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Abstract: The COVID-19 disease has plagued over 200 countries with over three million cases and
has resulted in over 200,000 deaths within 3 months. To gain insight into the high infection rate
of the SARS-CoV-2 virus, we compare the interaction between the human ACE2 receptor and the
SARS-CoV-2 spike protein with that of other pathogenic coronaviruses using molecular dynamics
simulations. SARS-CoV, SARS-CoV-2, and HCoV-NL63 recognize ACE2 as the natural receptor but
present a distinct binding interface to ACE2 and a different network of residue–residue contacts.
SARS-CoV and SARS-CoV-2 have comparable binding affinities achieved by balancing energetics
and dynamics. The SARS-CoV-2–ACE2 complex contains a higher number of contacts, a larger
interface area, and decreased interface residue fluctuations relative to the SARS-CoV–ACE2 complex.
These findings expose an exceptional evolutionary exploration exerted by coronaviruses toward
host recognition. We postulate that the versatility of cell receptor binding strategies has immediate
implications for therapeutic strategies.

Keywords: molecular dynamics; virus–host interactions; protein–protein complex; coronavirus
evolution; ACE2; SARS-CoV-2

1. Introduction

The coronavirus disease 2019 (COVID-19), initially detected in the Wuhan seafood market in the
Hubei province of China [1], is caused by the SARS-CoV-2 (referred to as the COVID-19 virus for clarity).
The COVID-19 virus spread within three months from its appearance to more than 200 countries,
resulting in over 200,000 deaths worldwide. The COVID-19 virus is capable of human-to-human
transmission and was introduced to humans in a zoonotic event [2].

Currently, seven confirmed coronavirus (CoV) species are known as human pathogens [3].
Four CoVs are endemic species in humans and cause mild respiratory symptoms, mostly in pediatric
patients [4]. These are the HCoV-HKU1 and the HCoV-OC43 from the Betacoronavirus (BCoV) genus,
and the HCoV-229E and the HCoV-NL63 from the Alphacoronavirus (ACoV) genus. The other human
CoVs have caused severe outbreaks. The SARS-CoV (referred to as the SARS-2002 virus for clarity),
is a BCoV that emerged in humans in 2002, giving rise to the severe acute respiratory syndrome
(SARS) outbreak. The Middle East Respiratory Syndrome (MERS) BCoV caused an outbreak in
2012–2013. Most recently, the SARS-CoV-2, with high homology to the 2002 SARS-CoV, caused the
current COVID-19 pandemic [5].

To gain access to host cells, coronaviruses rely on spike proteins, which are membrane-anchored
trimers containing a receptor-binding S1 segment and a membrane-fusion S2 segment [6].
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The S1 segment contains a receptor-binding domain (RBD) that recognizes and binds to a host
cell receptor. The angiotensin-converting enzyme 2 (ACE2) was identified as the critical receptor for
mediating the SARS-2002 entry into host cells [7,8]. The binding of the spike protein to the ACE2
receptor is a critical phase where the level of the ACE2 expressed on the cell membrane correlates
with viral infectivity and governs clinical outcomes [9]. Consistent with the clinical pulmonary
manifestation, ACE2 is widely expressed in almost all tissues, with the highest expression levels in the
epithelium of the lung [10]. Similar to the SARS-2002 virus, the COVID-19 virus enters the host cell
by its RBD binding to the host cell ACE2 receptor [11,12]. Host receptor recognition for cell entry is,
however, not specified by the CoV genus classification. MERS-CoV is a member of the BCoV genus but
does not recognize the ACE2 receptor [13]. In contrast, HCoV-NL63 is a member of the ACoV genus
and does recognize the ACE2 receptor [14,15].

Herein, we analyze the binding of several CoV RBDs to ACE2 with molecular dynamics (MD)
simulations and compare the stability, relative interaction strength, and dynamics of the interaction
between the viral spike protein and the human ACE2 receptor.

2. Materials and Methods

The structural model of the COVID-19 spike protein receptor-binding domain (RBD) in
complex with ACE2 was generated by comparative modeling using MODELLER 9.18 [16] with
the COVID-19 sequence (RefSeq: YP_009724390.1). We relied on the crystal structure of the spike
protein receptor-binding domain from a SARS coronavirus-designed human strain complexed with
the human receptor ACE2 (PDB 3SCI, resolution 2.9 Å) as a template for comparative modeling.
The SARS-2002 spike protein RBD and the HCoV-NL63 in complex with ACE2 were taken from
PDB 2AJF (resolution 2.9 Å) and 3KBH (resolution 3.3 Å), respectively. The missing residues were
added in MODELLER. The MERS RBD structure was taken from the complex with the neutralizing
antibody CDC2-C2 (PDB 6C6Z, resolution 2.1 Å) and structurally aligned onto the SARS-2002 RBD in
complex with the ACE2 receptor. The designed SARS-CoV variant is from PDB 3SCI.

The MD simulations were performed with GROMACS 2020 software [17] using the CHARMM36m
force field [18]. Each of the complexes was solvated in transferable intermolecular potential
with 3 points (TIP3P) water molecules, and ions were added to equalize the total system charge.
The steepest descent algorithm was used for initial energy minimization until the system converged at
Fmax < 1000 kJ/(mol · nm). Then, water and ions were allowed to equilibrate around the protein in a
two-step equilibration process. The first part of the equilibration was at a constant number of particles,
volume, and temperature (NVT). The second part of the equilibration was at a constant number of
particles, pressure, and temperature (NPT). For both of the MD equilibration parts, positional restraints
of k = 1000 kJ/(mol · nm2) were applied to the heavy atoms of the protein, and the system was allowed
to equilibrate at a reference temperature of 300 K, or reference pressure of 1 bar for 100 ps at a time step
of 2 fs. Following the equilibration, the production simulation duration was 100 nanoseconds with 2 fs
time intervals. Altogether 10,000 frames were saved for the analysis at intervals of 10 ps. The MD
trajectories are available at ftp://ftp.cs.huji.ac.il/users/michall/covid19_trajectories/.

We superimposed several MD snapshots on the recently solved X-ray structure (PDB 6VW1,
resolution 2.7 Å [19–21]) of the COVID-19–ACE2 complex (Figure S1). The average root-mean-square
deviation (RMSD) over the interface Cα atoms is ~1 Å.

The interaction scores between the virus spike RBD and the ACE2 were calculated for each frame
of the trajectory using the statistically optimized atomic potentials (SOAP) [22]. In the interface contact
analysis, a residue–residue contact was defined based on the inter-atomic distance, with a cutoff of
4CH. The interaction buried surface area was calculated by subtracting the surface area of the protein
complex from the sum of the surface areas of the individual proteins. The surface area was calculated
as the solvent accessible surface [23].

ftp://ftp.cs.huji.ac.il/users/michall/covid19_trajectories/
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3. Results

3.1. Comparable Interaction Energies for ACE2-Binding BCoVs

The COVID-19 RBD (residues 319–529) shares a 72.8% sequence identity and high structural
similarity with the SARS-2002 RBD (Table 1). In contrast, the RBD of HCoV-NL63 is only 17.1% identical
to that of COVID-19, and there are no significant structural similarities between them (Figure S2).
Remarkably, the RBD of MERS-CoV, which is structurally similar to that of COVID-19 (20.1% sequence
identity, 65% structure similarity), recognizes a different host receptor (DPP4) for its cell entry and
does not bind to ACE2 [13].

Table 1. The sequence and structural resemblance of the receptor-binding domains (RBDs) of various
human coronaviruses.

COVID-19 SARS-2002 HCoV-NL63 MERS
COVID-19 a BCoV, ACE2 72.8% 17.1% 20.1%
SARS-2002 97% (0.9 Å) BCoV, ACE2 17.1% 20.9%

HCoV-NL63 29% (4.0 Å) 29% (4.4 Å) ACoV, ACE2 17.5%
MERS 65% (3.2 Å) 63% (3.3 Å) 27% (4.1 Å) BCoV, DPP4

a The sequence identity between the RBDs is shaded blue. The structural similarity, as measured by the TM-score (15)
between the RBD domains of the viruses, with the root-mean-square deviation (RMSD) in parentheses, is shaded red.
The CoV genera and the cell entry receptors are shaded gray. The significant values are in boldface.

We ran 100 ns molecular dynamic (MD) simulations of ACE2 in complex with the RBDs of the
COVID-19, SARS-2002, and HCoV-NL63 viruses to quantify the energetics and the dynamics of the
different RBD–ACE2 interactions. The simulation trajectory snapshots at 10 ps intervals (10,000 frames)
were analyzed using a statistical potential to assess the probability of the RBD–ACE2 interaction
(SOAP score [22]), with lower values corresponding to higher probabilities, and thus higher affinities.
The interaction scores (SOAP) for COVID-19 RBD–ACE2 were comparable to those of SARS-2002,
medians of −1865.9 and −1929.5, respectively (Figure 1A,B). HCoV-NL63 has RBD–ACE2 interaction
scores that are higher than both of the SARS-CoVs (median of −941.6). MERS, which is structurally
similar to COVID-19 (Table 1) does not bind to ACE2. The MERS virus which binds to dipeptidyl
peptidase-4 (DPP4, also known as CD26 [13]), has RBD–ACE2 interaction scores that indicate an
extremely weak affinity (median of −692.6), as expected from a non-cognate receptor interaction.
COVID-19 has the largest buried surface area at the interface (1204 Å2), followed by the interface
area for SARS-2002 (998 Å2) and HCoV-NL63 (973 Å2). The number of ACE2 contacting residues
maintains the same order, with 30, 24, and 23 for COVID-19, SARS-2002, and HCoV-NL63, respectively
(Figure 1C). The three RBDs exploit specific binding sites on ACE2 based on the analysis of the
MD trajectories (Figure 1C,D, Movie S1). There is a significant overlap of ACE2 interacting residues
between COVID-19 and SARS-2002 (at least 73%), while HCoV-NL63 shares only 17% and 36% of
contacts with SARS-2002 and COVID-19, respectively. These findings suggest that the coronaviruses
exert different interaction strategies with their cognate receptors to achieve the affinity that is required
for effective cell entry.

3.2. Accelerated Evolution among the Key Anchoring Residues of the RBD–ACE2 Interface

While the sequence identity between the RBDs of COVID-19 and SARS-2002 is 73% (Table 1,
Figure S2), we observe a significantly higher residue substitution rate at the interaction interface
with the ACE2 receptor. Out of 29 RBD interface residues, only 10 residues (34%) in COVID-19 are
conserved with respect to SARS-2002 (Figure 2A, Table S1, Figure S2). Similarly, only 12 residues (40%)
in SARS-2002 are conserved with respect to COVID-19.
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Figure 1. Analysis of RBD–ACE2 interactions based on the molecular dynamics (MD) trajectories.
COVID-19, SARS-2002, HCoV-NL63, and MERS are colored blue, red, green, and purple, respectively.
(A) Histograms of the RBD–ACE2 interaction scores throughout the simulation trajectory. Darker
color represents 75% of all frames; (B) the score values along the simulation trajectory, smoothed
along the elapsed time; (C) Venn diagram of ACE2 interacting residues for COVID-19, SARS-2002,
and HCoV-NL63. An ACE2 residue is considered as part of the interface if one of its atoms is within 4 Å
from any RBD atom in at least 10% of the 10,000 MD simulation frames; (D) overlay of 50 snapshots for
each of the three RBDs. The ACE2 is in surface representation (gray). The frames were aligned using
the N-terminal fragment of the ACE2 that contains the two helices participating in the RBDs binding.

To investigate these interface residues, we constructed and overlaid the contact maps for the RBD–ACE2
interfaces for COVID-19 and SARS-2002 (Figure 2B). We define a residue–residue contact frequency (CF) as
the fraction of MD trajectory frames in which the contact appears. Remarkably, only eight out of the total
72 residue–residue interface contacts have comparable (<50% difference) contact frequencies between
the COVID-19–ACE2 and SARS-2002–ACE2 interfaces (Figure 2B, colored gray). Furthermore, we find
two interaction patches unique to COVID-19 (Figure 2B, patches 1 and 3) and another patch unique
to SARS-2002 (Figure 2B, patch 2). COVID-19 has a significant and unique contact site between the
residues 500–505 of the RBD and residues 353–357 of ACE2 (Figure 2B,C). COVID-19 also creates a new
interaction patch with the middle of the N-terminal ACE2 helix (Figure 2B,C), while SARS-2002 has a
unique interaction patch with the end of the same helix (Figure 2B,C). The rest of the changes in the
interface contact frequencies are due to the different interface loop conformations (COVID-19 residue
numbers 474–498, SARS-2002 residue numbers 461–484) (Figure 2A,B, Table S1). COVID-19 has a
significantly higher number of well-defined contact pairs compared to SARS-2002: 52 vs. 28 contacts
(with 44 and 20 unique pairs, excluding the ones with similar CFs) were found for RBD–ACE2 of the
COVID-19 and SARS-2002, respectively (Figure 2B). These results expose the accelerated evolution
among the key anchoring residues of the RBD–ACE2 interface and raise the following question:
how does SARS-2002 RBD reach an ACE2 binding affinity that is comparable to that of COVID-19 but
with fewer contact pairs and a smaller interface area?
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Figure 2. Interaction interfaces of RBD–ACE2. A residue is considered as part of the interface if one of
its atoms is within 4 Å from any atom of the other partner in at least 30% of the 10,000 MD simulation
frames. (A) The interface residue side-chain heavy atoms that vary between COVID-19 (blue) and
SARS-2002 (red) are shown with ball-and-stick representations. ACE2 is colored gray; (B) the contacts
difference plot between COVID-19 and SARS-2002 (left). A residue–residue contact frequency (CF)
is defined as the fraction of MD trajectory frames in which the contact appears. The contacts with
50% greater CF in COVID-19 RBD–ACE2 vs. SARS-2002 RBD–ACE2 are colored blue. The contacts
with 50% greater CF in SARS-2002 RBD–ACE2 vs. COVID-19 RBD–ACE2 are colored red. Similar
interface-residue CFs (<50% difference) in both RBDs are colored gray. The residue numbering is
according to COVID-19 (RefSeq: YP_009724390.1). Difference plots for interface residue CFs that are in
the interface for ACE2 (middle) and RBD (right); (C) zooms on the interface contacts unique to each
virus. The COVID-19 patches are colored blue with the corresponding ACE2 patches in cyan, and the
SARS-2002 patch is in red with the corresponding ACE2 patch in orange.
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3.3. COVID-19 and SARS-2002 Differ in Their Fluctuation Signatures

The distribution of SOAP scores throughout the simulation trajectory has a larger fluctuation range
for SARS-2002, relative to COVID-19 (Figure 1A,B, Figure S3A) suggesting that the SARS-2002–ACE2
interaction is fluctuating between several structural states. Moreover, the analysis of contact frequencies
along the entire trajectory reveals that none of the SARS-2002 contacts are maintained over 90% of the
frames, while COVID-19 still maintains about half of its contacts for 90% of the trajectory (Figure S3B).

To investigate the dynamics of COVID-19 binding compared to SARS-2002, we calculated the
root-mean-square fluctuation (RMSF) of each residue with respect to the lowest energy snapshot
from their respective 100 ns MD simulation trajectory. The interface region in the RBD contains two
loops (loop1: residues 474–489, loop2: residues 498–505; using COVID-19 numbering, Figure 3A,D)
that bind to the ACE2 N-terminal helix on both of its ends. These two loops are highly flexible
in the SARS-2002 RBD (Figure 3A,D). While loop1 is also fluctuating in the COVID-19 RBD, albeit
much less, loop2 remains relatively rigid in the COVID-19 RBD. In addition, we find that in the
COVID-19-RBD, a region centered around K417 leads to further stability relative to the corresponding
region in SARS-2002. We attribute this difference to the unique interaction of COVID-19 at position
K417 with the middle of the N-terminal ACE2 helix, thus serving as an anchor site to the receptor
(Figures 2C and 3A). The contribution of K417 to ACE2 binding is observed in a recent cryo-EM
structure of the COVID-19 spike protein bound to ACE2 [24]. Overall, COVID-19 is more rigid
compared to SARS-2002 (Figure 3A,D).

We investigated the dynamics of a designed SARS (SARS-des) variant [11], which differs from
SARS-2002 at only two positions: Y455F and L486F (the corresponding positions in SARS-2002 are
442 and 472, respectively; Table S1). The L486F mutation is of special interest for the COVID-19 RBD
because it has this same substitution. Our MD simulation analysis reveals that the SARS-des has a
substantially lower interaction score with ACE2 (median of −2199.2, Figure S3), as expected for an
optimized human ACE2-binding RBD design. We observed that these two mutations not only enhance
the binding affinity to ACE2, but also lead to a substantial stabilization of the interaction interface.
The fluctuation signatures along the RBD of SARS-des are surprisingly similar to those recorded for
COVID-19 (Figure 3B,C). Thus, the switch from a flexible binding mode (for SARS-2002) to a stable one
(COVID-19 and SARS-des, Figure 3B) highlights the remarkable capacity of the RBD to adopt alternative
receptor binding strategies driven by a minimal number of amino acid substitutions. This analysis
reveals the critical role of L486F (SARS-des residue F472) for stabilizing the COVID-19–ACE2 interface
and producing a reduction in the number of states of the COVID-19 spike protein bound to an
ACE2 receptor.

4. Discussion

The experimental affinity measurements (e.g., surface plasmon resonance (SPR)) confirm the
high affinity of SARS-2002 RBD–ACE2 binding, with an equilibrium dissociation constant (KD)
of ~1.5–10.0 nM [25–27], comparable to the binding affinity of ACE2 and the COVID-19 RBD
(KD = ~1.2–14.7 nM [27,28]) and consistent with our MD-based calculation (Figure 1A, Figure S3,
and Table S2). While we relied on the modeled COVID-19 RBD–ACE2 interaction, the median
interaction score of the complex (−1928.8), based on the MD simulation starting from the recently
published X-ray structure (PDB 6LZG [21]), was even closer to the SARS-2002 RBD–ACE2 score
(−1929.5). Binding affinity is achieved through a combination of interface contact optimization and
protein stability (Figure 3E). While the RBD–ACE2 complex can be resolved at high-resolution by
cryo-EM [24] and X-ray crystallography, MD simulations provide orthogonal information about the
interaction dynamics on a nanosecond timescale. In the case of CoVs, MD simulations suggest an
exceptional versatility of viral receptor binding strategies (Figure 3E). COVID-19 adopted a different
strategy for achieving comparable affinity to SARS-2002: the interface of COVID-19 is significantly
larger than that of SARS-2002 (1204 Å vs. 998 Å) with a remarkable number of interacting residues
(ACE2: 30 vs. 24, Figure 1C). In contrast, SARS-2002 is more flexible in its interaction with ACE2,
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interacting through fewer contacts that serve as “hot spots”. Therefore, we predict that SARS-2002 RBD
neutralizing antibodies will not be effective for COVID-19. The failure of several of these antibodies
to neutralize the binding of COVID-19 RBD to its receptor is consistent with our findings [28,29].
The fluctuation from high- to low-affinity conformations in SARS-2002 led to an increased efficacy for
inhibiting peptides [30] and high-affinity antibodies [31] compared to COVID-19. This implies that a
therapeutic challenge is attributed to the enhanced rigidity of the COVID-19 RBD relative to that of
the SARS-2002.Viruses 2020, 12, x FOR PEER REVIEW 7 of 10 
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While we relied on the modeled COVID-19 RBD–ACE2 interaction, the median interaction score of 
the complex (-1928.8), based on the MD simulation starting from the recently published X-ray 
structure (PDB 6LZG [21]), was even closer to the SARS-2002 RBD–ACE2 score (-1929.5). Binding 
affinity is achieved through a combination of interface contact optimization and protein stability 
(Figure 3E). While the RBD–ACE2 complex can be resolved at high-resolution by cryo-EM [24] and 

Figure 3. Dynamics of the RBD domains. (A–C) The dynamics of COVID-19 and SARS2002, with a
comparison to a designed SARS mutant are shown. The graphs show the root-mean-square fluctuation
(RMSF) of each residue along the simulation trajectory with respect to the structure with minimum
energy. The residue numbers are according to COVID-19 numbering (RefSeq: YP_009724390.1). The top
graph (A) compares COVID-19 with SARS-2002. The middle graph (B) compares COVID-19 with
SARS-designed. The bottom graph (C) compares SARS-2002 with SARS-designed. For all three graphs,
the positions highlighted in red or blue indicate those that have an increase or decrease, respectively,
of 50% RMSF with respect to the comparison graph. The contact positions are written in gray,
with solid vertical lines denoting the contact residues that exist in both of the comparison structures,
and dashed vertical lines denote the contact residues that exist in only one of the comparison structures;
(D) the RMSF mapped onto the RBD structure (red—more rigid, blue—more flexible); (E) the schematic
representation of ACE2 binding strategies by COVID-19, SARS-2002, and HCoV-NL63 RBDs.

The geometric and physicochemical properties of RBD–ACE2 interfaces resemble those of
antibody–antigen interactions. In both cases, the interface benefits from long loop plasticity, bulky
aromatic side-chains as anchoring sites, and the stabilization of the complex by distributed electrostatic
interactions [32]. Both COVID-19 and SARS-2002 interfaces contain long flexible loops and nine aromatic
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residues (Tyr, Trp, Phe) in the interface with ACE2 (Figure 2A). Moreover, in the SARS-designed variant
(SARS-des [11]), the addition of an aromatic residue (L486F substitution) significantly improved the
interaction scores and interface stability (Figure 3B,D). Our findings shed light on the accelerated
evolution of spike protein binding to the ACE2 receptor, similar to the rapid evolution along the
antibody–antigen affinity maturation process.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/5/497/s1,
Figure S1: Comparison between the X-ray structure of COVID-19—ACE2 complex; Figure S2 Multiple sequence
alignment of the analyzed RBDs; Figure S3: RBD—ACE2 interaction scores and contacts, Table S1: RBD interface
residues that have substitutions between COVID-19 and SARS-2002; Table S2: Table S2. RBD—ACE2 interface
evaluated by several methods for analysis of protein-protein interactions, Video S1: Overlay of 50 random
snapshots from the MD trajectories of COVID-19—ACE2, SARS-2002—ACE2, and HCoV-NL63—ACE2 complexes.
For clarity only one copy of ACE2 is shown (gray), COVID-19, SARS-2002, and HCoV-NL63 are colored blue, red,
and green, respectively.
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