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Abstract: The genome analysis of 328 H1N1 swine influenza virus isolates collected in a 13-year 
long-term swine influenza surveillance in Germany is reported. Viral genomes were sequenced 
with the Illumina next-generation sequencing technique and conventional Sanger methods. 
Phylogenetic analyses were conducted with Bayesian tree inference. The results indicate continued 
prevalence of Eurasian avian swine H1N1 but also emergence of a novel H1N1 reassortant, named 
Schneiderkrug/2013-like swine H1N1, with human-like hemagglutinin and avian-like 
neuraminidase and internal genes. Additionally, the evolution of an antigenic drift variant of A 
(H1N1) pdm09 was observed, named Wachtum/2014-like swine H1N1. Both variants were first 
isolated in northwest Germany, spread to neighboring German states and reached greater 
proportions of the H1N1 isolates of 2014 and 2015. The upsurge of Wachtum/2014-like swine H1N1 
is of interest as this is the first documented persistent swine-to-swine spread of A (H1N1) pdm09 in 
Germany associated with antigenic variation. Present enzootic swine influenza viruses in Germany 
now include two or more co-circulating, antigenically variant viruses of each of the subtypes, 
H1N1 and H1N2. 

Keywords: swine influenza virus; reassortment; H1N1; antigenic drift; phylogenetic analysis; 
Germany 

 

1. Introduction 

Influenza A viruses (IAV) of the family Orthomyxoviridae infect a wide range of hosts including 
feral water fowl (main hosts), poultry and several mammalian species (e.g., humans, pigs and 
horses). Swine influenza is of particular significance due to its great economic importance. Globally, 
there are three areas with major swine production, each with characteristic, enzootic swine influenza 
A virus (S-IAV) strains. These areas are Europe, North America and East/Southeast Asia. 
Furthermore, pig holding is increasing in Central and South America which probably also 
contributed to the emergence of A (H1N1) pdm09 [1]. 
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Eurasian avian-like swine H1N1 (EA swH1N1) emerged in Belgium and Germany in 1979 [2,3] 
after transspecies infection of pigs with an avian IAV. This virus achieved sustained circulation in 
pigs and spread to many European countries but also to China and Korea [4,5]. Analysis of German 
avian IAV isolates which had been collected in the 1970s suggested that EA swH1N1 is a triple 
reassortant with a unique internal gene cassette (IGC) that had not been detected in avian IAVs 
before [6]. Later, EA swH1N1 reassorted with seasonal H3N2 and seasonal H1N1 to yield so-called 
human-like (hu-like) swH3N2 and hu-like swH1N2 (reviewed in [4]). Recent investigations of 
European S-IAV isolates revealed different lineages of swH1N2 and swH3N2 reassortants on the 
continent and the UK [7,8]. All lineages have the EA swH1N1 internal gene cassette (EA IGC), but 
hemagglutinin (HA) and neuraminidase (NA) genes are either A/Port Chalmers/1/1973-like (H3N2), 
A/Albany/20/1974-like (H3N2) or Singapore/6/1986-like (H1N1). Another independent hu-like 
swH1N2 reassortant came up in Italy [9]. This 7 + 1 reassortant has an A/Singapore/6/1986-like 
(H1N1) HA gene, an A/Panama/2007/1999-like (H3N2) NA gene and the EA IGC. After the 
emergence of A (H1N1) pdm2009 (H1pdmN1pdm), numerous anthroponotic infections of pigs have 
been detected in many European countries both at the ongoing pandemic and thereafter [7,10–14]. 
Due to significant cross-reaction of antibodies directed against EA swH1N1 [15], H1pdmN1pdm failed 
to establish stable infection chains in pigs in Germany and other countries with high pig density and 
prevalence of EA swH1N1. However, numerous reassortants arose of which the 
Papenburg/2010-like swH1N2 viruses, a stable 7 + 1 swH1N2 reassortant with HA and IGC of 
H1pdmN1pdm and NA gene of the contintental Gent/1984-like swH3N2, became endemic in Germany, 
Belgium and the Netherlands [7,8,13,16]. 

Losses caused by swine influenza are economically significant. Therefore, swine influenza 
surveillance is of increasing importance. Recently, the ESNIP3 consortium reported results on a 
S-IAV survey conducted 2010–2013 in 14 European countries [17]. Independently, members of the 
German FluResearchNet consortium have conducted a 13-year long-term swine influenza 
surveillance in Germany, 2003–2015, which enabled the isolation of 1310 S-IAV isolates. The 
sequencing results of 267 swH1N2 isolates have been published recently [8]. The data indicated (i) 
the replacement of the continental Gent/1999-like swH1N2 by the Diepholz/2008-like, 
Emmelsbuell/2009-like and Papenburg/2010-like swH1N2 reassortants, and (ii) the emergence of 
other swH1N2 reassortants that were partly persistent (Gladau/2012-like swH1N2), partly 
ephemeric. 

Here, we report on the genome analysis of 328 swH1N1 isolates, mostly from Germany. The 
present results demonstrate continued prevalence of EA swH1N1 but co-circulation with: 

• A H1pdmN1pdm variant which emerged in 2014 and lacks cross-reactivity with EA swH1N1 and 
H1pdmN1pdm, and  

• A novel swH1N1 reassortant with the HA gene of the new prevalent Diepholz/2008-like 
swH1N2 lineage. 

2. Materials and Methods 

2.1. Study Design 

The study design has been described previously (for details see [8]). Briefly, for a passive swine 
influenza survey, 8122 samples (7798 nasal swabs, 165 bronchoalveolar lavages, 159 lung tissues) of 
diseased pigs were sent in by veterinarians from 14 of the 16 German states. A few additional 
samples were from Austria, Switzerland and the Netherlands. All samples were analyzed by 
S-IAV-specific RT-PCR and virus isolation. Of 1310 virus isolates 810 were selected for sequencing, 
327 of which were of the H1N1 subtype. In addition, 21 H1N1 isolates collected between 1979 and 
2001 were included in the molecular analysis, of which the genomes of 16 had been published 
previously [6,13,18]. All in all, 348 H1N1 S-IAV genomes were analyzed, 328 of which are new S-IAV 
genomes. Supplementary Table S1 summarizes GenBank accession numbers, country and sampling 
dates of all S-IAV H1N1 strains sequenced by the Jena Swine Influenza Virus Sequencing Initiative 
(SIVSI). 
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2.2. Cell Lines, Virus Isolation and Virus Amplification 

Madin-Darby bovine kidney cells (MDBK, ATCC CCL-22) and Madin-Darby canine kidney 
cells (MDCK, ATCC CCL-34) were maintained in Dulbecco’s modified MEM (DMEM) 
supplemented with 10% fetal bovine serum, 100 U/mL penicillin and 100 µg/mL streptomycin. For 
virus isolation, PCR-positive samples were used for inoculation of embryonated hen eggs and 
MDBK cells. All virus isolates were typed by hemagglutination inhibition assays and RT-PCR as 
described in [17,19]. Virus was propagated in MDCK/MDBK cells using serum-free DMEM with 3 
µg/mL trypsin and 25 mM MgCl2; cells were infected at a multiplicity of infection of 0.01. After 2–3 
days, supernatants were centrifuged at 1000× g and aliquoted. Virus stocks were stored at −80 °C 
until use. 

2.3. Nucleic Acid Extraction and PCR Analysis 

For RNA extraction following kits were used: QIAamp Viral RNA Mini Kit (Qiagen, Hilden, 
Germany) and Chemagic Viral DNA/RNA Kit (PerkinElmer, Waltham, MS, USA). For diagnostics, 
reverse transcription was performed with the Superscript One step RT-PCR kit (Invitrogen). The 
following oligonucleotide primers were used for PCR diagnostics: M: FLU-M52F: 
5′-CTTCTAACCGAGGTCGAAACG-3′, FLU-M253R: 5′-AGGGCATTTTGGACAAAKCGTCTA-3′ 
[19]; H1 (H1N1): H1-550F: 5′-AACAAYAARGRGAAAGAAGT-3′ H1-1016R: 
5′-GGGACDTTYCTTARTCCTGT-3′; H1 (H1N2): 18F: 5′-AACAATAGAGAAGAAGAAGT-3′, 7R: 
5′-GGAATGTTCCTTAGTCCTGT-3′; panH1N1: pH1-F238: 
5′-GGAAATCCAGAGTGTGAATCACTC-3′, pH1-R463: 5′-GAGGACATGCTGCCGTTACACC-3′; 
N1: NAN-1F: 5′-CGATGGACCAAGTAATGGGC-3′, NAN-1R: 
5′-AATGGCAACTCAGCACCGTC-3′; conditions: 30 min at 45 °C (1×), 15 min at 95 °C (1×), 0.5 min 
at 94 °C, 0.5 min at 48 °C, 1 min at 68 °C (35×), 10 min at 68 °C (1×), 0.016 min at 20 °C (1×), thereafter 
at 4 °C. 

2.4. Sequence Analysis 

Plaque-purified swH1N1 isolates were used for RNA extraction and subsequent conventional 
Sanger sequencing or for Illumina sequencing as described previously [13,20]. Total RNA was 
prepared employing the Qiagen RNeasy Mini Kit (Qiagen, Hilden, Germany). For cDNA synthesis, 
5 µg of total RNA were reverse transcribed utilizing the universal influenza virus primer 
(5’-RGCRAAAGCAGG-3’) [21] and 20 µL RevertAid premium reverse transcriptase solution 
(ThermoFisher Scientific, St. Leon-Rot, Germany) following the manufacturer’s protocol. Then, 
segment-specific amplification was conducted with published oligonucleotide primers [22]. PCR 
products were purified and sequenced employing the CEQ DTCS Quick Start Kit (Beckman Coulter, 
Krefeld, Germany). 

Methods of Illumina sequencing of IAV and de novo assembly of virus genomes has been 
described in [13], except that sequencing was run on another platform (GenomeAnalyzer IIx or 
HiSeq2000/2500). Consensus sequences were determined by mapping the reads to reference 
genomes as described in [23]. Assignment to IAV lineages was based on the assembled contigs. All 
sequences were submitted to GenBank (accession numbers MK364805-MK367387; compare 
Supplementary Table S1). 

2.5. Phylogenetic Analyses 

Only complete open reading frames (HA-ORF: 1707 nt; NA-ORF: 1413 nt; PB2-ORF: 2280 nt; 
PB1-ORF: 2274 nt; PA-ORF: 2151 nt; NP-ORF: 1497 nt; M1/M2-encoding gene region: 982 nt; 
NS1/NS2-encoding gene region: 835 nt) were used for phylogenetic analyses. Additional sequences 
were retrieved from public databases (GenBank, GISAID) and aligned with MEGA5.2 [24]. For 
alignments, 950 HAH1 sequences, 577 NAN1 sequences and 258 HAH1pdm sequences were compiled 
depending on the availability of sequence data. Two coalescent tree inference methods (MrBayes, 
BEAST) were used for phylogenetic analyses [25,26] applying optimal substitution models on the 
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basis of the Bayesian information criterion and the corrected Akaike information criterion. The 
substitution model was selected with the find-best-model option implemented in MEGA5.2 and 
Mega X [24,27]. 

2.6. Nomenclature of S-IAV Lineages and Clades 

Designations of S-IAV lineages which are established in literature like European/Eurasian avian 
(EA) swH1N1, human-like (hu-like) swH1N2 and hu-like swH3N2 were retained. For subgrouping 
of the HAH1 gene, the lineage and sublineage designations of Anderson et al. [28] were adopted 
(hereafter referred to as Anderson-2016 nomenclature). Reassortant Diepholz/2008-like, 
Emmelsbuell/2009-like, Papenburg/2010-like, Gladau/2012-like swH1N2 viruses have been 
introduced recently [8]. The novel viruses described here were named after a representative isolate, 
Schneiderkrug/2013-like swH1N1 and Wachtum/2014-like swH1pdmN1pdm. The prefix sw (swine) 
indicates the porcine host. Seasonal human H1N1 and A(H1N1)pdm2009 virus were distinguished 
by adding the subscripts ‘seas’ and ‘pdm’ to type designations (H1seasN1seas, H1pdmN1pdm). 

2.7. Antigenic Analysis 

Hemagglutination inhibition (HI) assays were conducted as described [20]. Briefly, all sera were 
pre-treated with neuraminidase (Sigma, EC3.2.1.18 Type IV from Clostridium perfringens, 14–18 h at 
37 °C); then sodium citrate (1.5%) was added and inactivation was carried out for 30 min at 56 °C, 
followed by adsorption to chicken erythrocytes for 1 h at 4–8 °C. Antigens were adjusted to eight 
hemagglutinating units (HU). To carry out the test, the sera (already pre-diluted 1:10 through the 
pretreatment) were titrated in microtitre plates (log2). The same volume of antigen suspension (25 
µL) adjusted to 8 HU was pipetted into each of the wells of the microtitre plate and the mixture 
incubated for 30 min at room temperature. Then, 50 µL of a 0.5% chicken erythrocyte suspension 
was added and the plates were allowed to stand for 30 min at room temperature. 

Hyperimmune and immune sera in pigs were established and hemagglutination inhibition 
assays (HI) were performed as described previously [13,15]. In short, immune sera were generated 
by twofold immunization of 10 pigs with inactivated and Carbopol-adjuvanted virus of each 
subtype (EA swH1N1: A/sw/Harlebach/2998/2004; H1pdmN1pdm: A/Jena/VI2688/2010; swH1pdmN2: 
A/sw/Papenburg/12653/2010; swH1pdmN1pdm: A/sw/Wachtum/20657/2014) within 21 days; blood 
was taken 10 days after second immunization. The sera were pooled and tested against the virus 
isolates by HI. Hyperimmune sera were established by four-fold immunization (0, 14, 28 and 54 days 
after first shot) of one pig each (intramuscularly) with 64 hemagglutinating units of the 
corresponding inactivated virus adjuvanted with Freund’s adjuvant (Sigma-Aldrich) or mineral oil 
(ISA25, Seppic). Blood samples were taken 70 days after first administration of the immunogen. 
Animal experiments were approved by the Landesverwaltungsamt Sachsen-Anhalt (Az 42502-3-401, 
42502-3-642Ä, 42502-3-743, 45502-3-579). 

3. Results 

The German swine influenza surveillance, 2003–2015, was conducted by members of the 
FluResearchNet consortium and succeeded to collect 1310 S-IAV isolates. Our S-IAV archive was 
completed by 40 virus strains of other sources from 1979 to 2001. These 40 virus strains plus 810 
isolates of the surveillance have been sequenced by the Jena Swine Influenza Virus Sequencing 
Initiative, i.e., 348 swH1N1, 267 swH1N2, 229 swH3N2 and six swH3N1 isolates [8]. Genetic analysis 
of 348 swH1N1 isolates (328 of which were unpublished) revealed 304 EA swH1N1 strains, 18 
H1pdmN1pdm strains, 11 reassortants with gene segment(s) of H1pdmN1pdm, 14 isolates of the novel 
Schneiderkrug/2013-like swH1N1 reassortant and one classical swine (CS) H1N1 (Figure 1). 
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Figure 1. Distribution of swH1N1 isolates. Year of isolation of H1N1 strains sequenced in this study. 
Different clades are indicated. 

3.1. Phylogenetic Analysis of German swH1N1 Isolates 

Phylogenetic analysis revealed that the HA gene of German swH1N1 isolates belongs to three 
co-circulating HAH1 lineages, named 1A, 1B and 1C according to the Anderson-2016 nomenclature 
(Figure 2a, Supplementary Figure S1). The HA gene of the prevalent EA swH1N1 strains belongs to 
lineage 1C, whereas the HA of the H1pdmN1pdm belongs to lineage 1A and the 
Schneiderkrug/2013-like swH1N1 to lineage 1B. The latter viruses emerged in February 2013 in 
northwest Germany and have been detected in three German States (Figure 3). The viruses persisted 
until the end of the surveillance in December 2015. Five sublineages of 1C have been defined by 
Anderson et al. on basis of phylogenetic clustering: (i) Sublineage 1C.1 comprises the continental 
swH1N1 isolates of 1979–2000 and all English isolates, 1992–2011. (ii) Sublineage 1C.2 includes a few 
Danish and German swH1N1 strains, 1993–2013, plus the Emmelsbuell/2009-like swH1N2 and the 
Gladau/2012-like swH1N2. (iii) Sublineage 1C.2.1 contains swH1N1 strains of 2005–2015, (iv) 
sublineage 1C.2.2 strains of 2001–2014, and (v) sublineage 1C.2.3 five strains of 1999–2004. Beside 
phylogenetic clustering, no biological, geographical or other correlates could be identified that 
supported sub-classification of the S-IAV HA 1C lineage. 

S-IAV strains with HA of lineage 1B are derivatives of H1seasN1seas, which disappeared after the 
2009 pandemic. The swH1N2 strains of lineage 1B have been described recently [8]. Sublineage 
1B.1.2.1 includes the continental swH1N2 (Gent/1999-like swH1N2) and two reassortants, the 
Diepholz/2008-like swH1N2 and the Schneiderkrug/2013-like swH1N1. Six segments of the latter 
reassortant (HA, PB1, PB2, PA, NP, M) are derived from the Diepholz/2008-like swH1N2, whereas 
the NA and NS segments originated from EA swH1N1. 
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Figure 2. Phylogenetic analyses of hemagglutinin (HA) and neuraminidase (NA) genes using 
Bayesian tree inference. Relevant lineages and sublineages are indicated. The scale bars indicate 
substitutions per site. The Wachtum/2014-like swH1pdmN1pdm are boxed. (a) Analysis of 950 HAH1 
sequences of lineages 1A, 1B and 1C (Anderson-2016 nomenclature). Details are presented in 
Supplementary Figure S1. (b) Analysis of 577 NAN1 sequences. Details are presented in 
Supplementary Figure S2. Color code: green, EA swH1N1; light green, seasonal H1N1; olive, 
Schneiderkrug/2013-like swH1N1; purple, H1pdmN1pdm; magenta, H1pdmN2 reassortants; blue, 
swH1N2; light blue, Diepholz/2008-like swH1N2; black, classical swine H1N1; ochre, avian H1. 
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22 Feb. 2013

 
Figure 3. Distribution of Schneiderkrug/2013-like swH1N1 in Germany. Place and collection date of 
the first isolate is indicated. 

Lineage 1A includes H1pdmN1pdm and derived H1pdmN2 strains (sublineage 1A.3.3.2). Whereas 
incursion of H1pdmN1pdm into pigs has been observed several times since 2009 and persistent 
intra-herd transmission of S-IAV is a well-known phenomenon [29,30], farm-to-farm spread of 
H1pdmN1pdm was not detected in the first years post-pandemic in Germany. In contrast, the 
Papenburg/2010-like swH1N2 soon became enzootic in Germany [13]. This situation changed in 
2014, as the HA tree exhibits a cluster of 10 German sequences with greater 0.5 substitutions/site, 
which is exceptional (Figure 2a and Supplementary Figure S1). This result was also observed in the 
NA tree (Figure 2b and Supplementary Figure S2). This finding was confirmed in a refined 
phylogenetic analysis of HA which comprised 92 human H1pdmN1pdm strains, 67 swH1pdmN1pdm, 86 
swH1pdmN2 and 13 reference sequences (CS H1N1 and North American triple reassortant H1N1) 
(Supplementary Figure S3). This group of German swH1pdmN1pdm was named Wachtum/2014-like 
viruses after its first isolate and belonged to genogroup 6 according to WHO nomenclature 
(September 2018 interim report of the Worldwide Influenza Centre; 
https://www.crick.ac.uk/partnerships/worldwide-influenza-centre/annual-and-interim-reports, 
accessed 12 September 2019). These viruses exhibited up to 6% diversity (p-distance) to other human 
and porcine H1pdmN1pdm strains (data not shown). The first isolate emerged in August 2014 in Lower 
Saxony in northwest Germany and spread to the neighboring States Northrhine Westphalia and 
Schleswig-Holstein (Figure 4) but also to Italy (Supplementary Figure S3). In addition, one H1N2 
reassortant with a Wachtum/2014-like HA gene was also isolated. 
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10 Aug. 2014

 
Figure 4. Incursion of Wachtum/2014-like swH1pdmN1pdm into the German pig population. Dark 
squares indicate the places where isolates were collected; the place and sampling date of the first 
German isolate is printed in red. The inset presents the pig population density in Germany (gray 
shades correspond to the numbers of pigs per administrative district). The data were retrieved from 
the 2017-yearbooks of the 16 State Statistical Offices in Germany. 

3.2. Analysis of Antigenic Sites of swH1N1 

For analysis of the antigenic sites as defined by Caton and Brownlee [31] and Brownlee and 
Fodor [32], we compared aa 183-187/220-222/252-254 (site Ca1), aa 154-159/238-239 (site Ca2), aa 
87-92 (site Cb), aa 141-142/170-181 (site Sa) and aa 201-212 (site Sb) of lineages 1A, 1B and 1C 
(Anderson-2016 nomenclature; see Supplementary Figure S5A–C). 

Phylogenetic analysis demonstrates that the NA gene of all EA swH1N1, H1pdmN1pdm and 
Schneiderkrug/2013-like swH1N1 belong to the same clade of the Eurasian avian N1 lineage, which 
emerged in 1979 (compare Figure 2b and Supplementary Figure S2). Comparison of the HAH1 and 
NAN1 trees, however, revealed traces of previous intratypic reassortment events (see 
Supplementary Figure S4). We have identified 15 sequence clusters which persisted between six and 
21 years. Several HA clusters (e.g., #4, #8, #9, #10) are scattered in the NA tree, which is compatible 
with the concept of intratypic reassortment. Intratypic and intertypic reassortment is also evident 
from the phylogenetic trees of the internal genes (data not shown). 

The H1pdmN1pdm strains have been assigned into genogroups by the Worldwide Influenza 
Centre–WHO Collaborating Centre for Reference and Research on Influenza—The Francis Crick 
Institute on basis of partial HA sequences and their antigenic properties 
(https://www.crick.ac.uk/partnerships/worldwide-influenza-centre/annual-and-interim-reports, 
accessed 12 September 2019). These genogroups not necessarily correlate with phylogenetic 
clustering of full-length HA trees as shown in Supplementary Figure S3. This phylogenetic tree 
presents 245 H1pdmN1pdm sequences plus 15 reference sequences of human and porcine strains. It 
demonstrates numerous independent incursions of H1pdmN1pdm into the pig population in Europe. 
Noticeable, only two of the many anthroponotic events achieved to establish persistent infection 
chains in pigs: one led to the emergence of the Papenburg/2010-like swH1N2 lineage [8,13,16] and 
the other to the Wachtum/2014-like swH1pdmN1pdm. Whereas virus isolates of sporadic, 
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non-persistent spill-over infections show only single amino acid substitutions at the antigenic sites, 
the Papenburg/2010-like and the Wachtum/2014-like strains exhibit numerous amino acid exchanges 
(Supplementary Figure S5C). Amino acid substitutions of both virus groups correlate with altered 
antigenic properties. For the Papenburg/2010-like swH1N2, the lack of cross-reactivity with EA 
swH1N1 has been shown to be due to five substitutions, K159R, G172E, I183V, S202N and D204S 
[13,16], but on the basis of 79 strains of this cluster, additional substitutions have been identified, 
e.g., A90S, N142D/K/S, P154S, A158T/E, L178I, K180I, D185G, G187R, A203D, S207T, Q210K, A212T 
and R222K. All Papenburg/2010-like strains exhibit 5–10 substitutions in antigenic sites. The 
Wachtum/2014-like viruses show 11 amino acid substitutions in antigenic sites: P141T, N142D, 
K159S, G172T, N173D, S179N, K180I, D185N, S202A, S207R and D239N. In addition, both the 
Papenburg/2010-like and the Wachtum/2014-like viruses exhibit an additional potential 
glycosylation site at N179 and N202, respectively, which are located in antigenic sites Ca1 and Sb 
(Supplementary Figure S5C). 

In order to investigate cross-reactivity of sporadic, anthroponotic H1pdmN1pdm and 
Wachtum/2014-like swH1pdmN1pdm viruses as well as EA swH1N1 and swH1pdmN2 viruses, immune 
sera and hyperimmune sera were established and tested in the HI assay. The data show different 
degrees in cross-reactivity but clearly indicate that the swH1pdmN2 as well as the Wachtum-2014-like 
swH1pdmN1pdm viruses still exhibit only a very low cross-reactivity in hyperimmune sera to EA 
swH1N1 and human H1pdmN1pdm, whereas immune sera of Wachtum-2014-like swH1pdmN1pdm 
viruses lack cross-reactivity to the other viruses (Table 1). The cross-reactive pattern between 
swH1pdmN2 and Wachtum-2014-like H1pdmN1pdm is very low. Thus, two antigenic variant H1pdmNx 
viruses circulate in German pigs. 

Table 1. Immunogenic pattern of Wachtum/2014-like swH1pdmN1pdm in comparison to other H1N1 
and H1N2 viruses detected in pigs in Germany (HI titer reciprocal). 

 EA 
swH1N1 

Sporadic, 
Anthropogenic 

H1pdmN1pdm 

Papenburg/2010-Like 
H1pdmN2 

Wachtum/2014-Like 
H1pdmN1pdm 

Immune Sera 
EA swH1N1 197 <20 <20 <20 

anthropogenic 
H1pdmN1pdm 

21 106 34 <20 

Papenburg/2010-like 
H1pdmN2 

<20 49 485 <20 

Wachtum/2014-like 
H1pdmN1pdm 

<20 <20 <20 160 

Hyper Immune Sera 
EA swH1N1 2560 80 160 80 

anthropogenic 
H1pdmN1pdm 

640 2560 640 320 

Papenburg/2010-like 
H1pdmN2 80 320 2560 20 

Wachtum/2014-like 
H1pdmN1pdm 

160 40 20 2560 

The Schneiderkrug/2013-like swH1N1 are antigenically very similar to their parental 
Diepholz/2008-like swH1N2, i.e., they are characterized by P141S/K142N/T174I of antigenic site Sa 
(Supplementary Figure S5B). 

Analysis of N-glycosylation patterns of HA proteins revealed three groups in the 1A lineage, 
which correspond to the sporadic anthroponotic H1pdmN1pdm, the Wachtum/2014-like viruses and 
the Papenburg/2010-like swH1N2 (Table 2). Furthermore, three patterns of 1B viruses are 
distinguishable: English swH1N2, Gent/1999-like swH1N2 and the Diepholz/2008-like swH1N2 



Viruses 2020, 12, 762 10 of 14 

 

together with the Schneiderkrug/2017-like swH1N1. Less conclusive is the distinction of the strains 
of lineage 1C. The viruses of sublineage 1C.2 and its sub-sublineages (1C.2.1, 1C.2.2, 1C.2.3) 
comprise one group but some variation is seen in up to four N-glycosylation sequons. Viruses of 
sublineage 1C.1 fall into two groups, the early isolates of 1979–1989, which are like avian H1N1, and 
the late strains isolated from 1991 onwards, which include virus isolates from the continent and the 
British Isles. 

Table 2. N-Glycosylation pattern of H1 of European S-IAV. 

 

Amino Acid Position of Glycosylation Sequons (N-X-S/T) 

27–
29 

28–
30 

40–
42 

101–
103 

104–
106 

136–
138 

142–
144 1 

172–
174 1 

177–
179 1 

179–
181 

2 

202–
204 

3 

212–
214 

286–
288 

291–
293 

293–
295 

304–
306 

498–
500 

557–
559 

Lineage 1A 
anthroponotic 
H1pdmN1pdm 

+ + + - + - - - - - - - - - + + + + 

Wachtum/2014-like 
swH1pdmN1pdm 

+ + + - + - - - - + - - - - + + + + 

Papenburg/2010-like 
swH1N2 

+ + + - + - - - - - + - - - + + + + 

Lineage 1B 
Schneiderkrug/2014-like 

swH1N1 + + + - - - + - + - - - + - - + + + 

Diepholz/2008-like 
swH1N2 

+ + + - - - + - + - - - + - - + + + 

Gent/1999-like swH1N2 + + + - - - - + + - - - + - - + + + 
England/448813/1994-like 

swH1N2 
+ + + - - - - - + - - - + - - + + + 

Lineage 1C 
sublineage 1C.2 (EA 
swH1N1, swH1N2) 

+ + + B B B - - - B - + - + - - + + 

sublineage 1C.1, 1991–
1998 

+ + + - + - - - - B - - - + - - + + 

sublineage 1C.1, 1979–
1989 

+ + + - + - - - - - - - - - - + + + 

avian H1N1 + + + - + - - - - -  - - - - + + + 
1 part of antigenic site Sa, 2 part of antigenic site Ca1, 3 part of antigenic site Sb, B, both variants (with 
and without glycosylation sequons) are observed. 

4. Discussion 

Swine influenza is enzootic in Germany and many other European countries. A recent German 
13-year long-term swine influenza surveillance conducted by the German FluResearchNet 
consortium revealed significant changes in the prevalence of circulating swH1N2 strains [8]. From 
2008 onwards, several novel reassortants emerged in Germany, established stable infection chains 
and now co-circulate with pre-existing S-IAVs (Figure 5). In the present study, we focused on 
swH1N1 and made two remarkable observations: (1) a sustained circulation of swine-adapted 
H1pdmN1pdm, named Wachtum/2014-like swH1pdmN1pdm, which is a drift variant, and (2) emergence 
of a novel swH1N1 6 + 2 reassortant. This reassortant, designated Schneiderkrug/2013-like virus, is a 
derivative of the Diepholz/2008-like swH1N2 [8] and of an EA swH1N1 (donor of NA and NS). It is 
serologically inconspicuous, spread to three German States and co-circulates with the EA swH1N1 
and the H1pdmN1pdm. This is interesting as the HA of these three viruses belong to three different 
genetic lineages, named 1A, 1B and 1C (compare Figure 2A), and hence, are antigenically 
heterologous. In addition, each of the three swH1N1 viruses co-circulates with swH1N2 viruses of 
the same HA sublineage. The respective co-circulating viruses are: (i) lineage 1 A: 
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Wachtum/2014-like swH1pdmN1pdm and Papenburg/2010-like swH1N2, (ii) lineage 1B: 
Schneiderkrug/2013-like swH1N1 and Diepholz/2008-like swH1N2 and (iii) lineage 1C: 
Emmelsbuell/2009-like plus Gladau/2012-like swH1N2 and the EA swH1N1. Different antigenic 
properties of the Wachtum/2014-like swH1pdmN1pdm have been demonstrated in HI assays and 
correlate with specific substitutions of antigenic sites (Supplementary Figure S5C). Moreover, we 
observed clade-specific glycosylation patterns of the HA (Table 2) as evident from 
conserved/non-conserved NxS/T glycosylation sequons. Different N-glycosylation patterns may 
influence antigenic properties, binding to receptors, the HA/NA balance and transmissibility of the 
respective virus [33–35]. 

avian H1N1

A/Albany/20/1974-like
seasonal H3N2

EA swH1N1
A/swine/Arnsberg/1/1979

English human-like swH3N2
A/swine/England/375017/1993

EA IGC

8 segments

N2, 
EA IGC

H1

English human-like swH1N2
A/swine/England/448813/1994

Continental human-like swH1N2
A/swine/Gent/7625/1999

Anthroponotic swH3N2
A/swine/England/163266/1987* 
A/swine/England/87842/1990*

A/Panama/2007/1999-like
seasonal H3N2

swH1N2
Italy/4675/2003-like

A/Port Chalmers/1/1973-like
seasonal H3N2

Anthroponotic swH3N2
A/swine/Italy/309/1983*

Continental human-like swH3N2
e.g. A/swine/Gent/1/1984

EA IGC

Emmelsbuell/2009-
like swH1N2

Gladau/2012-
like swH1N2

Diepholz/2008-
like swH1N2

Papenburg/2010-
like swH1N2

H1

pdm09
IGC

H1N2

N2 H1, 
pdm09 IGC

N2

H1,
EA IGC

H1,
N2

N2

A/Singapore/6/1986-like
seasonal H1N1

swH1N2 
England/1380-like
England/1382-like
England/6283-like

pdm09
IGC  

H1,
NAN2

A/California/2009-like

H3, N2

8 segments8 segments

H3, N2

H1pdmN1pdm

Rietberg/2014-
like swH3N2

N2H3

A/Wisconsin/67/2005-like
seasonal H3N2

pdm09 IGC

Gent1984/Diepholz-
like swH3N2

N2

H3 Schneiderkrug/2013-
like swH1N1

H1, EA IGC

EA swH1N1N1

 
Figure 5. Evolution of German S-IAVs. Reassortment events leading to the main S-IAV lineages and 
the novel swH1N1 virus (presented in gray box) are shown. The Wachtum/2014-like swH1N1 are not 
shown here. Pictograms denote anthroponotic and spill-over infections. Asteriscs (*) indicate isolates 
with partial sequences. 

EA swH1N1 is prevalent in Germany and is known to cross-react at a certain level with 
H1pdmN1pdm. This cross-reactivity may have prevented a sustained circulation of H1pdmN1pdm in pigs 
for several years, especially in pig herds that had contact with several EA swH1N1 viruses and 
therefore exhibited a broader cross-reactivity [15]. Sporadic anthropogenic infections of pigs with 
H1pdmN1pdm occurred in Germany, mostly in areas with low-dense pig population, but no sustained 
circulation was observed. This changed with the upsurge of the Papenburg/2010-like swH1N2. 
Whereas the previous isolates of this reassortant exhibited five amino acid exchanges in their 
antigenic sites [13,16], the more recent strains have accumulated up to 10 amino acid substitutions 
(Supplementary Figure S5C). In 2014, the Wachtum/2014-like swH1pdmN1pdm emerged with 11 amino 
acid substitutions in the antigenic sites plus an additional N-glycosylation site (Table 1). Whereas the 
Papenburg/2010-like viruses still display a very low degree of cross-reactivity to the human 
H1pdmN1pdm, the Wachtum/2014-like swH1pdmN1pdm viruses neither cross-react with the EA swH1N1 
nor with other H1pdmN1pdm in immune sera. Hence, these viruses were the first H1pdmN1pdm that 
accomplished a persistent infection chain in pigs. This feature may bear future problems in the pig 
industry, as no commercial vaccine is available to protect pigs sufficiently from this virus. 

Notably, three mechanisms of S-IAV immune escape are observed: (i) The emergence of drift 
variants, which are not adequately matched by the available vaccines (e.g., the Wachtum/2014-like 
swH1pdmN1pdm), (ii) the emergence of reassortants and (iii) a combination of reassortment and 
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antigenic drift (e.g., the Papenburg/2010-like swH1N2 [13]). The appearance of new S-IAV variants 
in quick succession make it increasingly difficult to ensure an all-encompassing vaccination of pigs. 
Beside novel swH1N1 variants, the diversity of the swH1N2 viruses has also increased in the last 
decade in Germany [8]. It is likely that changed swine farming practices and increased herd size as 
well as the invention of a trivalent swine influenza vaccine in Germany contributed to this diversity. 
Rose et al. and Ryt-Hansen et al. described increasing problems in herd management due to 
persistent S-IAV infection in both farrow-to-finish and farrow-to-nursery farms [29,30]. Only a few 
modeling studies addressed S-IAV dynamics in pig herds. Reynolds et al. investigated different 
vaccination strategies and indicated the failure to eliminate swine influenza if only partial protection 
is achieved by the vaccine due to circulating heterologous S-IAV strains [36]. Cador et al. 
demonstrated that the presence of maternally derived antibodies may lead to an extended duration 
of epidemics and batch-to-batch infection [37]. The problem is further aggravated by 
epidemiological models that had been calibrated against seroprevalence data from Dutch finishing 
pigs and pointed out that S-IAV may persist even in small pig herds [38]. The co-circulation of two 
distinct S-IAV strains was investigated in another study of Cador et al. [39]. Modeling different 
vaccination schemes and herd management strategies, these authors evaluated the probability of a 
co-infection event in France to circa 17%, and no vaccination strategy achieved S-IAV elimination 
within the farrow-to-finish pig herd. 

These studies are compatible with our observations: repeated virus isolation within the same 
farm, isolation of different types and the emergence of reassortants are indicative of persistent 
infection of a herd despite vaccination. The unexpected occurrence of the Wachtum/2014-like drift 
variant with 11 substitutions in the antigenic sites of HA is concerning, as this indicates long-lasting 
inconspicuous circulation afore. The observed spread of this variant to neighboring German states 
suggests increasing enzootic circulation. In addition, such a drift variant bears a certain zoonotic 
risk, as the human IAV vaccine probably does not cover its antigenic properties. Our data once more 
indicate the necessity to intensify broader swine influenza surveillance. 
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Figure S5: Analysis of antigenic sites, Table S1: List of investigated strains. 
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