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Abstract: Next-generation sequencing (NGS) offers a powerful opportunity to identify low-abundance,
intra-host viral sequence variants, yet the focus of many bioinformatic tools on consensus sequence
construction has precluded a thorough analysis of intra-host diversity. To take full advantage
of the resolution of NGS data, we developed HAplotype PHylodynamics PIPEline (HAPHPIPE),
an open-source tool for the de novo and reference-based assembly of viral NGS data, with both
consensus sequence assembly and a focus on the quantification of intra-host variation through
haplotype reconstruction. We validate and compare the consensus sequence assembly methods of
HAPHPIPE to those of two alternative software packages, HyDRA and Geneious, using simulated HIV
and empirical HIV, HCV, and SARS-CoV-2 datasets. Our validation methods included read mapping,
genetic distance, and genetic diversity metrics. In simulated NGS data, HAPHPIPE generated pol
consensus sequences significantly closer to the true consensus sequence than those produced by
HyDRA and Geneious and performed comparably to Geneious for HIV gp120 sequences. Furthermore,
using empirical data from multiple viruses, we demonstrate that HAPHPIPE can analyze larger
sequence datasets due to its greater computational speed. Therefore, we contend that HAPHPIPE
provides a more user-friendly platform for users with and without bioinformatics experience to
implement current best practices for viral NGS assembly than other currently available options.

Keywords: bioinformatics; validation; simulation; viruses; consensus; haplotypes; HIV; HCV;
SARS-CoV-2

1. Introduction

Next-generation sequence (NGS) data provide a new opportunity to more efficiently study viral
diversity, especially within-host sequence variation, which is key to understanding the evolutionary
dynamics of viral populations both within and amongst hosts. NGS provides an opportunity to better
explore viral sequence evolution over time [1] and evolution among hosts, including the direction
of cross-species transmission [2], or elucidate the origin of viral epidemics [3]. While some studies
capitalize on the ability of NGS data to identify intra-host sequence variants, the majority rely on
consensus sequence estimation. This results in a loss of resolution in intra-patient viral diversity,
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which has nontrivial implications for downstream evolutionary inferences [4]. Thus, improving
consensus sequence estimation methods is of great interest to the virology community.

There are two general approaches when constructing a consensus sequence from NGS data:
de novo assembly and reference-based assembly (for reviews, see [5,6]). For reference-based assembly,
sequencing reads are aligned (or mapped) to a reference sequence and a consensus sequence is then
generated, often using majority rule, where the most frequently encountered nucleotide at each
aligned position is chosen to be the nucleotide in the consensus sequence at that same position.
Alternatively, consensus sequences can be generated using specified percentage cutoffs or by inserting
ambiguity codes at sites with incongruities. De novo assembly does not require a reference sequence,
but instead attempts to reconstruct the full sequence (or region of interest, such as an amplicon) by
identifying overlapping nucleotides among the sequence reads. While reference-based assembly
requires less memory, computational effort and sequencing depth, the generated consensus sequence
may reflect the nucleotide composition of the reference sequence (i.e., bias towards the reference
sequence) [7–9], thus potentially impacting the accuracy of downstream analyses. Issues in de novo
assembly commonly arise from the large amount of computing effort required and the computational
complexity of identifying overlapping regions in short reads. This issue is further compounded by
highly variable short reads seen in quickly evolving retroviruses due to high genetic diversity, although
small genomes still require relatively minimal computational power for assembly.

Recently, Ji et al. [10] recommended best practices for processing HIV NGS data, which include
reference-based assembly using Bowtie2 [11] as the short read aligner and HXB2 (NCBI accession:
K03455; [12]) as the reference sequence for constructing a consensus sequence. Many studies
implement reference-based assembly [10,13,14] with tools such as CLC Main Workbench (Qiagen,
Hilden, Germany) [15–18], Geneious (https://www.geneious.com) [19–24], HyDRA [25–28], SmartGene
(Switzerland) [21,29,30], PAseq [31,32] and Amplicon Variant Analyzer (AVA; pyrosequencing-based
platform) [21,33–37]. Other studies complete de novo assembly with tools such as Geneious [38],
CLC Main Workbench (Qiagen) [16,39,40], and Iterative Virus Assembler (IVA) [22,41–47]. HCV studies
follow similar patterns to those of HIV-1 [48–59]. A combination of both assembly approaches has been
implemented to construct a consensus sequence by first mapping the reads to a reference sequence and
then completing de novo assembly of those mapped reads [53,60].

Our software, HAplotype PHylodynamics PIPEline (HAPHPIPE), was designed to make viral NGS
analyses more accessible and versatile for researchers and to provide the opportunity for identifying
within-host variation by assembling variants from NGS data [61]. HAPHPIPE implements de novo or
reference-based assembly followed by iterative refinement steps to assemble a better-representative
consensus sequence for the entire viral population being surveyed. HAPHPIPE also implements
haplotype reconstruction tools to facilitate the use of haplotypes in downstream analyses. The inclusion
of haplotype data helps researchers to quantify within-host variation and, thereby, make improved
inferences about associations with phenotypic traits.

A fundamental component of good software development is testing and validation [62].
Accordingly, we aim to test and validate HAPHPIPE using simulated HIV-1 data and empirical
HIV-1 [63], HCV [64], and SARS-CoV-2 data. We hypothesize that in our simulation study: (i) due to
the high genetic diversity of HIV-1, the de novo assembly strategy, regardless of platform, will produce
a consensus sequence that is more genetically similar to the true sample isolate sequence than the
reference-based assembly strategy; and (ii) that HAPHPIPE will perform as well as or better than
HyDRA and Geneious, based on the metrics of read mapping, genetic distance, and genetic diversity.
We also evaluate genetic distance to address potential bias in reference-based assembly. For the
purposes of this study, we focus on the composition of the consensus sequences, but additionally
report haplotype data for the HIV and HCV empirical datasets as validation of HAPHPIPE’s intra-host
analytical capabilities. See Eliseev et al. [65] for an evaluation of haplotype reconstruction tools.

One aspect of note in NGS assembly specific to HIV is that often, these analyses are performed
by users whose primary work is not in bioinformatics, such as clinicians, due to the often highly
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translational goals of HIV research. Because viral sequence analyses are rapidly becoming a staple
of public health surveillance efforts, one of the primary goals of HAPHPIPE was to make intricate,
command-based software accessible to introductory level bioinformatics users. Hence, we have
included significant documentation and pre-scripted pipelines along with our software to facilitate its
use by users of all backgrounds.

2. Materials and Methods

Below, we introduce the three tools that were used in generating consensus sequences, as well as
the simulated and empirical datasets used in this study. Finally, we discuss the analyses completed
for the pipelines and consensus sequences, along with true and reference sequences used (Figure 1).
We compared HAPHPIPE to two other software programs, Geneious and HyDRA, based on their
frequent use in viral studies [19–28,38,51–53,56,57], particularly among clinicians and those new to
bioinformatics analysis. In particular, we chose HyDRA over similar web-based platforms such as
PASeq [66] due to its popularity in the HIV research community; we chose Geneious as a representative
of commercial software frequently used in genomics analysis. In selecting these methods, we target
this validation study on performance for clinical and public health applications—which are especially
pertinent for the empirical viral data included: HIV, HCV, and SARS-CoV-2. We suggest HAPHPIPE
as a viable alternative to commercial and closed-source platforms for these applications.
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Figure 1. Methods overview. Sequencing reads were simulated for each simulation sample, while reads
for empirical data were gathered from NCBI SRA database. Reads for each sample were assembled and
a consensus sequence generated through the de novo pipelines for HAPHPIPE (HP01) and Geneious
and the reference-based pipelines for HAPHPIPE (HP02), Geneious, and HyDRA. Only HIV samples
were analyzed through HyDRA, because HyDRA is HIV-specific. All resulting consensus sequences
were analyzed using a variety of metrics including assembly statistics, genetic distance from reference
or true sequence metrics, and diversity estimates, such as nucleotide diversity.
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2.1. HAPHPIPE

HAPHPIPE is a user-friendly tool designed for the customizable processing and analysis of
viral NGS data [61]. HAPHPIPE is available for installation via Bioconda, a popular open-source,
bioinformatics-specific software distribution system for Python packages. Installation of the
HAPHPIPE suite requires only one command. HAPHPIPE is constructed in a modular format
that has five main components: manipulating reads (reads stage), assembling consensus sequences
(assemble stage), haplotype reconstruction (haplotype stage), post-analysis steps such as summary
statistics or region extraction (description stage) and phylogenetics (phylo stage) [61]. There are two
example pipelines included in the tool: haphpipe_assemble_01 and haphpipe_assemble_02 (Table 1).
Haphpipe_assemble_01 is a de novo assembly pipeline that takes raw Illumina sequencing data,
quality trims and error corrects the reads with Trimmomatic [67] and SPAdes [68], respectively,
completes de novo assembly to form contigs with SPAdes, and forms scaffolds from the contigs with
MUMMER 3+ [69]. Finally, the corrected reads are mapped back to the de novo assembled sequence
with Bowtie2 [11]. The initial consensus sequence is updated through iterative refinement steps,
where the corrected reads are repeatedly mapped back to the newly formed consensus sequence and
the consensus sequence is updated with the new majority nucleotides at a position using a modified
majority rule (taking quality scores and read depth into account). By default, this continues until the
consensus sequence shows no improvement or changes to base composition or five refinement steps
are completed. Alternatively, haphpipe_assemble_02 is a reference-based assembly approach, in which
error corrected reads are mapped against a reference genome with Bowtie2 instead of being assembled
de novo. All other steps are the same as in haphpipe_assemble_01.

Table 1. Characteristics of the compared programs.

Pipeline Haphpipe_Assemble_01 Haphpipe_Assemble_02 HyRDA Geneious Geneious

Assembly approach De novo Reference Reference Reference De novo
Reference None Flexible HXB2 Flexible None

Consensus refinement Available Available No Available No
Genes All All pol All All

Use Free, Command line Free, Command line Free, Web-based Paid GUI Paid GUI

Read trimming Available, Trimmomatic Available,
Trimmomatic

Yes, parameters set
by user

Available,
modified-Mott

algorithm

Available,
modified-Mott

algorithm

Error correction Available, SPAdes Available, SPAdes Set sequencing
platform error rate Available, BBNorm * Available, BBNorm *

* BBNorm is part of BBTools package and found at http://seqanswers.com/forums/showthread.php?t=49763.

HAPHPIPE also implements PredictHaplo [70] and CliqueSNV [71], two haplotype reconstruction
tools. For purposes of this study, we present results generated by PredictHaplo, which was chosen for
the HAPHPIPE suite because it was determined to have the best performance for capturing intra-host
viral variation compared to eleven other haplotype reconstruction tools in a recent study [21] of
diversity levels observed in viral intra-patient data. For a more thorough explanation of HAPHPIPE
and detailed user instructions, see Bendall et al. [61] or https://gwcbi.github.io/haphpipe_docs/.

2.2. HyDRA

HyDRA is a freely available, web-based tool that utilizes a wrapper for Bowtie2 for reference-based
mapping of Illumina MiSeq reads to HXB2, similar to the HAPHPIPE reference-based pipeline (Table 1).
Briefly, the default parameters included: a minimum of 20% frequency for a base to be included
in the consensus sequence, the default mutation database—which is the Stanford SDRM 2009 list
of mutations—a target coverage of 10,000 reads, a minimum read length of 100 bp, a minimum
average read quality score of 30, a sequencing platform error rate of 0.0021, a minimum variant
quality of 30, a minimum read depth of 100 for a variant call, a minimum allele count of five to be
considered a variant, and a minimum amino acid frequency of 0.01 for a mutation to be considered in
the drug-resistant report.

http://seqanswers.com/forums/showthread.php?t=49763
https://gwcbi.github.io/haphpipe_docs/
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Compared to HAPHPIPE, HyDRA requires a target read coverage (10,000 reads) whereas
HAPHPIPE does not require a target. For quality trimming of the reads, the defaults for HAPHPIPE
include trimming base pairs from the 3′ and 5′ ends of the reads that fall below a quality of 3 or
contain ‘N’, removing any leftover adapter sequences, a sliding window of 4:15, which clips the read
once the average quality of the window is below 15, and requires a minimum read length of 36 bp,
which is less than HyDRA, which requires a minimum average quality score of 20 and a minimum
read length of 100 bp. Rather than a set error rate, HAPHPIPE utilizes a more accurate correction
tool with the built in error correction module of SPAdes, BayesHammer [72]. For variant calling,
the default minimum variant quality is 15 in HAPHPIPE, again lower than HyDRA. Furthermore,
HyDRA assembles data from each read pair separately, as opposed to pairing reads during assembly,
and constructs one reconstructed pol region as opposed to multiple regions across the entire genome
(i.e., PRRT, int, and gp120). HyDRA also does not allow for the assembly of envelope proteins and is
restricted to only HIV-1 sequence analyses.

2.3. Geneious

Geneious is a commercial, desktop software that hosts a suite of bioinformatic tools to analyze
sequence data (Table 1). For the purposes of this study, we followed the protocol detailed by
Dudley et al. [19], which is a reference-based assembly. We paired the raw reads and then trimmed
on both the 5′ and 3′ ends with an error probability limit of 0.001 using the modified-Mott algorithm
(see Geneious documentation). We then mapped the trimmed reads against the reference sequence
HXB2 with the Geneious mapper. Parameters were as follows: a maximum of 15 gaps were allowed
per read, a maximum gap size of 15, a minimum overlap identify of 80%, a minimum word length of
14, an index word length of 12, a maximum of 15% mismatches per read, and a maximum ambiguity
of 16, and searched more thoroughly for poor match reads. A consensus sequence was saved after
mapping with a default base threshold of the highest quality, and for reads without a quality score at a
particular base, a default threshold of 65% was used for the consensus sequence. This reference-based
workflow in Geneious is similar to the HAPHPIPE reference-based pipeline but sets limits for gaps,
does not include an error-correction step, and includes ambiguity codes in the consensus sequence.
The default in HAPHPIPE uses the ‘fast-sensitive’ option in Bowtie2, which allows no mismatches
in seed alignment (considerably lower compared to Geneious 15% mismatches per read), requires a
seed length of 20 (larger than Geneious value of 12), and requires a seed interval of 1 + 0.50 using the
square-root of the read length. For more detailed explanations of Bowtie2 parameters, see the user
manual at http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml.

We additionally adapted this reference-based workflow for de novo assembly. The same trimming
parameters for quality control steps and the Geneious assembler were used for de novo assembly of
contigs using the following parameters: variants with coverage over six were not merged, the merging
of homopolymer variants, the production of scaffolds, a maximum of 15 gaps were allowed per read,
a maximum gap size of 15, a minimum overlap identify of 80%, a minimum word length of 14, ignored
words repeated more than 200 times, an index word length of 12, a reanalysis quality threshold of
eight, a maximum of 15% mismatches per read, a maximum ambiguity of 16, and more thorough
searching for poor match reads. Additionally, the de novo workflow required additional computational
resources, so 32 GB of memory was allocated. The de novo assembly workflow, which is similar to
the HAPHPIPE de novo pipeline, uses Geneious’s own proprietary de novo assembler to construct
contigs, while HAPHPIPE uses SPAdes, which has been shown to produce longer and more accurately
assembled contigs [68,73]. It is also fast and does not require as many computational resources as
Geneious—requiring only 5 GB of memory for assembly and 8 GB of disk space. This is an important
consideration for researchers wishing to conduct large-scale studies with many samples, as HAPHPIPE
can also be run efficiently in parallel on an HPC cluster, whereas Geneious must be run in its GUI
form. Lastly, in the Geneious de novo workflow, contigs had to be manually mapped back to reference

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
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sequences in order for amplicons to be identified, whereas in HAPHPIPE contigs are automatically
scaffolded and labeled, thus reducing manual effort.

2.4. Data Simulation

A total of 100 HIV-1 subtype B genomes and 50 HIV-1 non-subtype B genomes were randomly
pulled (with no duplicates) from the Los Alamos HIV Database (LANL; hiv.lanl.gov) reference genome
2017 list (Table S1; [16,28,40,74–136]). For each sequence, all ambiguity codes (M, R, W, etc.) were
replaced randomly with one of the corresponding nucleotides (M = A or C, R = A or G, etc.). We then
extracted the protease and reverse transcriptase (PRRT, HXB2 numbering: 2252–3869), integrase (int,
HXB2 numbering: 4230–5093), and gp120 (HXB2 numbering: 6225–7757) gene regions (i.e., amplicons).
Gaps were then removed from the each sequence, which was labeled as the “truesequence.fasta” for
each sequence. We then simulated reads for each sequence based on the respective “truesequence.fasta”
with ART v. MountRainier [137], a simulation tool that generates NGS reads from a consensus
sequence. We simulated 150 bp paired-end reads with a 2000x fold coverage, a mean fragment size of
215 bp, and a standard deviation of 120 bp. These reads were also error-prone, implemented with the
integrated Illumina MiSeq platform error profile, which means that the reads contained errors known
to be caused by the sequencing platform itself, creating a realistic representation of a standard NGS
dataset. This process resulted in a total of 25,000 paired-end reads per sequence, covering each of the
three targeted gene regions. This procedure was repeated for all 100 subtype B and 50 non-subtype
B sequences.

2.5. Analyses and Testing

The simulated FASTQ read files were used as the inputs for both assembly pipelines in HAPHPIPE
(haphpipe_assemble_01 and haphpipe_assemble_02) [61]. HyDRA Web v. 1.5.1 and Geneious v. 10.2.6
were implemented using the workflows described previously, each of which resulted in a consensus
sequence for each respective true sequence. For Geneious and HyDRA workflows, we additionally
extracted amplicon regions by aligning to HXB2. We then aligned all consensus sequences generated
from each pipeline and workflow using MAFFT v. 7.309 [138] and estimated genetic diversity with
DnaSP v. 6 [139], specifically recording nucleotide diversity (π), Watterson’s theta (θ), variable sites,
and estimated number of haplotypes. We did the same for the true sequences for purposes of
comparison. The genetic distance for each generated consensus sequence with respect to the true
sequence was calculated using proportional (p)-distances [140], the number of nucleotide differences
per site over the length of the alignment. While consensus sequences constructed with HAPHPIPE
did not contain ambiguity codes, those constructed by HyDRA and Geneious workflows contained
many. As we wanted to account for these fairly, we also calculated an adjusted p-distance, which gave
differences with ambiguity codes fractional weight. P-distances and adjusted p-distances were also
calculated between each of the generated consensus sequences and the HXB2 reference sequence.

Results were visualized with R v. 3.6.0 [141] in R Studio v. 1.2.1335 [142] using the ggplot2 v.
3.1.1 [143] package. Hypothesis testing for genetic p-distance and adjusted p-distance results were
performed using the non-parametric Kruskal–Wallis test [144,145] with the R package stats v 3.6.0
and the Dunn post-hoc test [146] v 1.3.5 for multiple comparisons in R. For the Dunn test, we report
p-values adjusted with the Holm method [147]. Hypothesis testing for distance results between the
initial and final consensus sequence generated by each HAPHPIPE pipeline was also performed using
the Wilcoxon signed-rank test [148].

2.6. Empirical Data Applications

All SRA accessions, each representing empirical HIV-1 NGS amplicon data from two populations
sampled repeatedly over one year, were selected from the BioProject accession PRJNA506879 [63].
The average read count per sample was 583,828 reads. We put the raw NGS reads for each of the 36
HIV samples through both HAPHPIPE pipelines, with the same amplicons used in the simulated HIV-1
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data above and the HXB2 reference sequence. We generated haplotypes with PredictHaplo. We also
processed the raw reads through HyDRA and Geneious in the same manner as the simulated HIV-1 data.
We estimated the genetic diversity of the consensus sequences of the HAPHPIPE pipelines, HyDRA
and Geneious with DnaSP. Finally, we calculated p-distances and adjusted genetic p-distances between
a sequence (predicted haplotypes from both HAPHPIPE pipelines and the consensus sequences from
both HAPHPIPE pipelines, HyDRA, and Geneious) and HXB2 reference sequence, using the same
analysis steps as described above with the simulated data. Subtyping of all consensus sequences and
haplotypes was performed using the REGA HIV subtyping tool [149].

A total of 23 SRA accessions of HCV sequence data were selected from Babcock et al. [64] (accession
numbers: SRR1170557, SRR1170560-SRR1170568, SRR1170576-SRR1170579, SRR1170671-SRR1170679),
each representing HCV viral variants from a patient cohort at several time points spanning two months.
The average read count was 7.9 million paired-end reads per sample, and we analyzed these samples
through the same pipelines as the empirical HIV-1 data above, except HyDRA, which is HIV-1-specific.
For reference-based pipelines, we used the H77 HCV reference sequence (accession: NC_004102),
which is of HCV subtype 1a [150]. The following amplicons were included: core (H77 numbering:
342–914), E1 (H77 numbering: 915–1490), and E2 (H77 numbering: 1491–2579). We also reconstructed
haplotypes for this dataset, estimated genetic diversity for consensus sequences from each pipeline,
and calculated the corresponding genetic distances (p-distance and adjusted p-distance) between each
of the resulting pipeline consensus sequences and H77. Subtyping of all consensus sequences and
haplotypes was performed using the Genome Detective HCV subtyping tool (www.genomedetective.
com/app/typingtool/hcv/).

At the time of this study, four high-quality SARS-CoV-2 SRA samples were available (accession
numbers: SRR11140744, SRR11140746, SRR11140748, SRR11140750), and we analyzed each through
both HAPHPIPE pipelines and Geneious workflows. The average read count was 395,407 paired-end
reads for the first three samples, while the last sample was smaller with only 17,208 reads. We used the
severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1 (accession NC_045512) as the
reference sequence [151]. We sought to test whole genome assembly, so the entire genome was used
(i.e., no amplicons were assembled for this dataset); this meant that, for the de novo assembly pipeline
for HAPHPIPE (haphpipe_assemble_01), we used the numbering 0 to 29,902 for the reference GTF
file. Again, we analyzed assembly statistics, genetic distance from reference metrics, and diversity
estimates, as with the previously described datasets.

3. Results

For simplicity, we present and discuss results from adjusted p-distances, and when results from
non-adjusted p-distances differ significantly, we addressed these inconsistencies within each section.
All genetic p-distance results and the associated figures can be found in Supplemental Materials.

3.1. Simulated Data

In the simulated data, the HAPHPIPE de novo pipeline did not proceed to a third refinement step
(Table 2), which indicates that refining a second time did not improve the assembly. The reference-based
pipeline, 93% and 88% of the simulated subtype B and non-subtype B samples, respectively, terminated
at a third refinement step and only 2% and 4%, respectively, required a fourth refinement step (Table 2).
The HAPHPIPE de novo pipeline produced >96% alignment rates, while refinement during the
reference-based pipeline improved alignment rates further by an average of 6.72–21.1% (Table 2).
Geneious produced lower mapping rates—82.63% and 63.05% for reference-based, and 64.20% and
64.30% for de novo workflows for subtype B and non-subtype B samples, respectively (Table 2).
In subtype B samples, there was no significant difference in genetic distance from the true sequence
between initial and final steps of the de novo pipeline (p value in the range [0.371, 1]) and distance from
the true sequence decreased significantly after refinement for all genes except int in the reference-based
pipeline (p < 0.001; Figure 2, Table A1). For non-subtype B samples, genetic distance from the true

www.genomedetective.com/app/typingtool/hcv/
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sequence between the initial and final steps decreased significantly for all genes except int (for which
sequences were already extremely close to the true sequence) in the de novo pipeline (p < 0.001),
and increased significantly in the reference-based pipeline for all genes (p < 0.001; Figure 2, Table A1).

Table 2. Comparison of the de novo and reference-based assembly pipelines in HAPHPIPE for the
simulated dataset.

Tool N
Avg Bowtie2
Alignment
First Step

Avg Bowtie2
Alignment
Last Step

Number of
Samples
Refine.02

Number of
Samples
Refine.03

Number of
Samples
Refine.04

Number of
Samples
Refine.05

Simulated HIV data subtype B

HP01 100 99.87% 99.64% 3 0 0 0
HP02 100 88.95% 95.67% 100 93 2 0
GDN 100 NA 64.20% NA NA NA NA
GRB 100 NA 82.63% NA NA NA NA

Simulated HIV data non-subtype B

HP01 50 98.80% 96.92% 50 0 0 0
HP02 50 59.37% 80.47% 50 44 2 0
GDN 50 NA 64.30% NA NA NA NA
GRB 50 NA 63.05% NA NA NA NA

Abbreviations: HP01 = haphpipe_assemble_01 (de novo assembly), HP02 = haphpipe_assemble_02 (reference-based
assembly), GDN = Geneious de novo assembly, GRB = Geneious reference-based assembly, N = number of sequences.

The differences in the genetic distance among true and consensus sequences generated from
all platforms were significant (p < 0.001, Table S2), and post-hoc analysis indicated many significant
pairwise comparisons (Figure 2, Table A2). Overall, for the simulation data, HAPHPIPE pipelines
generated consensus sequences significantly closer to the true sequence than those produced by
HyDRA (p < 0.001; Table A2) for all amplicons (PRRT, int and pol) in both subtype B and non-B
sequences. Similarly, both HAPHPIPE pipelines generated consensus sequences significantly closer to
the true sequence than Geneious reference-based workflow (all p < 0.001, subtype B for gp120: p < 0.05;
Table A2). For subtype B sequences, HAPHPIPE pipelines generated consensus sequences significantly
closer to the true sequence than those produced by both workflows in Geneious for pol, PRRT, and int
(p < 0.001; Table A2). For non-subtype B sequences, HAPHPIPE generated consensus sequences
significantly closer to the true sequence than those produced by the Geneious de novo workflow for
pol, PRRT, and int (p < 0.001, except for Geneious de novo workflow vs. HAPHPIPE reference-based
pipeline in PRRT: p < 0.05; Table A2). For both subtype B and non-subtype B sequences, in gp120 for
de novo assembly, there was no significant difference in distance from the true sequence between
HAPHPIPE and Geneious consensus sequences (p = 0.427, 0.121; Figure 2, Table A2).

For subtype B sequences, there were no significant differences between distance to HXB2 before and
after refinement in the HAPHPIPE de novo pipeline for all genes and in the reference-based pipeline for
pol genes (p value in the range [0.167, 1]; Figure 3, Table A3). However, gp120 reference-based consensus
sequences were significantly closer to HXB2 post-refinement (p < 0.001; Table A3). In non-subtype B
data, HAPHPIPE de novo consensus sequences were significantly further from HXB2 post-refinement
across all genes (p < 0.01), however, reference-based gp120 consensus sequences showed the opposite
and were closer to HXB2 post-refinement (p < 0.001; Table A3). For pol genes, there were no significant
differences in distance to HXB2 post-refinement in the reference-based consensus sequences (p value
in the range [0.161, 1]; Table A3). Similar trends as those for the true sequence were seen in genetic
distance to the HIV reference sequence, HXB2, for subtype B pol data; however, not for subtype B
gp120 or in general for non-subtype B data, which are less similar to HXB2 because of high variability
and difference in subtype, respectively. Median distance to HXB2 was notably greater than distance
to the true sequence in all genes for gp120 sequences in the simulation dataset (Figure 3). Moreover,
there were no significant differences between the genetic distance to HXB2 for consensus sequences
from the HAPHPIPE pipelines and Geneious workflows for subtype B gp120 sequences (p = 0.0799;
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Table A4, Table S2). In non-subtype B data, there was no significant difference in the distance of
gp120 HAPHPIPE de novo and reference-based consensus sequences to HXB2 (p = 0.191; Table A4),
while the same de novo consensus sequences were shown to be significantly closer to the true sequence
(Table A2). Additionally, there was no significant difference in PRRT sequences between distance of
the two HAPHPIPE consensus sequences (p = 0.774; Table A4) or between Geneious and HAPHPIPE
reference-based sequences (p = 0.090) to HXB2 as there was in distance to the true sequence (Table A2).
There was also no significant difference in pol in distance to HXB2 between the two HAPHPIPE
pipelines (p = 0.879; Table A4), as was also seen in distance to the true sequence (Table A2).
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Figure 2. Adjusted genetic p-distance (displayed as a difference from 1) between consensus sequence
and true sequence for all pipelines for the simulated HIV (A) subtype B dataset and (B) non-subtype
B dataset. Ambiguous nucleotides were accounted for by giving fractional weight in alignment.
A value closer to 1.00 indicates the consensus sequence is more genetically similar to the true sequence.
The x-axis order from left to right for an individual panel: adjusted genetic p-distance between the
true sequence and (i) the initial assembled sequence followed by (ii) the final assemble sequence for
haphpipe_assemble_01 pipeline (de novo assembly); (iii) the initial assembled sequence followed
by (iv) the final assemble sequence for haphpipe_assemble_02 pipeline (reference-based assembly);
the final consensus sequence for the Geneious (v) de novo workflow and the (vi) reference-based
workflow; and finally, the (vi) average between the final two sequences (one for each read file) for
HyDRA. The three amplicons are shown, as well as a combination of PRRT and int amplicons into pol.
There are no results for HyDRA in the gp120 gene because HyDRA only analyzes the pol gene.

As for genetic diversity, consensus sequences from HAPHPIPE (either pipeline) and Geneious
reference-based workflow resulted in the greatest underestimations of nucleotide diversity (π) in gp120,
which represents current diversity estimates [152], compared to estimates from the true sequence for
both subtype B and non-subtype B sequences (Figure 4, Table A5). Reference-based assembly, in general,
resulted in greater underestimations of π for non-subtype B sequences (Figure 4, Table A5). Similarly,
all Geneious and HAPHPIPE consensus sequences resulted in underestimations of Watterson’s theta
(θ), which represents historical diversity [152], for gp120 in the non-subtype B sequences (Figure 4,
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Table A5). However, all of these differences were quite small, with a magnitude less than 0.08 for π and
less than 0.04 for θ.
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Figure 3. Adjusted genetic p-distance (displayed as a difference from 1) between consensus sequence
and HXB2, the reference sequence for HIV, for all pipelines for the simulated HIV (A) subtype B
dataset and (B) non-subtype B dataset. Ambiguous nucleotides were accounted for by giving fractional
weight in alignment. A value closer to 1.00 indicates that the consensus sequence is more genetically
similar to the reference sequence. The x-axis order from left to right for an individual panel: adjusted
genetic p-distance between the reference sequence and (i) the initial assembled sequence followed by
(ii) the final assemble sequence for haphpipe_assemble_01 pipeline (de novo assembly); (iii) the initial
assembled sequence followed by (iv) the final assemble sequence for haphpipe_assemble_02 pipeline
(reference-based assembly); the final consensus sequence for the Geneious (v) de novo workflow and
the (vi) reference-based workflow; and finally, the (vi) average between the final two sequences (one for
each read file) for HyDRA. The three amplicons are shown, as well as a combination of PRRT and int
amplicons into pol. There are no results for HyDRA in the gp120 gene because HyDRA only analyzes
the pol gene.

The results for adjusted p-distance differed from those of non-adjusted p-distance in some
comparisons (Tables S2–S10). Namely, using non-adjusted p-distance to the true sequence, we showed
no significant difference between HAPHPIPE and Geneious reference-based sequences in gp120 for both
subtype B and non-B (Figure S1, Table S4). In distance from HXB2 for subtype B sequences, we did find
significant differences between methods (p < 0.001; Figure S2, Table S6), in particular that HAPHPIPE
and both Geneious workflows were closer to HXB2 than HAPHPIPE reference-based sequences and
that HAPHPIPE and Geneious de novo sequences were closer to HXB2 than Geneious reference-based
sequences (p < 0.05; Table S6). In non-subtype B data, non-adjusted p-distance indicated that, in gp120,
HAPHPIPE and Geneious de novo sequences were closer to HXB2 than HAPHPIPE reference-based
sequences (p < 0.001), and that there was no difference between distance in Geneious and HAPHPIPE
reference-based sequences (p = 0.541; Table S6).
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Figure 4. Difference between the estimated genetic diversity from the true sequence and each pipeline
(calculated as estimate of true sequences—estimate of pipeline consensus sequences) for the simulated
HIV (A) subtype B dataset and (B) non-subtype B dataset. Positive value indicates an underestimation of
the genetic diversity with the consensus sequences from the pipeline, and a negative value indicates an
overestimation of the genetic diversity with the consensus sequences from the pipeline. PRRT = protease
and reverse transcriptase, int = integrase, gp120 = gene within envelope gene region, Pi = nucleotide
diversity, Theta = Watterson’s genetic diversity.

3.2. Empirical Data

Empirical HCV data were subsampled to 3 million reads per FASTQ file prior to assembly on all
platforms due to memory limitations. For the Geneious de novo workflow, data were additionally
subsampled to 100,000 reads per FASTQ file because at larger file sizes the assembly step failed to
complete. Similarly, the empirical SARS-CoV-2 dataset was subsampled to 100,000 reads per FASTQ
file for both Geneious workflows. However, both HAPHPIPE pipelines were able to run on the full
dataset. No subsampling was necessary for the empirical HIV data on any platform.

In the HAPHPIPE pipelines, the majority of samples in all empirical data ceased at three refinement
steps (Table 3). While the Geneious de novo alignment rates were much higher than those of both
HAPHPIPE pipelines and the Geneious reference-based workflow for HIV and HCV data, these values
reflect the percentage of reads mapped to contigs, which were then scaffolded to the reference sequence
(Table 3). Only 27.78%, 29.07%, and 13.11% of these contigs mapped back to the reference for HIV, HCV,
and Sars-CoV-2 data, respectively, and the number of reads included in the final scaffolded sequence is
not reported. Contig mapping rates are not available for the HAPHPIPE pipelines because contigs are
only used to build a scaffold—further refinement steps utilize reads directly instead of contigs. For the
empirical HIV data, sequencing covered the entire genome as a set of five amplicons [63], while our
assembly targeted only three genes as distinct amplicons. In the following subsections, we compare the
effects of assembly methods among all platforms, as well as the implications of these assembly-related
data, on the final consensus sequence.
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Table 3. Comparison of the effect of consensus generation on estimated genetic diversity across the
empirical datasets.

Tool Num of Seqs
Avg Bowtie2
Alignment
First Step

Avg Bowtie2
Alignment
Last Step

Number of
Samples
Refine.02

Number of
Samples
Refine.03

Number of
Samples
Refine.04

Number of
Samples
Refine.05

Empirical HIV Data

HP01 36 53.67% 44.23% 36 10 0 0
HP02 36 54.69% 47.58% 36 5 0 0
GDN 36 NA 89.98% NA NA NA NA
GRB 36 NA 27.68% NA NA NA NA

Empirical HCV Data

HP01 23 90.46% 72.40% 23 19 7 1
HP02 23 78.13% 75.27% 23 22 4 1

GDN *ˆ 23 NA 97.27% NA NA NA NA
GRB 23 NA 63.31% NA NA NA NA

Empirical SARS-CoV-2 Data

HP01 4 100% 94.32% 4 3 0 0
HP02 4 100% 94.36% 4 4 0 0

GDN *ˆ 4 NA 80.55% NA NA NA NA
GRB * 4 NA 94.23% NA NA NA NA

* Total reads had to be subsampled to 100,000 reads per FASTQ file for Geneious to produce results. ˆ Alignment
rates are for reads mapped to contigs. Not all contigs were scaffolded to the reference: 27.78% of contigs for HIV,
29.07% of contigs for HCV, and 13.11% of contigs for SARS-CoV-2 data were used after scaffolding. Abbreviations:
HP01 = haphpipe_assemble_01 (de novo assembly), HP02 = haphpipe_assemble_02 (reference-based assembly),
GDN = Geneious de novo assembly, GRB = Geneious reference-based assembly, N = number of sequences.

3.2.1. Empirical HIV Dataset

All consensus sequences and reconstructed haplotypes generated from the empirical HIV data
were confirmed as Subtype B by the REGA subtyping tool. HAPHPIPE de novo sequences were
significantly closer to HXB2 after refinement in all genes (p < 0.001; Figure 5, Table A6); while for
HAPHPIPE reference-based sequences, only gp120 was significantly closer to the reference genome
(p = 0.003; Table A6). Consensus sequences produced for each gene in the empirical HIV dataset showed
significant differences in genetic distance to the HIV subtype B reference sequence, HXB2 (p < 0.001;
Table A7). Notably, HAPHPIPE reference-based consensus sequences were significantly closer to
HXB2 than de novo consensus sequences across all gene regions (p < 0.001; Figure 5, Table A7); unlike
in the simulated data, which showed similar results between both HAPHPIPE pipelines (Figure 3,
Table A3). In fact, HAPHPIPE de novo sequences were significantly farther from HXB2 than any other
pipeline in all three genes, despite the sample data also being subtype B. For Geneious, no significant
differences were found between de novo and reference-based sequences in any gene (p value in the
range [0.630, 1.00]; Table A7). There were also no significant differences found between any of the three
reference-based pipelines in pol genes (PRRT and int (p value in the range [.251, 1.00]), yet in gp120
HAPHPIPE, reference-based sequences were significantly closer to HXB2 than those from Geneious
(Table A7). In HAPHPIPE, reference-based sequences for PRRT and gp120, reconstructed haplotypes
were significantly farther from HXB2 than the HAPHPIPE reference-based consensus sequences
(p < 0.05), as were de novo gp120 sequences (p < 0.05). Haplotypes for de novo PRRT sequences and
int sequences from both pipelines showed no significant difference in distance from HXB2 (Table A7).
In all three gene regions, haplotypes had considerably more variable sites than consensus sequences
(Table 4). Compared to consensus sequences, haplotypes also had higher values of Watterson’s theta in
all genes and higher values of pi in PRRT and gp120 (Table 4). HyDRA sequences had the lowest values
of both pi and theta for both pol genes (Table 4). Both diversity metrics were also higher for HAPHPIPE
pipelines than their Geneious counterparts, in both de novo and reference-based workflows (Table 4).
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Table 4. Comparison of the effect of consensus generation on estimated genetic diversity across the
empirical HIV dataset.

PRRT int gp120

Pipeline N H S π θ N H S π θ N H S π θ

HP01 36 7 6 0.0005 0.0008 36 5 5 0.0009 0.0013 36 9 10 0.0012 0.0015
HP02 36 6 6 0.0005 0.0009 36 5 5 0.0009 0.0014 36 10 13 0.0016 0.0016
HP01 haplotypes 132 78 119 0.0028 0.0127 162 52 35 0.0021 0.0064 224 167 149 0.0049 0.0154
HP02 haplotypes 139 85 110 0.0034 0.0123 140 46 34 0.0021 0.0071 70 40 61 0.0026 0.0067
HyDRA 36 1 2 0.0003 0.0003 36 1 2 0.0003 0.0006 NA NA NA NA NA
GRB 36 1 3 0.0004 0.0005 36 1 3 0.0004 0.0009 36 1 5 0.0006 0.0007
GDN 36 2 4 0.0005 0.0006 36 2 4 0.0007 0.0011 36 3 9 0.0009 0.0011

HyDRA is an average between read1 and read2. Abbreviations: HP01 = haphpipe_assemble_01 (de novo assembly),
HP02 = haphpipe_assemble_02 (reference-based assembly), GDN = Geneious de novo assembly, GRB = Geneious
reference-based assembly, N = number of sequences, H = number of haplotypes, S = number of polymorphic sites,
π = nucleotide diversity, θ = Watterson’s genetic diversity, PRRT = protease and reverse transcriptase, int = integrase.
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3.2.2. Empirical HCV Dataset

Notably, subtyping results from the Genome Detective HCV subtyping tool indicate that 42.2%
of consensus sequences could not be assigned to a subtype, including sequences from each sample
and from each platform and assembly method. The remaining sequences were assigned to subtype
1a, the same as the H77 reference sequence. This indicates that the data are likely not purely type 1a
and may include either significant mutations or recombination with other HCV subtypes. HAPHPIPE
de novo sequences were significantly closer to H77 after refinement for all genes (p < 0.001), as were
HAPHPIPE reference-based sequences for core and E2 (p < 0.01), but no significant difference was seen
in E1 (p = 0.058; Figure 5, Table A8). For all three genes (core, E1, and E2), HAPHPIPE reference-based
consensus sequences were closer to H77 than HAPHPIPE de novo consensus sequences (p < 0.001;
Figure 5, Table A8). HAPHPIPE de novo sequences were significantly closer to H77 than Geneious
de novo sequences in core and farther in E1 (p < 0.01), though this difference was not significant in
E2 (p = 0.069; Figure 5, Table A8). Geneious de novo sequences were significantly farther from H77
than Geneious reference-based sequences in both core and E2 (p < 0.05), but not in E1 (p = 0.201,
Figure 5, Table A8). HAPHPIPE reference-based consensus sequences were significantly closer to H77
than all other pipelines in core (p < 0.01) and showed no significant differences compared to either
Geneious workflow in the envelope genes (E1, E2; p value in the range [0.369, 1]; Figure 5, Table A8).
No significant differences in distance from H77 were seen between consensus sequences and their
respective haplotypes for either HAPHPIPE pipeline in all genes (p value in the range [0.702,1.00],
Table A8). The number of variable sites in haplotypes versus consensus sequences was highly variable,
with no consistent trends seen across genes (Table 5). Overall, diversity estimates for Geneious de
novo sequences were higher than the other constructed consensus sequences, which could be related
to the extreme subsampling for this dataset (Table 5).

Table 5. Comparison of the effect of consensus generation on estimated genetic diversity across the
empirical HCV dataset.

core E1 E2

Pipeline N H S π θ N H S π θ N H S π θ

HP01 23 16 33 0.0360 0.0379 23 21 188 0.0814 0.0793 23 20 406 0.1047 0.0960
HP02 23 16 26 0.0373 0.0366 23 20 151 0.0703 0.0707 23 23 380 0.1028 0.0960
HP01 haplotypes 63 32 46 0.0328 0.0407 48 36 216 0.0792 0.0739 61 53 462 0.1021 0.0845
HP02 haplotypes 67 30 114 0.0619 0.1241 49 32 228 0.0812 0.0842 56 44 615 0.1213 0.1209
GRB 23 2 377 0.4561 0.3493 23 5 167 0.0736 0.0939 23 3 482 0.1236 0.1484
GDN 23 14 55 0.0826 0.0746 23 16 146 0.0678 0.0691 23 22 389 0.1051 0.0991

Abbreviations: HP01 = haphpipe_assemble_01 (de novo assembly), HP02 = haphpipe_assemble_02 (reference-based
assembly), GDN = Geneious de novo assembly, GRB = Geneious reference-based assembly, N = number of
sequences, H = number of haplotypes, S = number of polymorphic sites, π = nucleotide diversity, θ = Watterson’s
genetic diversity.

3.2.3. Empirical SARS-CoV-2 Dataset

Genetic distance from the reference sequence, Wuhan-Hu-1, was low across all four samples and
pipelines, ranging from 0.00097 to 0.10384 (Table 6). Geneious de novo consensus sequences, though,
showed the highest average genetic distance from the Wuhan-Hu-1 reference sequence, as well as the
highest standard deviation in distance, indicating that these results are uniquely far from the reference
sequence—even when compared to HAPHPIPE de novo consensus sequences—and that the results
are most variable, likely as a result of the extreme subsampling of reads for the Geneious platform
(Table 6).
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Table 6. Comparison of the effect of consensus generation on estimated genetic diversity and adjusted
genetic p-distance to the reference sequence across the empirical SARS-CoV-2 dataset.

Diversity Estimates Adjusted Genetic p-Distance

Pipeline N H S π θ Average STDEV

HP01 4 1 0 0 0 HP01 Initial 0.0033 0.0035
HP02 4 1 0 0 0 HP01 Final 0.0035 0.0034
GDN 4 4 371 0.0081 0.0083 HP02 Initial 0.0019 0.0015
GRB 4 1 13 0.0004 0.0004 HP02 Final 0.0021 0.0019

GDN 0.0417 0.0423
GRB 0.0031 0.0008

Abbreviations: HP01 = haphpipe_assemble_01 (de novo assembly), HP02 = haphpipe_assemble_02 (reference-based
assembly), GDN = Geneious de novo assembly, GRB = Geneious reference-based assembly, N = number of sequences,
H = number of haplotypes, S = number of polymorphic sites, π = nucleotide diversity, θ = Watterson’s genetic
diversity, STDEV = standard deviation.

3.2.4. Differences between Genetic Distance Measurements

There were few differences in results based on non-adjusted p-distance in the empirical
data. Non-adjusted p-distance results indicate that for PRRT, both HAPHPIPE and Geneious
reference-based consensus sequences were closer to HXB2 than those from HyDRA (p < 0.05);
HAPHPIPE reference-based sequences were also closer to HXB2 than Geneious de novo sequences
(Figure S3, Table S7). Additionally, the difference between de novo gp120 sequences and haplotypes
was not significant (p = 0.057; Table S7). In the HCV core, HAPHPIPE de novo sequences were closer to
H77 than Geneious de novo (p < 0.05), while in E1 both HAPHPIPE and Geneious reference-based
sequences were closer to H77 than Geneious de novo (p < 0.001), and there was no difference between
HAPHPIPE and Geneious de novo (p = 0.573). In E2, HAPHPIPE reference-based sequences were
closer to H77 than Geneious de novo (p < 0.001; Table S8).

4. Discussion

In this study, we benchmarked the performance of HAPHPIPE consensus sequence assembly
with two commonly used alternatives, HyDRA and Geneious. We found that in the simulation
study, HAPHPIPE performed better than HyDRA, and while it performed equally well or better
than Geneious, it can, in addition, handle larger datasets with greater speed. We also validated
the performance on HAPHPIPE with empirical data. In all analyses, we addressed genetic distance
from true sequences and/or reference sequences, genetic diversity, and assembly statistics, and in the
real data we additionally constructed haplotypes using HAPHPIPE’s PredictHaplo implementation.
When we discuss genetic distance, we refer to adjusted genetic p-distance, which takes into account
ambiguity codes, unless otherwise specified. Lastly, we place our software into context with other
NGS assembly software.

4.1. Simulated Data

For the simulated dataset, mapping rates were higher in both HAPHPIPE pipelines than both
Geneious workflows. We also found that often two refinement steps were efficient in creating a
better, more representative consensus sequence. In subtype B simulated data, the iterative refinement
step in HAPHPIPE resulted in final sequences that were closer to the true sequence than the initial
consensus for most genes in reference-based assembly. In de novo assembly, initial consensus sequences
were already very close to the true sequence before refinement, and so no significant difference in
distance was seen after this step. In non-subtype B data, sequences in reference-based assembly were
significantly closer to the true sequence after refinement, yet sequences in de novo assembly were
significantly farther; this is likely due to the difference in subtype between the consensus and the
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reference. The use of subtype-specific references would be necessary to evaluate the extent that these
differences impact performance.

De novo assembly with HAPHPIPE produced a consensus sequence that is significantly more
genetically similar to the true sample isolate sequence compared to reference-based assembly with
HyDRA or Geneious. This was especially notable in non-subtype B HIV-1 pol sequences, which are most
commonly targeted for clinical applications. There was no significant difference in genetic distance
for the simulated HIV datasets between the HAPHPIPE pipelines, except for the gp120 amplicon,
in which de novo assembly constructed a consensus sequence genetically closer to the true sequence.
De novo assembly for gp120 with Geneious and HAPHPIPE constructed similar consensus sequences
and provided a more accurate representation of the true sequence overall compared to reference-based
assembly pipelines. This suggests that for more diverse genes such as envelope proteins, using either
tool’s de novo option would result in similarly constructed consensus sequences that are more likely to
be accurate than reference-based counterparts. Adjusted and non-adjusted genetic p-distance results to
the true sequence were not identical, with non-adjusted genetic p-distance having shown no significant
difference between HAPHPIPE and Geneious reference-based sequences in gp120 for both subtypes.
We discuss genetic distance to HXB2 below in Section 4.3 (bias towards reference sequence).

4.2. Empirical Data

4.2.1. Assembly Statistics and Performance

Two main aspects of assembly, which varied across platforms for both de novo and reference-based
assembly, were feasible input data size and read mapping rates. Geneious workflows required extensive
subsampling that HAPHPIPE pipelines did not. These subsampling steps undoubtedly affected
assembly statistics and the resulting consensus sequences, and the inability of Geneious to complete
assembly with higher than 100,000 reads limits its comparison to HAPHPIPE. For example, the higher
read mapping rate of Geneious de novo assembly in the empirical HCV data may be artificially high
compared to HAPHPIPE, as far fewer reads were available to begin with and less than a third of
assembled contigs successfully scaffolded to the reference sequence.

Additionally, the empirical HIV data covered the entire genome as a set of five amplicons,
while here we constructed only three. Thus, the relatively low mapping rates reflect that not all
sequencing reads mapped to the three genes (PRRT, int, and gp120), and that the high mapping rate
of reads in Geneious de novo assembly could indicate incorrect mapping of reads from elsewhere
in the genome to these three gene regions. Similar to HCV, the mapping rates across platforms for
HIV reflected high rates for Geneious compared to HAPHPIPE. While not an effect of subsampling,
this result is limited by less than a third of assembled contigs scaffolding to the reference and may also
indicate incorrect mapping of reads into amplicons. In SARS-CoV-2 assembly, where the entire genome
was used and sequences differed much less from the reference, HAPHPIPE mapping rates were higher,
supporting that these factors may have contributed to the opposite pattern seen in the other datasets.

It is also notable that mapping rates were lower after the refinement step for all empirical datasets.
This effect is most pronounced in the HAPHPIPE de novo pipeline. However, in the simulation
dataset, mapping rates either remained the same post-refinement or increased, particularly in the
reference-based pipeline. It is possible that the decrease in mapping rates post-refinement in the
empirical data is due to the initial incorrect mapping of reads to genome regions, in which case removing
these reads at the refinement step helped to improve the specificity of the alignment. This effect would
not be seen in the simulated data, as all reads were derived from the specific amplicons used. Further,
the increase in the mapping rates of simulated data for the reference-based pipeline may be due to
incorrect initial mapping to the reference sequence during assembly, which was then corrected in the
refinement step, leading to a higher overall mapping rate.
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4.2.2. HIV

In the empirical HIV data, HAPHPIPE de novo consensus sequences were consistently farther
from the reference sequence, HXB2, than all others, including HyDRA. In HAPHPIPE, the refinement
of de novo sequences decreased distance from HXB2, while in reference-based sequences this was
only seen in gp120. In general, the reconstructed haplotypes were significantly farther from HXB2
than their respective HAPHPIPE consensus sequences only in gp120 for the de novo pipeline, and in
both PRRT and gp120 for the reference-based pipeline. Haplotypes from PRRT and gp120 in both
pipelines also showed increased genetic diversity in three metrics: variable sites, pi, and Watterson’s
theta. The observation that the haplotypes exhibited more diversity and greater distance from HXB2
than reference-based consensus sequences suggests that these consensus sequences may have been
biased towards HXB2. While all consensus sequences were confirmed to be of subtype B, divergence
from HXB2 could likely be a result of drug resistance mutations. As such, the greater distance of
HAPHPIPE de novo sequences from HXB2 as compared to consensus sequences from other methods
may reflect higher accuracy to the “true” sequence, although this hypothesis cannot be directly tested,
highlighting a key limitation in the analysis of empirical data for this purpose.

4.2.3. HCV

Results from the empirical HCV data were considerably more variable than those from the
empirical HIV data. Pairwise differences in distance from H77 across platforms yielded inconsistent
results, particularly in envelope genes (E1 and E2). In contrast to the empirical HIV dataset, haplotypes
were not significantly more or less distant from H77 than the respective HAPHPIPE consensus
sequences in any gene. While haplotypes again showed slightly higher metrics of genetic diversity,
overall these metrics were highly variable. Additionally, the Geneious reference-based workflow
showed the highest pi and Watterson’s theta for the core gene by an order of magnitude larger compared
to the others, including haplotypes. Two main confounders in these data are subsampling of Geneious
de novo data to 100,000 reads and inconsistency in subtype, with over 40% of consensus sequences
obtained—from each sample and each method—being of indeterminate type. This limits the use of
H77 as an appropriate standard of comparison. Thus, more definitive conclusions from the empirical
HCV data cannot be made.

4.2.4. SARS-CoV-2

For both HAPHPIPE and Geneious platforms, the distance of assembled SARS-CoV-2 sequences
from the reference, Wuhan-Hu-1, was quite low. Geneious de novo consensus sequences were the most
variable in distance from the reference and, on average, were farther from the reference. This effect
was not seen in HAPHPIPE de novo sequences, implying that it may be due to the subsampling of
SARS-CoV-2 data to 100,000 reads for Geneious. A greater number of samples would be necessary
to investigate this claim, however at the time of this study limited NGS data were publicly available,
thus limiting our analysis and potentially contributing to the low distance to reference.

4.2.5. Effects of Ambiguity Codes

Adjusted and non-adjusted genetic p-distance results, with respect to the reference sequences
for the empirical datasets, were not identical. In particular, in HIV data, HAPHPIPE and Geneious
showed significant differences when using non-adjusted p-distance, but these differences were not
significant when using adjusted p-distance. In HCV data, most notable differences occurred in pairwise
comparisons involving the Geneious de novo workflow, in which these consensus sequences were
further from the reference sequence with non-adjusted p-distance. This observation is not surprising
given the increase in ambiguity codes in Geneious de novo workflow, again likely due to the extreme
subsampling. In SARS-CoV-2 data, there were no differences in non-adjusted p-distance and adjusted
p-distance for HAPHPIPE consensus sequences, while in both Geneious workflows, adjusted p-distance
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was higher, again due to the inclusion of ambiguity codes in Geneious consensus sequences, likely
compounded with the subsampling as well.

4.3. Bias towards Reference Sequence

In this study, we used HXB2 consistently for all HIV subtypes for purposes of comparison
with HyDRA, which only uses HXB2 and does not allow the user to change the reference sequence.
The refinement of HAPHPIPE de novo consensus sequences resulted in greater distance from HXB2
in the non-subtype B simulated dataset. Reference-based sequences in gp120 were closer to HXB2
post-refinement in both datasets. These results suggest potential bias of non-subtype B pol sequences and
gp120 sequences—regardless of subtype—to HXB2 in reference-based assembly. Moreover, distances
from HXB2 were significantly different to distances from the true sequence in the gp120 region of
subtype B sequences and in all genes except int in non-subtype B sequences. This observation suggests
that the use of HXB2 as the reference introduced bias to the consensus sequences in variable regions of
subtype B sequences (i.e., gp120) and in multiple regions of non-subtype B sequences. Placed in this
context, it is likely that bias towards HXB2 would be most present in variable regions, regardless of
subtype, and that the inconclusive subtype of the empirical HCV data may have introduced nontrivial
bias to results. These results further suggest that in practice, subtype-specific reference sequences
should be used whenever possible. Although this change in reference is possible with some viral
assembly pipelines, it is a key feature that cannot be changed in HyDRA, which is often used in clinical
practice to identify drug-resistant mutations. Thus, we support the conclusion that de novo assembly
may be better than reference-based assembly for variable regions of the genome (e.g., envelope genes)
and when subtype is either mixed or uncertain.

4.4. Limitations

Our study has a few notable limitations. First, we were primarily constrained by the lack
of knowledge of “true” sequence compositions for the empirical data. Therefore, we were
unable to determine how genetically similar the constructed consensus sequences were to the
“true” sequence(s) for each pipeline. However, consensus sequences do not occur in the viral
population thus distinguishing them from ancestral sequences [119,153]; therefore, obtaining a
“true” consensus sequence is not entirely attainable. Still, consensus sequences are often used in a
case of best representative sequence for computational efficiency or, often in clinical applications,
for the identification of drug-resistant mutations to guide medical treatment. As such, even if
presented with a “true” consensus sequence for comparison, as we have done in the data simulation
section, we still compare to an estimated sequence that may or may not reflect true intra-patient
diversity, thus limiting the generalization of resulting conclusions. NGS circumvents this limitation by
facilitating the reconstruction of viral haplotypes, which have been shown to improve the resolution
of phylodynamic inferences [154]. Thus, the implementation of haplotype reconstruction methods
in HAPHPIPE facilitates more accurate, informative analyses of both intra- and inter-patient viral
diversity and evolution.

Another notable limitation we encountered was the inability of Geneious workflows to be
completed on the full set of reads for each of the HCV and SARS-CoV-2 empirical data. Therefore,
for both of these datasets, the resulting Geneious consensus sequences were likely skewed compared to
the HAPHPIPE pipelines, which did not require as extensive subsampling for HCV data and required
no subsampling for HIV or SARS-CoV-2 data. Furthermore, it took each empirical sample at least two
days to complete the de novo assembly pipeline on Geneious. We hypothesize that Geneious had
trouble with viral NGS data because viruses are fast-evolving and contain many variants, thus it was
difficult for the program to orient the reads together for de novo assembly, as in HCV, or even against a
reference, as in the case of SARS-CoV-2. We further hypothesize that the large size of both datasets may
have posed memory issues during the run, as likely indicated by the increased time to completion,
which could impact functionality. This caveat in Geneious further emphasizes the applicability of
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HAPHPIPE for assembling viral sequences from NGS data. At the time of this study, limited NGS
data were available for SARS-CoV-2 sequences. In particular, only four samples of good quality were
publicly available, thus limiting this aspect of our analysis.

4.5. Utility of Software

Geneious and HyDRA both present downsides in practical use. Although Geneious is an
interactive software that is easy to use with its graphical user interface (GUI), it does require payment.
It is also cumbersome and time consuming to complete assemblies, especially de novo assemblies,
on large-scale projects with many NGS samples. We streamlined the process by making workflows,
but in doing so, it was time-intensive to rename output files efficiently and distinguish output files.
Furthermore, we had trouble, despite allocating ample memory and subsampling reads, with assembly
workflows for the empirical datasets. Moreover, each sample processed through the de novo assembly
workflow took at least two days to finish and produce a consensus sequence, with some empirical HIV
samples taking upwards of seven days. While Geneious does include or have available extensions to
phylogenetic tools such as multiple sequence alignment and building trees, the full capabilities of such
software may not be available or feasible to be run locally, thus necessitating the use of an additional
tool for phylodynamic steps.

Although HyDRA is a free, online-based software, it produced the least accurate results here for
HIV-1 in our simulation study. This drop in accuracy could be due to HyDRA’s inability to analyze
paired-end data together. Moreover, HyDRA only allows for the assembly of polymerase genes for HIV,
due to the emphasis on drug-resistant mutations, and does not allow the user to change the reference
sequence. Both Geneious and HyDRA constructed consensus sequences with many ambiguity codes,
which could be due to intra-host variation or drug-resistant mutations. HyDRA does not include
options for phylogenetics steps.

The main advantage of Geneious and HyDRA as compared to HAPHPIPE, particularly for those
unfamiliar with UNIX-based command line and bash, is that the former two include an easy-to-use
GUI. However, for more advanced users and those analyzing large-scale datasets, this becomes a
hindrance to efficiency. Additionally, storing large-scale NGS datasets locally on the user’s computer
as opposed to remotely on a high-performance cluster, may pose limitations for larger studies in using
GUIs. While HAPHPIPE does require knowledge of the command line interface, the example pipelines
given (haphpipe_assemble_01 and haphpipe_assemble_02), as well as the thorough documentation
and beginner-focused user guide [61], simplify this process for non-bioinformatic users. We have also
simplified the installation process for HAPHPIPE by adding it to Bioconda, a popular bioinformatics
software repository. The command line interface of HAPHPIPE presents several clear advantages over
the GUI-based programs used in this study, namely the ability to run on a high-performance cluster
using parallelization techniques, compatibility with bash scripting to automate assembly of many
samples at once, and extensibility both for custom pipelines and for additional modules. One further
limitation of HAPHPIPE, specifically in clinical and public health applications, is the lack of a module
for HIV drug-resistance identification. However, HAPHPIPE is applicable for a variety of viruses and
does include general variant calling as well as consensus sequences in formats compatible with existing
DRM identification tools, such as Stanford HIVdb [155,156]. HAPHPIPE provides an additional step in
analyzing NGS data from intra-host populations by implementing wrappers for estimating haplotypes.
By performing haplotype reconstruction, in addition to consensus assembly, our approach can output
a more detailed representation of the haplotype diversity in a sample from NGS data. Therefore,
HAPHPIPE can be used both to create a more accurate consensus sequence and to capture viral variants
within the data by presenting reconstructed haplotype sequences.

4.6. Comparison to other Viral Pipelines

In this study, we compare the performance of HAPHPIPE to that of Geneious and HyDRA,
both GUI-based tools that are most commonly used among clinicians and others whose primary
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background is not necessarily bioinformatics. However, several additional viral assembly pipelines
on the command line exist and may be compared to HAPHPIPE. While a full comparison of the
performance of these methods with respect to HAPHPIPE is outside the scope of this validation study,
here we discuss three in this context: viral-ngs, MiCall, and V-pipe.

Viral-ngs is an open source, command-line package (https://github.com/broadinstitute/viral-ngs)
that utilizes Trinity [157]. De novo assembly with SPAdes is offered as an alternative option. Following
de novo assembly, Gap2Seq [158] is used to fill the gaps in the generated scaffold. The remaining steps
in the assembly portion of viral-ngs uses reference-based assembly improvements to generate the final
consensus sequence. Like HAPHPIPE, specifically the de novo pipeline, viral-ngs uses MUMMER to
orient and merge contigs with the assistance of a reference FASTA sequence, however, HAPHPIPE
additionally includes an option to construct amplicon-specific sequences at this stage. In the final,
major step of viral-ngs assembly, viral-ngs uses Novoalign (http://www.novocraft.com)—which requires
a commercial license—to call back reads and align them to the crude de novo assembly, which is
then iteratively improved. In both HAPHPIPE and viral-ngs, this step is named refine_assembly
and has essentially the same function, although HAPHPIPE allows the user to define the number
of desired iterations (with default settings being set at five iterations), while the analogous stage in
viral-ngs is set at two iterations. Viral-ngs also implements an additional imputation step as a part of
refinement. Lastly, HAPHPIPE and viral-ngs include distinct focuses for downstream analysis, namely
phylodynamics versus metagenomics, respectively, and thus may appeal to different user bases.

The reference-based assembly pipeline MiCall (https://github.com/cfe-lab/MiCall) is based on
Bowtie2—as are viral-ngs and HAPHPIPE—and has been noted in the literature to be interchangeable
with platforms such as HyDRA and PASeq. Like HAPHPIPE, MiCall includes both assembly options.
Following quality control measures, the reads are mapped to a reference amplicon. From there, reads are
either assembled in relation to a reference or used to create contigs de novo. Then in a stage akin to
HAPHPIPE refine_assembly, reads are mapped onto the previously created consensus and improved.
Unlike HAPHPIPE, however, this stage is only executed iteratively for reference-based assemblies.
As a pipeline tailored to HIV, like HyDRA, MiCall also has a stage, ‘resistance‘, that determines the
reads’ resistance to antiretroviral therapies (ART). MiCall is more HIV and HCV specific, whereas
HAPHPIPE has more applicability across many other viral species.

V-pipe is a publicly available, command line tool (https://cbg-ethz.github.io/V-pipe/) in which
reads are mapped to an initial reference to generate a crude alignment. The initial reference can be
provided or created de novo from the software VICUNA [159]. The pipeline then uses a Hidden-Markov
Model (HMM)-based aligner designed for NGS reads of small genomes that are prone to indels, such as
HCV and HIV, (ngshmmalign; https://github.com/cbg-ethz/ngshmmalign). The original reads are
then mapped against the profile HMM. The creation of the HMM profile is unique to V-pipe, as is
its utilization of VICUNA and ngshmmalign over the established BWA [160] and Bowtie2 wrappers.
Like HAPHPIPE, but unlike viral-ngs and MiCall, V-pipe calls haplotypes. Rather than using
PredictHaplo, V-pipe implements HaploClique and Savage for global haplotype reconstruction and
ShoRAH for local reconstruction, all of which performed poorly relative to PredictHaplo in a recent
comparison of haplotype reconstruction tools [65].

5. Conclusions

We found that NGS viral analysis is improved with the use of HAPHPIPE, particularly in conserved
regions. Furthermore, we demonstrated that de novo assembly performs better than reference-based
assembly at generating a consensus sequence that is closer to the true sequence. Additionally, we further
validated the performance of HAPHPIPE across multiple viruses of varying genome lengths, as well as
both amplicon and whole genome viral assembly from NGS data. We found that HAPHPIPE facilitated
the use of a greater quantity of empirical data and completed assemblies more quickly than other
methods, in particular for datasets of viruses with greater genomes (e.g., SARS-CoV-2 whole-genome
assembly) and with greater sequencing depth (e.g., the empirical HCV data used here). While in this
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study we mainly focused on two commonly used GUI-based tools, we also compared the functionality
of our software to other available command-line platforms. A thorough comparative study of the
performance of the many terminal-based viral assembly tools and pipelines would be of great value to
the research community.

Based on the conclusions of this validation study, we believe that HAPHPIPE provides a more
efficient and informative pipeline for the analysis of NGS viral data, particularly for translational clinical
and public health research. HAPHPIPE is a single, open-source tool that allows for customization of the
analyses, generates a more accurate viral consensus sequence, and produces properly formatted outputs
for further phylodynamic analyses, as well as integrates these methods into a unified framework.
By including user-friendly wrappers for complex bioinformatics programs, detailed documentation,
and a beginner-level User Guide and protocol publication, as well as by maintaining our program as
open-source, freely available software, we expect HAPHPIPE to make sophisticated genomics analysis
more accessible to researchers across many biomedical fields.
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Appendix A

Table A1. Wilcoxon signed-rank comparisons of the adjusted genetic p-distance from the true sequence between the initial and final consensus sequences constructed
in the HAPHPIPE pipelines for the simulation dataset.

HP01 HP02

Sub B Pseudomedian CI Low CI high p Value Pseudomedian CI Low CI High p Value
pol −0.0004 NA 1 NA 1 1 0.0004 0.0004 0.0004 2.3 × 10−06 ***

PRRT −0.0004 NA 1 NA 1 0.3711 0.0006 0.0006 0.0006 3.6 × 10−06 ***
int −0.0003 NA 1 NA 1 1 0.0009 NA 1 NA 1 1

gp120 0.0008 NA 1 NA 1 0.3710 0.0298 0.0259 0.0333 <2.2 × 10−16 ***

Non-B Pseudomedian CI Low CI High p Value Pseudomedian CI Low CI high p value
pol −0.0008 −0.0010 −0.0008 2.5 × 10−09 *** 0.0006 0.0005 0.0008 8.3 × 10−06 ***

PRRT −0.0009 −0.0010 −0.0008 3.5 × 10−09 *** 0.0009 0.0006 0.0011 8.4 × 10−06 ***
int −0.0012 −0.0017 −0.0011 1.2 × 10−06 *** 0.0017 NA 1 NA 1 1

gp120 −0.0007 −0.0009 −0.0006 4.7 × 10−06 *** 0.1475 0.1296 0.1657 7.8 × 10−10 ***
1 No confidence intervals were constructed because too many differences were zero. A positive value indicates that the refined sequences are more genetically similar to
the true sequence, while a negative value indicates that the refined sequences are less genetically similar to the true sequence. Abbreviations: Non-B: non-subtype B
sequences, Sub B: subtype B sequences, HP01 = haphpipe_assemble_01 (de novo assembly), HP02 = haphpipe_assemble_02 (reference-based assembly), GDN = Geneious
de novo assembly, GRB = Geneious reference-based assembly, pol = polymerase, combination of PRRT and int, PRRT = protease and reverse transcriptase, int = integrase,
CI: confidence interval, *** indicates p < 0.001.
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Table A2. Kruskal–Wallis multiple comparisons (Dunn test) of the adjusted genetic p-distance of the pipeline consensus sequence from the true sequence for the
simulation dataset. Adjusted p-values are reported (Holm adjustment).

Subtype B Simulation Data Non-Subtype B Simulation Data
Gene Pipeline HP01 HP02 GDN GRB HyDRA HP01 HP02 GDN GRB HyDRA

pol HP01 0.1168 *** 1.1 × 10−25 *** 3.4 × 10−27 *** 2.7 × 10−73 *** 0.0079 ** 5.2 × 10−13 *** 6.4 × 10−19 *** 1.3 × 10−40 ***
HP02 0.1168 9.2 × 10−18 *** 5.5 × 10−19 *** 4.5 × 10−59 *** 0.0079 ** 1.7 × 10−05 *** 2.7 × 10−09 *** 1.9 × 10−25 ***
GDN 1.1 × 10−25 *** 9.2 × 10−18 *** 0.7396 1.4 × 10−13 *** 5.2 × 10−13 *** 1.7 × 10−05 *** 0.1021 7.9 × 10−09 ***
GRN 3.4 × 10−27 *** 5.5 × 10−19 *** 0.7396 1.3 × 10−12 *** 6.4 × 10−19 *** 2.7 × 10−09 *** 0.1021 3.2 × 10−05 ***
HyDRA 2.7 × 10−73 *** 4.5 × 10−59 *** 1.4 × 10−13 *** 1.3 × 10−12 *** 1.3 × 10−40 *** 1.9 × 10−25 *** 7.9 × 10−09 *** 3.2 × 10−05 ***

PRRT HP01 0.1053 *** 4.2 × 10−26 *** 2.7 × 10−27 *** 5.0 × 10−74 *** 8.5 × 10−05 *** 7.7 × 10−10 *** 3.1 × 10−16 *** 1.8 × 10−39 ***
HP02 0.1053 6.2 × 10−18 *** 6.9 × 10−19 *** 2.0 × 10−59 *** 8.5 × 10−05 *** 0.0499 * 9.4 × 10−05 *** 6.1 × 10−19 ***
GDN 4.2 × 10−26 *** 6.2 × 10−18 *** 0.7918 1.4 × 10−13 *** 7.7 × 10−10 *** 0.0499 * 0.0470 * 3.9 × 10−11 ***
GRN 2.7 × 10−27 *** 6.9 × 10−19 *** 0.7918 7.7 × 10−13 *** 3.1 × 10−16 *** 9.4 × 10−05 *** 0.0470 * 4.8 × 10−06 ***
HyDRA 5.0 × 10−74 *** 2.0 × 10−59 *** 1.4 × 10−13 *** 7.7 × 10−13 *** 1.8 × 10−39 *** 6.1 × 10−19 *** 3.9 × 10−11 *** 4.8 × 10−06 ***

int HP01 1 8.7 × 10−23 *** 1.1 × 10−23 *** 9.4 × 10−69 *** 0.5092 2.0 × 10−12 *** 1.2 × 10−13 *** 6.0 × 10−36 ***
HP02 1 1.4 × 10−21 *** 2.0 × 10−22 *** 2.1 × 10−66 *** 0.5092 3.7 × 10−09 *** 3.5 × 10−10 *** 5.9 × 10−30 ***
GDN 8.7 × 10−23 *** 1.4 × 10−21 *** 0.8290 9.1 × 10−14 *** 2.0 × 10−12 *** 3.7 × 10−09 *** 0.6963 2.7 × 10−07 ***
GRN 1.1 × 10−23 *** 2.0 × 10−22 *** 0.8290 3.6 × 10−13 *** 1.2 × 10−13 *** 3.5 × 10−10 *** 0.6963 1.6 × 10−06 ***
HyDRA 9.4 × 10−69 *** 2.1 × 10−66 *** 9.1 × 10−14 *** 3.6 × 10−13 *** 6.0 × 10−36 *** 5.9 × 10−30 *** 2.7 × 10−07 *** 1.6 × 10−06 ***

gp120 HP01 2.8 × 10−26 *** 0.4269 2.0 × 10−40 *** NA 6.5 × 10−05 *** 0.1212 2.5 × 10−19 *** NA
HP02 2.8 × 10−26 *** 8.3 × 10−23 *** 0.0134 * NA 6.5 × 10−05 *** 4.7 × 10−08 *** 1.6 × 10−06 *** NA
GDN 0.4269 8.3 × 10−23 *** 5.5 × 10−36 *** NA 0.1212 4.7 × 10−08 *** 5.3 × 10−26 *** NA
GRN 2.0 × 10−40 *** 0.0134 * 5.5 × 10−36 *** NA 2.5 × 10−19 *** 1.6 × 10−06 *** 5.3 × 10−26 *** NA

Abbreviations: HP01 = haphpipe_assemble_01 (de novo assembly), HP02 = haphpipe_assemble_02 (reference-based assembly), GDN = Geneious de novo assembly, GRB = Geneious
reference-based assembly, pol = polymerase, combination of PRRT and int, PRRT = protease and reverse transcriptase, int = integrase, *** indicates p < 0.001, * indicates p < 0.05.
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Table A3. Wilcoxon signed-rank comparisons of the adjusted genetic p-distance from HXB2, the HIV reference sequence, between the initial and final consensus
sequences constructed in the HAPHPIPE pipelines for the simulation dataset.

HP01 HP02

Sub B pseudomedian CI low CI high p value pseudomedian CI low CI high p value
pol 0.0008 NA 1 NA 1 1 8.9 × 10−06

−7.2 × 10−05 0.0001 0.2074
PRRT 0.0002 NA 1 NA 1 1 −2.6 × 10−05 −0.0002 0.0002 0.1670

int 0.0020 NA 1 NA 1 1 0.0009 NA 1 NA 1 1
gp120 0.0006 0.0006 0.0006 0.3711 0.0135 0.0105 * 0.0169 2.1 × 10−13 ***

Non-B pseudomedian CI low CI high p value pseudomedian CI low CI high p value
pol −0.0009 −0.0010 −0.0008 1.8 × 10−09 *** 0.0001 −2.8 × 10−05 0.0003 0.1692

PRRT −0.0009 −0.0010 −0.0008 4.6 × 10−09 *** 0.0002 −3.7 × 10−05 0.0004 0.1614
int −0.0012 −0.0017 −0.0012 2.1 × 10−07 *** −0.0006 NA 1 NA 1 1

gp120 −0.0006 −0.0007 −0.0005 5.9 × 10−05 *** 0.1070 0.0949 0.1209 7.8 × 10−10 ***
1 No confidence intervals were constructed because too many differences were zero. A positive value indicates that the refined sequences are more genetically similar to the reference
sequence (HXB2), while a negative value indicates that the refined sequences are less genetically similar to the reference sequence (HXB2). Abbreviations: Sub B: HIV subtype B sequences,
Non-B: HIV non-subtype B sequences, HP01 = haphpipe_assemble_01 (de novo assembly), HP02 = haphpipe_assemble_02 (reference-based assembly), GDN = Geneious de novo assembly,
GRB = Geneious reference-based assembly, pol = polymerase, combination of PRRT and int, PRRT = protease and reverse transcriptase, int = integrase, CI: confidence interval, *** indicates
p < 0.001, * indicates p < 0.05.
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Table A4. Kruskal–Wallis multiple comparisons (Dunn test) of the adjusted genetic p-distance of the pipeline consensus sequence from HXB2, the HIV reference
sequence, for the simulation dataset. Adjusted p-values are reported (Holm adjustment).

Subtype B Simulation Data Non-Subtype B Simulation Data
Gene Pipeline HP01 HP02 GDN GRB HyDRA HP01 HP02 GDN GRB HyDRA

pol HP01 1 2.3 × 10−08 *** 1.4 × 10−08 *** 2.7 × 10−38 *** 0.8790 0.0013 ** 0.0002 *** 1.2 × 10−17 ***
HP02 1 5.8 × 10−08 *** 4.0 × 10−08 *** 5.6 × 10−37 *** 0.8790 0.0120 * 0.0029 *** 7.9 × 10−15 ***
GDN 2.3 × 10−08 *** 5.8 × 10−08 *** 0.9104 3.2 × 10−12 *** 0.0013 0.0120 * 0.6142 *** 1.9 × 10−06 ***
GRN 1.4 × 10−08 *** 4.0 × 10−08 *** 0.9104 6.3 × 10−12 *** 0.0002 *** 0.0029 *** 0.6142 2.2 × 10−05 ***

HyDRA 2.7 × 10−38 *** 5.6 × 10−37 *** 3.2 × 10−12 *** 6.3 × 10−12 *** 1.2 × 10−17 *** 7.9 × 10−15 *** 1.9 × 10−06 *** 2.2 × 10−05 ***

PRRT HP01 1 0.0001 *** 7.8 × 10−05 *** 5.9 × 10−24 *** 0.7740 0.0387 * 0.0099 ** 6.8 × 10−13 ***
HP02 1 0.0004 *** 0.0003 *** 2.9 × 10−22 *** 0.7740 0.2163 0.0897 3.1 × 10−10 ***
GDN 0.0001 *** 0.0004 *** 0.9049 9.8 × 10−09 *** 0.0387 * 0.2163 0.6279 1.1 × 10−05 ***
GRN 7.8 × 10−05 *** 0.0003 *** 0.9049 1.8 × 10−08 *** 0.0099 ** 0.0897 0.6279 9.8 × 10−05 ***

HyDRA 5.9 × 10−24 *** 2.9 × 10−22 *** 9.8 × 10−09 *** 1.80 × 10−08 *** 6.8 × 10−13 *** 3.1 × 10−10 *** 1.1 × 10−05 *** 9.8 × 10−05 ***

int HP01 0.9649 6.0 × 10−12 *** 4.7 × 10−12 *** 7.5 × 10−49 *** 1 0.0002 *** 0.0001 *** 3.2 × 10−19 ***
HP02 0.9649 5.8 × 10−12 *** 4.1 × 10−12 *** 4.3 × 10−49 *** 1 0.0005 *** 0.0003 *** 5.0 × 10−18 ***
GDN 6.0 × 10−12 *** 5.8 × 10−12 *** 1 4.9 × 10−14 *** 0.0002 *** 0.0005 *** 0.8497 2.4 × 10−06 ***
GRN 4.7 × 10−12 *** 4.1 × 10−12 *** 1 9.6 × 10−14 *** 0.0001 *** 0.0003 *** 0.8497 5.6 × 10−06 ***

HyDRA 7.5 × 10−49 *** 4.3 × 10−49 *** 4.9 × 10−14 *** 9.6 × 10−14 *** 3.2 × 10−19 *** 5.0 × 10−18 *** 2.4 × 10−06 *** 5.6 × 10−06 ***

gp120 HP01 NA 1 NA 1 NA 1 NA 1 0.1905 0.1731 3.4 × 10−11 *** NA
HP02 NA 1 NA 1 NA 1 NA 1 0.1905 0.8873 2.2 × 10−17 *** NA
GDN NA 1 NA 1 NA 1 NA 1 0.1731 0.8873 6.4 × 10−17 *** NA
GRN NA 1 NA 1 NA 1 NA 1 3.4 × 10−11 *** 2.2 × 10−17 *** 6.4 × 10−17 *** NA

1 The Kruskal–Wallis rank-sum test was not significant (p = 0.0799, Table S2). Abbreviations: HP01 = haphpipe_assemble_01 (de novo assembly), HP02 = haphpipe_assemble_02
(reference-based assembly), GDN = Geneious de novo assembly, GRB = Geneious reference-based assembly, pol = polymerase, combination of PRRT and int, PRRT = protease and reverse
transcriptase, int = integrase, CI: confidence interval, *** indicates p < 0.001, ** indicates p < 0.01, * indicates p < 0.05.
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Table A5. Comparison of the effect of consensus generation on estimated genetic diversity across the simulation dataset.

Simulated Data Subtype B

PRRT int gp120
Pipeline N H S π θ H S π θ H S π θ

True
sequences 100 100 826 0.0654 0.0987 100 389 0.0510 0.0870 100 1407 0.2219 0.1913
HP01 100 100 824 0.0654 0.0984 100 386 0.0508 0.0863 100 1378 0.1458 0.1831
HP02 100 100 823 0.0657 0.0986 100 388 0.0525 0.0876 100 1362 0.2158 0.1877
HyDRA 100 100 820 0.0656 0.0994 100 377 0.0514 0.0862 NA NA NA NA
GRB 100 100 835 0.0717 0.1047 100 384 0.0509 0.0509 100 1234 0.1787 0.1657
GDN 100 100 823 0.0656 0.0989 100 384 0.0507 0.0761 100 1421 0.2294 0.1930

Simulated Data non-Subtype B

Pipeline N H S π θ H S π θ H S π θ

True
sequences 50 50 753 0.1016 0.1039 50 339 0.0749 0.0876 50 1185 0.2419 0.1809
HP01 50 50 749 0.1013 0.1034 50 337 0.0746 0.0871 50 1106 0.2325 0.1702
HP02 50 50 746 0.1004 0.1025 50 335 0.0749 0.0871 50 957 0.1999 0.1723
HyDRA 50 50 745 0.1020 0.1045 50 328 0.0749 0.0868 NA NA NA NA
GRB 50 50 748 0.1016 0.1039 50 338 0.0758 0.0892 50 916 0.1956 0.1750
GDN 50 50 751 0.1018 0.1042 50 338 0.0757 0.0892 50 1180 0.2406 0.1785

HyDRA is an average of read1 and read2. Abbreviations: HP01 = haphpipe_assemble_01 (de novo assembly), HP02 = haphpipe_assemble_02
(reference-based assembly), GDN = Geneious de novo assembly, GRB = Geneious reference-based assembly, PRRT = protease and reverse transcriptase,
int = integrase, N = number of sequences, H = number of haplotypes, S = number of polymorphic sites, π = nucleotide diversity, θ = Watterson’s
genetic diversity.
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Table A6. Wilcoxon signed-rank comparisons of the adjusted genetic p-distance from the reference sequence between the initial and final consensus sequences
constructed in the HAPHPIPE pipelines for the empirical HIV and HCV datasets. The reference sequences for HIV and HCV were HXB2 and H77, respectively.

HP01 HP02

Empirical HIV dataset

pseudomedian CI low CI high p value pseudomedian CI low CI high p value
PRRT 0.0022 0.0017 0.0035 1.5 × 10−06 *** NA 1 NA 1 NA 1 NA 1

int 0.0021 0.0016 0.0031 2.2 × 10−05 *** −0.0012 NA 1 NA 1 0.1489
gp120 0.0026 0.0020 0.0038 2.6 × 10−07 *** −0.0005 −0.0006 −0.0005 0.0029 **

Empirical HCV dataset

pseudomedian CI low CI high p value pseudomedian CI low CI high p value
core 0.0083 0.0021 0.0125 0.0012 ** 0.0101 0.0025 0.1027 0.0412 *

E1 0.0086 0.0054 0.0121 0.0001 *** −0.0026 −0.0069 −0.0017 0.0579
E2 0.0079 0.0048 0.0144 0.0001 *** −0.0027 −0.0040 −0.0013 0.0001 ***

1 No confidence intervals were constructed because too many differences were zero. A positive value indicates that the refined sequences are more genetically similar to
the reference sequence, while a negative value indicates that the refined sequences are less genetically similar to the reference sequence. The reference sequence for the
empirical HIV and HCV datasets were HXB2 and H77, respectively. Abbreviations: HP01 = haphpipe_assemble_01 (de novo assembly), HP02 = haphpipe_assemble_02
(reference-based assembly), GDN = Geneious de novo assembly, GRB = Geneious reference-based assembly, PRRT = protease and reverse transcriptase, int = integrase, CI:
confidence interval, *** indicates p < 0.001, ** indicates p < 0.01, * indicates p < 0.05.
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Table A7. Kruskal–Wallis multiple comparisons (Dunn test) of the adjusted genetic p-distance of the pipeline consensus sequence from HXB2, the HIV reference
sequence, for the HIV empirical dataset. Adjusted p-values are reported (Holm adjustment).

Gene Pipeline HP01 HP02 HP01 Haps HP02 Haps GDN GRB HyDRA

Pol HP01 4.6 × 10−14 *** 0.4447 1.0 × 10−09 *** 2.1 × 10−10 *** 2.0 × 10−15 *** 1.5 × 10−08 ***
HP02 4.6 × 10−14 *** 3.2 × 10−30 *** 0.0058 ** 0.7591 0.6986 0.4900
HP01 haps 0.4447 3.2 × 10−30 *** 5.1 × 10−36 *** 2.3 × 10−23 *** 1.0 × 10−32 *** 8.9 × 10−20 ***
HP02 haps 1.0 × 10−09 *** 0.0058 ** 5.1 × 10−36 *** 0.3641 0.0009 *** 0.9894
GDN 2.1 × 10−10 *** 0.7591 2.3 × 10−23 *** 0.3641 0.6298 1
GRB 2.0 × 10−15 *** 0.6986 1.0 × 10−32 *** 0.0009 *** 0.6298 0.2508
HyDRA 1.5 × 10−08 *** 0.4900 8.9 × 10−20 *** 0.9894 1 0.2508

Int HP01 4.9 × 10−12 *** 1 1.6 × 10−14 *** 2.4 × 10−09 *** 2.2 × 10−13 *** 6.0 × 10−16 ***
HP02 4.9 × 10−12 *** 1.0 × 10−23 *** 1 1 1 1
HP01 haps 1 1.0 × 10−23 *** 3.7 × 10−47 *** 8.1 × 10−19 *** 3.5 × 10−26 *** 7.7 × 10−31 ***
HP02 haps 1.6 × 10−14 *** 1 3.7 × 10−47 *** 0.9955 0.8553 0.1024
GDN 2.4 × 10−09 *** 1 8.1 × 10−19 *** 0.9955 1 0.3966
GRB 2.2 × 10−13 *** 1 3.5 × 10−26 *** 0.8553 1 1
HyDRA 6.0 × 10−16 *** 1 7.7 × 10−31 *** 0.1024 0.3966 1

gp120 HP01 1.8 × 10−14 *** 0.0455 * 2.6 × 10−09 *** 0.0001 *** 3.2 × 10−06 *** NA
HP02 1.8 × 10−14 *** 2.1 × 10−37 *** 0.0228 * 0.0023 ** 0.0241 * NA
HP01 haps 0.0455 * 2.1 × 10−37 *** 2.8 × 10−36 *** 1.5 × 10−15 *** 4.1 × 10−19 *** NA
HP02 haps 2.6 × 10−09 *** 0.0228 * 2.8 × 10−36 *** 0.5908 0.6382 NA
GDN 0.0001 *** 0.0023 * 1.5 × 10−15 *** 0.5908 0.9509 NA
GRB 3.2 × 10−06 *** 0.0241 * 4.1 × 10−19 *** 0.6382 0.9509 NA

Abbreviations: HP01 = haphpipe_assemble_01 (de novo assembly), HP02 = haphpipe_assemble_02 (reference-based assembly), GDN = Geneious de novo assembly, GRB = Geneious
reference-based assembly, haps = haplotypes, pol = polymerase, combination of PRRT and int, PRRT = protease and reverse transcriptase, int = integrase, *** indicates p < 0.001, ** indicates
p < 0.01, * indicates p < 0.05.
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Table A8. Kruskal–Wallis multiple comparisons (Dunn test) of the adjusted genetic p-distance of the pipeline consensus sequence from H77, the HCV reference
sequence, for the HCV empirical dataset. Adjusted p-values are reported (Holm adjustment).

Gene Pipeline HP01 HP02 HP01 Haps HP02 Haps GDN GRB HyDRA

Core HP01 1.0 × 10−10 *** 0.7016 6.8 × 10−14 *** 1 0.0027 **
HP02 1.0 × 10−10 *** 4.6 × 10−14 *** 1 3.0 × 10−08 *** 0.0071 ** 1.0 × 10−10 ***
HP01 haps 0.7016 4.6 × 10−14 *** 2.0 × 10−23 *** 1 0.0007 *** 0.7016
HP02 haps 6.8 × 10−14 *** 1 2.0 × 10−23 *** 1.9 × 10−10 *** 0.0039 ** 6.8 × 10−14 ***
GDN 1 3.0 × 10−08 *** 1 1.9 × 10−10 *** 0.0359 * 1
GRB 0.0027 ** 0.0071 ** 0.0007 *** 0.0039 ** 0.0359 * 0.0027 **

E1 HP01 9.0 × 10−07 *** 0.9367 1.0 × 10−06 *** 0.0014 ** 3.5 × 10−08 ***
HP02 9.0 × 10−07 *** 3.5 × 10−09 *** 1 0.6392 1 9.0 × 10−07 ***
HP01 haps 0.9367 3.5 × 10−09 *** 2.4 × 10−10 *** 8.2 × 10−05 *** 4.3 × 10−11 *** 0.9367
HP02 haps 1.0 × 10−06 *** 1 2.4 × 10−10 *** 1 0.5477 1.0 × 10−06 ***
GDN 0.0014 ** 0.6392 8.2 × 10−05 *** 1 0.2005 0.0014 **
GRB 3.5 × 10−08 *** 1 4.3 × 10−11 *** 0.5477 0.2005 3.5 × 10−08 ***

E2 HP01 2.8 × 10−04 *** 1 3.6 × 10−06 *** 0.0685 5.5 × 10−08 ***
HP02 2.8 × 10−04 *** 1.7 × 10−05 *** 0.8929 0.3236 0.3692 2.8 × 10−04 ***
HP01 haps 1 1.7 × 10−05 *** 8.7 × 10−10 *** 0.0327 * 1.2 × 10−10 *** 1
HP02 haps 3.6 × 10−06 *** 0.8929 8.7 × 10−10 *** 0.2427 0.3076 3.6 × 10−06 ***
GDN 0.0685 0.3236 0.0327 * 0.2427 0.0090 ** 0.0685
GRB 5.5 × 10−08 *** 0.3692 1.2 × 10−10 *** 0.3076 0.0090 ** 5.5 × 10−08 ***

Abbreviations: HP01 = haphpipe_assemble_01 (de novo assembly), HP02 = haphpipe_assemble_02 (reference-based assembly), GDN = Geneious de novo assembly, GRB = Geneious
reference-based assembly, haps = haplotypes, *** indicates p < 0.001, ** indicates p < 0.01, * indicates p < 0.05.
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