 3 and 0 mosquitoes to
estimate the influence of host genetic material on target quantification, assay sensitivity and variation
of precision rates according to treatment.

2. Materials and Methods

2.1. Sample Preparation

The experiment was designed to estimate the influence of different ZIKV concentrations in
mosquito pool samples, therefore ZIKV MR766 was serially diluted in mosquito pools with diluent [2]
modified with minimum essential medium (MEM) instead of PBS totaling three different raw sample
categories: diluent containing 0 mosquitoes, 3 mosquitoes and 10 mosquitoes. MEM was chosen for
dilution since it is routinely utilized in RNA extraction of field caught mosquitoes in our lab and for
future viral isolation attempts. Mosquitoes from the pool belonged to the genus Mansonia sp. and were
negative for Flavivirus. Mansonia sp. was utilized since this genus was readily available and does not
transmit ZIKV, therefore the possibility of contamination from natural infection was excluded. ZIKV
was diluted in from 10−1 to 10−6 in all treatments, prior to RNA extraction.

Additionally, cDNA serial dilution of 4 samples with high viral concentration was performed in
order to assess assay sensitivity of RT-dPCR using two distinct RT protocols.

2.2. RNA Extraction and cDNA Synthesis

RNA was extracted using TRIzol® following the manufacturer’s protocol. Two protocols of reverse
transcription (RT) were tested in all samples using SuperScript IV (Thermo Fisher Scientific®, Waltham,
MA, U.S.) with random hexamers. Standard protocol was applied, where synthesis temperature was
maintained at 50 ◦C for 10 min followed by 55 ◦C for 10 min, with inactivation at 80 ◦C; in the second
protocol, a milder temperature gradient (MTG) was applied, with 42 ◦C for 20 min, 50 ◦C for 20 min,
55 ◦C for 20 min, 60 ◦C for 10 min and inactivation at 70 ◦C for 15 min.

2.3. RT-dPCR

Two reactions of each cDNA sample were prepared for chip loading; in this way, there were two
chips per sample. RT-dPCR reaction was performed in a total of 72 chips (6 dilutions, 3 treatments,
2 RT protocols, 2 reactions per sample). RT-dPCR experiments were conducted in a QuantStudio
3DTM System (Applied BiosystemsTM Waltham, MA, U.S.), with the QuantStudio™ 3D Digital PCR
Master Mix v2 dPCR mastermix and QuantStudioTM 3D 20K v2 chips. Primers and probe targeting
the ZIKV envelope, described by [3] to detect ZIKV with RT-qPCR, were used in RT-dPCR reactions.
Cycling conditions for RT-dPCR differ from RT-qPCR assays and consist of 10 min at 96 ◦C, followed by
39 cycles of 30 s at 60 ◦C and 2 min at 98 ◦C, and a final step of 60 ◦C for 2 min followed by maintenance
at 4 ◦C.

2.4. Data Analysis

Initial data analysis was performed using the app dPCR AnalysisSuiteTM available at Thermo
Fisher ConnectTM Dashboard. RT-dPCR results with precision values below 100% were used in the
data analysis. The precision value is the percentage of variation of a value around a confidence
interval [5]; precision values for low copy numbers can be near 100% and the confidence interval is
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less than 1 copy, usually, this parameter is higher in reactions with an excessive or very low target
concentration. The quantitative linearity of the dilution series and the quantification results of the
selected data in three different raw samples were assessed with a multiple regression analysis using
Libre Office Calc spreadsheet functions.

3. Results

Data were selected based on the precision values obtained in the dPCR Analysis SuiteTM app,
only precision values below 100% were used; therefore, some of the duplicates were excluded from the
regression analysis. A data set with 43 quantification results of serially diluted ZIKV samples prior
to RNA extraction was obtained, and the correlation between dilution factor and viral quantification
obtained with different treatments is shown in Table 1.

Table 1. Correlation between dilution factor and target quantification according to treatment.

Treatment Number of Samples Used for r Calculation Correlation (r)

0 mosquitoes (normal RT) 8 0.765
0 mosquitoes (MTG RT) 8 0.702

3 mosquitoes (normal RT) 7 0.845
3 mosquitoes (MTG RT) 8 0.86

10 mosquitoes (normal RT) 7 0.943
10 mosquitoes (MTG RT) 5 0.988

0 mosquitoes (total) 16 0.713
3 mosquitoes (total) 15 0.848

10 mosquitoes (total) 12 0.89
Normal RT (total) 22 0.65

MTG RT (total) 21 0.726

MTG - mild temperature gradient; RT - reverse transcription.

Regression analysis was performed to analyze the linearity of sample quantification in different
ZIKV concentrations in raw samples. Dilution in raw samples was preferred, as it mimics a realistic
situation where unknown concentrations of a virus might be present in environmental samples,
and sample processing in multiple steps is more likely to disrupt linearity due to cumulative pipetting
errors. Regression charts according to sample treatment are displayed in Figure 1. Precision values
were narrower and lower when the dilution factor was 10−4 or 10−3 (Figure 2).

Samples with ZIKV diluted in 10−1 and 10−2 resulted in excessively high viral concentrations,
disturbing accurate target quantification. To adjust precision and resolve this issue, cDNA from 4
samples diluted with 0 mosquitoes was serially diluted, and 10−4 and 10−8 diluted samples were tested
with RT-dPCR, and results below the established threshold of 100% for precision are shown in Table 2.

Table 2. Digital Polymerase Chain Reaction (RT-dPCR) results after cDNA dilution of 0 mosquito
samples with high viral concentrations.

Sample/RT Protocol Copies/µL CI Precision Sample Dilution cDNA Dilution

1:100 MTG 2794.8 2737.1–2853.7 2.11% 10−2 pure
1:100 2T 1052.1 1031.2–1073.4 2.02% 10−2 pure

1:10 MTG 112.74 106.65–119.17 5.71% 10−1 10−4

1:10 2T RT 26.858 24.105–29.927 11.42% 10−1 10−4

1:100 MTG 1.197 0.695–2.061 72.22% 10−2 10−4

2 T—two temperature RT protocol; MTG—mild temperature gradient RT protocol; CI—confidence interval.
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Figure 1. Dispersion charts with trend lines correlating dilution factors in log10 and viral quantification
(logarithmic scale) for different samples and sample treatments. Results from milder temperature
gradient (MTG) and normal reverse transcription (RT) protocols were pooled to create the panels of 0,
3 and 10 mosquitoes.
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4. Discussion

RT-dPCR was able to detect a minimum of 1.197 copies of ZIKV per µL or 1197 genomic copies per
mL. The primer probe assay used here was originally designed to detect ZIKV from patients through
RT-qPCR and in that study, the Ct value for 900 genome copies per mL was 38 and for 1263 copies was
37 [3], Ct values that could be interpreted as inconclusive. In this study, we were able to conclusively
detect the equivalent of 1197 copies per mL, equivalent to approximately 2–6 viral infectious particles
per mL [3].

Serial dilutions from raw samples allowed us to detect 23.375 genomic copies per µL or 23,375
genomic copies per mL in a dilution factor of 10−6, which is equivalent to approximately 115 to
46 infectious particles per mL. Precision of this sample achieved 12%, meaning that target concentration
in this sample was between 20 and 26 genomic copies per µL. Experimental ZIKV infection of
mosquitoes shows that usually a ZIKV positive mosquito has approximately 104 genomic copies [6].
The sensitivity of RT-dPCR allows for ZIKV detection with similar sensitivity ('2.8 × 104) in a pool of
10 mosquitoes, which could represent 2.8 x 103 genomic copies per mosquito. Moreover, mosquito
pools of 10 individuals did not inhibit RT-dPCR reactions, in fact the quantification of ZIKV diluted
with 10 mosquitoes was apparently better correlated to the dilution factor than the other two treatments,
reaching a correlation near to 0.9. Nevertheless, more samples presented precision values above the
threshold in this treatment and were discarded; consequently, there were less samples included in the
calculation of correlation when comparing to dilutions in 0 and 3 mosquitoes (Table 1).

A lower correlation between dilution factor and copies/µL was observed in MEM diluted samples.
The TRIzolTM RNA extraction method results in high yields and acceptable purity; however, it has
been shown that small RNAs depend upon carrier molecules to be efficiently extracted by this method,
and starting with a higher concentration of large RNA molecules influences extraction [7]. It is difficult
to draw any conclusions of such methodology of TRIzolTM RNA extraction interference in our samples,
since viral stock always has host cell RNA along with viral RNA. Moreover, reverse transcriptase
variability is usually higher with a low RNA concentration [8], and in zero mosquito pools, overall
RNA concentration was lower than in mosquito pools, since the spiked ZIKV MR766 RNA and host cell
RNA were the only RNA in these samples, while in mosquito pools a substantial amount of mosquito
RNA was added to the sample.

Serial dilution is a fundamental practice to achieve good precision in RT-dPCR experiments [5].
In this study, the serial dilution of cDNA from MEM diluted samples with excessive target copy
numbers that could not be quantified in the first RT-dPCR reaction allowed accurate target quantification.
Ten-fold serial dilutions from cDNA samples with ZIKV diluted in 10−1 and 10−2 were performed,
and a 10−4 dilution factor resulted in a precision of 5%, quantifying 112 copies (ranging from 106.65 to
119.17 copies/µL) in the MGT RT protocol and a precision of 11% with 25 copies (ranging from 24.105 to
29.927 copies/µL) in the RT normal protocol. Precision is a parameter calculated in the Analysis SuiteTM

app, and represents the percentage of variation of the confidence interval around the copy number
estimation calculated based on positive partitions in the chip with the assay. Thus, quantification
accuracy is inversely related to the precision value of an RT-dPCR assay [5]. The ideal partition
occupancy for accurate quantification requires approximately 20% of negative partitions in an RT-dPCR
assay with the platform used in this study [5]. Dilution factors of 10−3 and 10−4 in raw samples resulted
in a target concentration that met this requirement, therefore presented better precision values; most of
the precision values for these samples were below 5% (Figure 2).

RNA viruses impose difficulties in molecular detection and transcriptomic analyses due to RNA
instability when compared to DNA and the additional RT step required during sample processing [9].
Reverse transcription is a highly variable step and multiple options and recommendations are often
controversial and inconsistent [9,10]. The improvement of PCR amplification efficiency with gradually
increasing RT temperature has been shown for human immunodeficiency virus (HIV). During the RT
step, oligo mismatches can impair PCR amplification and target detection [11]. The sample processing
protocol with 10 mosquitoes and temperature ramp RT presented the best correlation (r = 0.98) between
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target copies per µL and ZIKV dilution factor in the raw sample. Hence, this protocol seems to be
more reliable for viral quantification in mosquito pool samples. Nonetheless, there were only a few
samples included in the r calculation for these samples, since many of them presented precision above
the threshold. The MTG RT presented a better correlation between dilution factor and copies/µL than
normal protocol, moreover, this protocol allowed the detection of 1.19 copies/µL at a dilution factor of
10−6 with a precision of 72.2% (ranging from 0.695 to 2.06 copies/µL).

The use of Mansonia sp. mosquitoes is a limiting factor to this study. Factors such as enzymes,
proteins and host RNA could impair assay sensitivity in different levels for Mansonia sp. and Aedes sp.
mosquitoes. Since we did not use Aedes sp. mosquitoes in the experiments and Mansonia sp. is far less
known than Aedes sp. [12], unknown factors could interfere with RT, RNA extraction and RT-dPCR.
The use of Aedes sp. pools for these experiments would mimic a more realistic situation, yet mosquito
rearing conditions would be necessary to discard the possibility of ZIKV natural infection.

5. Conclusions

This study has demonstrated that RT-dPCR is a sensitive and precise detection technique for
ZIKV quantification in mosquito pool samples. Samples with 10 mosquitoes did not inhibit RT-dPCR
detection of ZIKV; conversely, the correlation between target quantification and dilution factor was
higher with 10 than with 0 mosquitoes. The only limiting factor to RT-dPCR is the same as for other
amplification based detection techniques targeting RNA: reverse transcription variability. Nonetheless,
due to its robustness and capability of achieving very low error rates in quantification, RT-dPCR
can be utilized in RT optimization for several purposes such as viral detection and quantification,
and virome or transcriptome library preparation. The dilution of cDNA allowed the achievement of
ideal precision values with a confidence interval of very few copy numbers; this method is valuable for
the construction of quantification curves to be used in RT-qPCR. This is especially useful for viruses that
are difficult to grow in cell culture and for pathogens requiring high biosafety levels to be manipulated.
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