
viruses

Article

Unveiling the Hidden Rules of Spherical Viruses
Using Point Arrays

David P. Wilson

Department of Physics, Kalamazoo College, Kalamazoo, MI 49006, USA; David.Wilson@kzoo.edu;
Tel.: +1-(269)-337-7096

Received: 13 January 2020; Accepted: 9 April 2020; Published: 20 April 2020
����������
�������

Abstract: Since its introduction, the Triangulation number has been the most successful and
ubiquitous scheme for classifying spherical viruses. However, despite its many successes, it fails
to describe the relative angular orientations of proteins, as well as their radial mass distribution
within the capsid. It also fails to provide any critical insight into sites of stability, modifications
or possible mutations. We show how classifying spherical viruses using icosahedral point arrays,
introduced by Keef and Twarock, unveils new geometric rules and constraints for understanding
virus stability and key locations for exterior and interior modifications. We present a modified
fitness measure which classifies viruses in an unambiguous and rigorous manner, irrespective of local
surface chemistry, steric hinderance, solvent accessibility or Triangulation number. We then use these
point arrays to explain the immutable surface loops of bacteriophage MS2, the relative reactivity of
surface lysine residues in CPMV and the non-quasi-equivalent flexibility of the HBV dimers. We then
explain how point arrays can be used as a predictive tool for site-directed modifications of capsids.
This success builds on our previous work showing that viruses place their protruding features along
the great circles of the asymmetric unit, demonstrating that viruses indeed adhere to these geometric
constraints.

Keywords: protruding features; spherical virus; point arrays; surface modifications; virus-like
particle; VLP; drug delivery; icosahedral; nanomedicine; ligand binding

1. Introduction

We present a modified fitting method for classifying spherical viruses using the icosahedral point
arrays introduced by Keef and Twarock [1,2]. These point arrays reveal an interdependence between
the location of viral protrusions, capsid proteins and the geometric packaging of the viral genome.
We offer new interpretations of these point arrays as geometric restrictions that place constraints on
which amino acids are possible to modify. We also discuss how these point arrays might be used to
determine new potential locations for significant external or internal capsid modifications such as
decoration proteins or ligand binding.

Spherical viruses have been canonically well described by their Triangulation number (T-number),
introduced by Caspar and Klug [3], which posits that capsid proteins are arranged in such a manner as
to have nearly identical chemical environments, known as quasi-equivalence. In general, the T-number
specifies the total number of proteins needed (60T) to form the capsid, as well as the T proteins within
the asymmetric unit (Figure 1) and that there are 12 pentamers and 10(T − 1) hexamers subunits
in a capsid. While there are several notable exceptions to these rules, each of these exceptions is
arranged in the same subunit layout as the canonical T-numbers. For example L-A virus, is a 120
protein capsid (T = 2) with the same architecture as a T = 1 capsid, though it has 10 proteins making
up its pentameric unit and no hexamers. Also of note is SV40, which has a T = 7d architecture. SV40 is
composed entirely of pentameric subunits, with 60 pentamers residing where the 60 hexamers would
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normally be located, reducing the capsid from 420 proteins to 360 proteins. The T-number is also able
to describe capsids with pseudo-Triangulation (pT) numbers, which are composed of multi-domain
proteins which form pseudo-pentamers and pseudo-hexamers to mimic larger T-number capsids.
CPMV is an example of a pT3, which has the same subunit architecture as a T = 3 capsid, appearing
to be composed of 12 pentamers and 20 hexamers, though only containing 60 proteins instead of the
expected 180 proteins. While the T-number is a powerful description, it is fundamentally a limited
tool as it uses a 2d thin-shell description that only specifies the general protein arrangement of the viral
capsid, and does not specify where or how capsid proteins are oriented, nor their radial distribution
nor any information about the organization of the genetic material contained within.

It has been demonstrated that several spherical viruses conform to the geometric constraints of
the icosahedral point arrays introduced by Keef and Twarock et al. [1,2]. The points of these arrays
represent material boundaries at multiple radial levels for proteins, genetic material as well as their
interfaces. Each point array imposes a different set of radial and angular constraints on the virus [1,2,4].
The geometry of viral architecture has also been explored by Janner [5–9] using encasing forms which
are constructed for viral components at different radial levels by embedding virus structure into lattices.
Janner has also explored fitting point arrays by hand to viral capsids, and has argued that a more
specific toolkit should be developed for the analysis of the viral architecture, including comparisons
with indexed backbone positions and regions with site specific point symmetry [10]. We showed that
viruses place their protruding features at discrete gauge points along the 15 icosahedral great circles
which are used to create the asymmetric unit (Figure 1), a direct consequence of viruses conforming
to the geometric constraints of point arrays [4]. These gauge points indicate to the overall scaling of
the point array. Another promising method of generating icosahedral point arrays has been offered
by Zappa et al. [11,12]. They propose generating point arrays from 6d projections of the hypercube.
Our point array fitting methods presented in this paper are compatible with this scheme, if a systematic
library can be developed. Point arrays are a natural tool for measuring and characterizing spherical
capsids, as they can be used to track changes throughout maturation as well as to quantify individual
features which differ between capsids. In recent years, additional capsid descriptions have been
offered, including an expanded Triangulation number by Rochal et al. [13] and icosahedral surface
tiling by Twarock et al. [14], though each of these schemes focuses on surface organization rather than
a detailed radial description.

In this work we will present an improved fitness algorithm which uses gauge point agreement
of protruding features to determine the potential fits to the 55 single and 514 double point arrays
developed by Keef and Twarock [1,2], to characterize the viral architecture of spherical viruses.
This improved algorithm was needed to clarify and remove poorly matching arrays that were found to
fit viruses in Refs. [2,15]. Through gauge point filtering and removal of several free parameters, we have
greatly clarified the fits of these point arrays. We will also show how to use these point array fits to
suggest surface sites where virus capsids should and should not be modified, independent of their
local chemistry, including the relative reactivity of surface lysine residues of the (pT3) CPMV [16,17].
We will demonstrate that the location of protruding features dramatically limits the possible interior
structure of viruses, including where to place interior drug compounds for potential therapeutic
virus-like particles (VLPs).
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Figure 1. (a) The spatial distributions of gauge points have icosahedral symmetry, i.e., they are arranged
with 2-, 3- and 5-fold symmetry as shown. The gauge points all lie on the 15 icosahedral great circles
which connect nearest neighbor symmetry axes [4] and are colored as in Table 1. We refer to the arcs
of the circles subtending the 2-, 3- and 5-fold axes as the 5-2 GC, 5-3 GC and 2-3 GC. The volume
bounded between these arcs is known as the asymmetric unit (AU) and is a representative one-sixtieth
section of the entire capsid (yellow). (b) The gauge points have been placed on a radially colored HBV
(1qgt) capsid at their nearest possible distance from the protein surface. We will later see that the
only admissible gauge points are the purple and orange elements sitting atop the protruding dimers.
(c) There are 21 unique gauge points in the AU, see Table 2. The gauge points are formed from 2-, 3-
and 5-fold translations of the icosahedron (ICO), Dodecahedron (DOD) and Icosadodecahedron (IDD).
The gauge points along the 2-, 3- and 5-fold axes result solely from IDD2, DOD3 and ICO5 point arrays,
respectively. The off-axis gauge points, e.g., GP:2-GP:5, each result from only nearly identical point
arrays known as sister point arrays. For example, Gauge Point 4 (GP:4) is only created from φ′ICO3

and φDOD5. In total 36 of the 55-point arrays have gauge points off-axis. There are no gauge points
in the bulk regions not located on the great circles, however interior points of the point arrays can be
located there.
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2. Materials and Methods

We begin by reviewing icosahedral symmetry and the construction of the 55 icosahedral point
arrays generated by affine extensions of the base icosahedral polyhedra developed in the seminal
papers by Keef and Twarock [1,2]. A point array is essentially a collection of points at one or more
radii with precise angular locations on a sphere and a fixed ratio between their radii. The motivation
for building these point arrays is to create a mathematically consistent representation of icosahedral
symmetry at multiple radial levels. While icosahedral symmetry is the largest discrete rotation
symmetry of a sphere, it makes no distinction based on radii. Even T = 1 viruses, composed of only
60 proteins arranged into 12 pentamers, can have dramatically different expressions of this symmetry
at multiple radial levels (Figure 2). In contrast to the T-number, point arrays provide relative radial
locations for capsid proteins and genetic material which are specified by a single free parameter,
the global radial scaling. The points of these arrays represent the locations of material boundaries
and key structural locations. Encoded within these point arrays are limits on the maximum relative
distance and orientation of the capsid protein features. In some cases, these limits will also impose
constraints on packing of the genetic material contained within.

Figure 2. A structural comparison showing the wide diversity in viral capsid shapes of even the
simplest T = 1 viruses. Each virus capsid has been radially colored, with red being the most interior,
and blue the exterior. These three, (a) Infectious Bursal Virus (Avibirnavirus, 2gsy [18]), (b) Hepatitis
E Virus-like particle (Hepevirus, 3hag [19]), and (c) Penton Base of Adenovirus A (Mastadenovirus,
4aqq [20]), were chosen as they have almost no overlap in their protruding features. The best fit
point array for each capsid is listed. We will see that these point arrays describe unique features and
complement the T-number classification. The asymmetric unit of each capsid is contained by the
triangular region of gauge points (Figure 1).

2.1. Icosahedral Symmetry

The chiral icosahedral rotation symmetry group (I) is a set of 60 rotations consisting of 2-fold,
3-fold and 5-fold rotations on a sphere, and is the largest discrete finite point group without reflections
(modulo spatial inversions). Reflections are not considered due to the chirality of the amino acids
which make up proteins. Spherical capsids may be subdivided into 60 equivalent sections, known as
the asymmetric unit (AU), similar to a unit cell in crystallography (Figure 1). Due to the reducibility of
the full capsid to the AU, we will often express our results in terms of it. The group of 60 icosahedral
rotation matrices can be generated by successive combinations of the 2-fold rotation a and the 3-fold
rotation b which border the asymmetric unit (Figure 1), as

I ≡
〈

a, b|a2 = b3 = (ab)5 = 1
〉

. (1)
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These rotation matrices and all our polyhedral vertices are given in the Appendix A.
We begin with the vertices of the three standard (base) representations of icosahedral symmetry

the icosahedron (ICO), Dodecahedron (DOD) and Icosadodecahedon (IDD) which are representations
of the 5, 3 and 2-fold symmetries, respectively (Figure 3). The vertices of these polyhedra will also
serve as our translation vectors for the affine extensions below. We align all of our structures with the
Viper Database orientation [21] of the spherical volume with a 2-fold axis aligned with the +z direction
and a 5-fold aligned with the vector (0, 1, φ), where φ = 1+

√
5

2 ≈ 1.618 is the golden ratio. The vertices
of each of the three respective polyhedra are all equidistant from the origin and therefore constitute
only a single radial level.

Figure 3. The three standard polyhedra with icosahedral symmetry and the affine extension translation
vectors. (a) The 12 vertices of the icosahedron are on the six 5-fold axes, and the structure is generated
by applying all 60 icosahedral rotations on a single point [0, 1, φ], which also serves as the translation
vector ~T5. (b) The 20 vertices of the dodecahedron are on the ten 3-fold axes, and the structure is
generated by applying the full icosahedral group to the point [−φ′, 0, φ], which also serves as the ~T3

translation vector. (c) The 30 vertices of the icosadodecahedron are on the fifteen 2-fold axes, and the
structure is generated by applying the full icosahedral group to the point 1

2 [−1, φ2, φ], which serves as
the ~T2 translation vector.

Throughout this work we will show images of point arrays layered atop virus capsids. We have
introduced a standard color scheme, inspired by the icosahedral building kits made by Zometool.
The symmetry axes have primary colors 5-fold (red), 3-fold (yellow) and 2-fold (blue). The points
along the great circles connecting neighboring symmetry axes (Figure 1) are based on the paint color
addition of those two colors, see Table 1.

Table 1. The color scheme used for point array elements throughout this paper. Each color specifies the
type of geometric location, e.g., 5-fold points are red, 2-fold points are blue, and purple are the points
on the great circle between the two (Figure 1).

Location Color

5-fold Red

5-3 GC Orange

3-fold Yellow

3-2 GC Green

2-fold Blue

2-5 GC Purple

Bulk Black

Origin Teal
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2.2. Affine Extensions

The construction of the 55 point arrays begins with translating a base polyhedron ICO, DOD or
IDD in a 2-fold (λ~T2), 3-fold (λ~T3) or 5-fold (λ~T5) direction (Figure 3), scaled by an amount λ.
Translations which result in the intersection of displaced vertices are deemed admissible affine
extensions [1,2]. This intersection reduces the cardinality (number of elements) of the point array from
the maximal free group representation. The translated set of points no longer has icosahedral symmetry
at each radial level. We restore the symmetry by applying the 60 icosahedral rotations to form the
complete point array (Figure 4). Each point arrays can be considered to have two components, the base
vertices and the point cloud generated by applying icosahedral symmetry to the affine extension.
Affine extensions are linear transformations which preserve parallel relationships within a geometric
representation; however, they do not preserve local angles or distances and are a standard tool for
extending group symmetry.

For example, λ = 1
φ is an admissible scaling length for λ~T5 of ICO, which results in an intersection

of displaced vertices at a 3-fold axis, thus reducing the cardinality. This process is illustrated in Figure 4.
We represent this point array as ICO∪ I(ICO + φ~T5), which is the union (∪, combination) of the base
polyhedron ICO and the point cloud generated by the 60 icosahedral rotations I of the translated
vertices ICO + φ~T5.

This approach might seem ill-conceived, as icosahedral symmetry is the largest compact rotation
symmetry in 3d. However, this method does not add any new symmetry axes, rather it creates a
representation of icosahedral symmetry at multiple radial levels. These representations have specified
ratios of radial levels with only one free parameter, overall scaling of the point array. It has been
suggested that this extended symmetry could help explain the inherent stability of viral capsids [2].

The first 41 point arrays [1] are created when these translated vertices intersect at icosahedral
symmetry axes, leading to arrays with additional polyhedra representations of 2-, 3- or 5-fold symmetry,
now at two or more radial levels (Figure 5). The additional 14 point arrays [2] are created from
intersections near, though not on symmetry axes. This means that they do not create any new
icosahedral polyhedra at different radial levels, though they still reduce the cardinality from the free
group representation. These point arrays are representations of the group symmetry across multiple
radial levels. It can readily be shown that this set of 55 point arrays is complete and that there are no
additional point arrays as there are no further symmetry axes or displaced vertices to intersect.

For ease of notation and formation of double point arrays, we rescale each of the base polyhedra
so that their translation lengths, λ = 1, for each of the respective translation vectors, ~T2, ~T3 or ~T5.
This rescaling does not change the point arrays nor affect any aspect of their applications to virology.
All scaling lengths can be written in the form 2mφn, where m, n = −3, . . . , 3, where φ = 1+

√
5

2 is the
golden ratio and φ′=− 1

φ , see Table 2. We label these point arrays as α (ICO, DOD or IDD)2,3 or 5 where
α = 1/λ is the base point array scaling length, e.g.,

ICO︸︷︷︸
base

∪ I(ICO +

Affine Extension︷︸︸︷
φ~T5 )︸ ︷︷ ︸

point cloud

→ φ′ICO∪ I
(

φ′ICO + ~T5

)
≡ φICO5

Two or more point arrays with the same affine extension vector may be combined to form a larger
point array, e.g., φICO5 and DOD5 may be combined as φICO5 ∪DOD5, as seen in Figure 6 and the
radial distribution of these points are shown in Figure 7a. One interpretation of these combined point
arrays, is that the base array is a union of two or more icosahedral polyhedra, e.g., start with the base
φICO∪DOD and then apply the ~T5 translation and re-apply icosahedral symmetry. Forming larger
point arrays can be desirable for several reasons, including searching for additional constraints on the
virus architecture or to find compatible internal or external structural modifications sites. We consider
the set of 55 single base point arrays and 514 double base point arrays for our fitness measure.



Viruses 2020, 12, 467 7 of 33

Figure 4. Formation of the φICO5 point array [1]. (a) The base of this point array is an icosahedron
scaled up by multiplying by φ. (b) The base point array is then translated by ~T5. Under this ~T5 extension,
the base point array consists of 4 separate levels. The lowest level is a single vertex which remains on
the 5-fold axes, the next level of 5 vertices all intersect 3-fold axes (all with the same radius). The next
level is located on the 5-2 great circle of the AU, resulting in 60 points. Finally, the gauge point of the
point array is created by the largest radius point (Figure 5). (c) Icosahedral symmetry is now applied,
creating the full point array (base and cloud), where the points are colored as in Figure 1. As the
translation was ~T5, the resulting gauge point remains on the 5-fold axes (Figure 1). (d) A look down
one of the twelve 5-fold axes shows that the point array has icosahedral symmetry. This entire point is
enveloped by a now larger icosahedron, with the purple points sitting on its edges. The formation of
point arrays can equivalently be described as placing an icosahedron centered at each of the original
base vertices to create the point cloud.

Figure 5. A histogram of the point array elements by radii in arbitrary units. The base array φ ICO has
a bold outline around the 12 points at r ∼ 0.64. The gauge points are on the 5-fold axes (Gauge Point 1).
In total there are now 3 icosahedrons and one dodecahedron, all with different radii. There is also a
layer of 60 points along the 5-2 great circle of the AU; due to the 60 rotations of the icosahedral group,
any point not located on a symmetry axes will produce 60 points after the symmetry is applied (Figure 4).
The cardinality or size of this point array is 116 = 12(ICO)+ 20(DOD)+ 12(ICO)+ 60(5-2)+ 12(ICO).
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Figure 6. Formation of a double base point array. (a) Point array φICO5 and (b) point array φDOD5

have the same affine extension ~T5 and may therefore be combined to form (c) (ICO∪DOD)5, a double
base point array. (d) A view down a 5-fold axes after applying icosahedral symmetry, where the points
originating from φDOD5 are shown as asterisks (S). All that is required to combine these two point
arrays is that they have the same translation vector ~T5 and it is coincidental that both φICO5 and
φDOD5 intersect at a 3-fold axes during the affine extension. The full radial distribution of points is
shown in Figure 7a.

Comparing Radial Distributions of Different Combinations of Point Arrays

Figure 7. Here we examine two ways to form double point arrays with φICO5. As before, the base
polyhedra are outlined in bold. In (a) we examine the formation of φICO5 ∪ φDOD5 which adds points
above the icosahedral envelope of φICO5 and could be used to locate a site for surface modification
of the capsid. The cardinality of φICO5 and φDOD5 is 116 and 172 respectively (Table 2); however
each of these point arrays respectively generate the base of the other array, reducing the cardinality
from 288 points to 256 points, with 8 radial levels, rather than 10. We also see the formation of
(b) φICO5 ∪ 2IDD5 which adds surface points near the same radial level as the original gauge points
of φICO5. The cardinality of 2IDD5 is 242 and none of the points overlap φICO5. Therefore, the total
cardinality of the double point array is 358 and the number of radial levels is 11. Double base point
arrays can be used in a variety of applications, e.g., they can provide a more complete radial description
of a capsid, indicating geometric constraints on all proteins, or they could provide locations where
ligands or decoration proteins could be added to meet these new conditions, or even suggest precisely
where internal drugs should be placed to not disrupt the stability of the capsid.
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2.3. Major Features of Point Arrays

At first glance, the library of point arrays appears to have a large number of degrees of freedom,
which might seem to accommodate any architecture; however the constraints implied by each point
array are quite specific, and the restriction of outer features of the viral capsid being coincident with
gauge points considerably lowers the freedom of building spherical viruses. An important feature of
each of these point arrays is that icosahedral symmetry now occurs on several radial levels (Figure 5)
and (Figure 7). Each point array has only one free parameter, the overall radial scaling. Every other
aspect is fixed, including the radial distribution and relative angular locations of the points.

The major features of the point arrays are

2.3.1. 55 Unique Single Point Arrays

There are 13 point arrays formed from ~T5 = [0, 1, φ] extensions, 17 point arrays formed from
~T3 = [1/φ, 0, φ] extensions and 25 point arrays formed from ~T2 = [0, 0, φ] extensions. Forty-one of
these point arrays have elements on the icosahedral symmetry axes at 2 or more radii. The remaining
14 are formed only from DOD and IDD bases with ~T2 or ~T3 extensions, and only have one radial level
with points on the icosahedral symmetry axes. It is worth noting that in all the affine extensions, no
non-icosahedral symmetry appears nor do any new accidental icosahedral axes. This is due to the fact
that the icosahedral group is the largest discrete compact rotation group in 3 dimensions. Generally,
point arrays involving IDD or ~T2 extensions have the greatest number of points.

2.3.2. Gauge Points

The set of outermost points from all of the 55 point arrays reveal that there are only 21 unique
locations within the AU, known as gauge points because they determine the scaling of the entire point
array (Figure 1). Spherical viruses arrange their protruding features to coincide with these points [4].
This limited set of locations has important implications connecting the protrusions of viruses to their
internal structure. Once the gauge points are known, there is an absolute maximum distance between
the gauge point and the next radial level which cannot be transformed or scaled away, and this next
radial level must coincide with the capsid proteins or the entire point array must be discarded. This
condition provides new rules for modifying external and interior surfaces of virus capsids. Protruding
features located on these gauge points are referred to as Wilson protrusions [4]. The reason there
are only 21 locations is that multiple point arrays generate the same gauge points, e.g., φ′ICO3 and
φDOD5 begin as different polyhedra, but after translation, each has the same gauge point, see Table 2.
The 18 gauge points which are not on symmetry axes originate from exactly two point arrays, referred
to as sister point arrays.

2.3.3. Sister Point Arrays

There are 26 pairs of point arrays which have identical point clouds and only differ at a single
radial level (their base polyhedron). These pairs are referred to as sister point arrays and make up 52 of
the 55 single base arrays, see Table 2. We write sister point arrays with a tilde ∼, e.g., φICO2 ∼ φ′IDD5,
where φICO2 = φICO ∪ I (φICO + T2) and φ′IDD5 = 1

φ IDD ∪ I
(

1
φ IDD + ~T5

)
. Each of these two

point arrays have GP:21 and identical point clouds (Figure 8). While sister point arrays are almost
identical in their arrangement of points, their combinations of double point arrays are quite different.
Two of the sister point arrays are equivalent, up to an overall radial scaling, φIDD2 ≡ φ′IDD2, though
when combined to form double point arrays, they are no longer equivalent. There are six enveloping
shapes for all single base point arrays ICO3 ∼ DOD3, ICO2 ∼ IDD5, DOD2 ∼ IDD3, ICO5, DOD3

and IDD2.
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2.3.4. Double Base Point Arrays

There are 514 unique possible combinations of 2 single base point arrays resulting from the pairing
of the 55 starting configurations with the same translation vector [1,2,15] (Figures 6 and 7). In this
work, we only consider the 569 single and double base point arrays. We write the largest relative
radius point cloud first. We will see that double point arrays can improve the fit and/or suggest sites
for modification in the results for the Hepatitis E VLP. In general, double point arrays do not have
sister double point arrays, as the sister arrays of each often have different translation vectors. When
double point arrays do have sister point arrays which can still be combined, the radial ordering of these
point arrays reverses, creating a very different structure than the original double array. For example,
2φ′IDD5 ∪ IDD5 has as its combined sisters point array, ICO2 ∪ 0.5φICO2, which swaps the top and
bottom point arrays. Double point arrays can be formed by pairing any of the two point arrays in the
~T5,~T3 or ~T2 list, see Table 2.

2.3.5. Single Free Parameter

While there are many point arrays to consider, it is important to stress that each point array has
only a single free parameter, the overall radial scale. We are not free to eliminate points that we do not
like, although we may disregard layers of points below the viral capsid when matching point arrays to
the capsids, unless the genetic material is known (see fitness procedure in the next section).

Comparison of Two Sets of Sister Point Arrays

Figure 8. The radial distribution of point clouds for sister point arrays are identical, except for the
base arrays (shown in bold outline). In (a) φ′ICO3 is identical to φDOD5 except for their two bases
φ′ICO and φDOD. Please note that these point arrays have different affine extensions, so they cannot
be combined. In (b) IDD5 is identical to ICO2 except for IDD and ICO. The bulk points at r ∼ 0.75
have two sets of 60 points one on the left and one on the right side of the 5-2 great circle in the AU.
While these points have the same radius, they are not equivalent locations.
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2.4. Radially Ordered Single Base Point Arrays

We present a new radial ordering of the 55 single point arrays and report their sister point arrays
in Table 2. The point arrays have been ordered from largest to smallest relative radius to aid in the
construction of similar radially sized double point arrays. For example, finding potential surface
modifications for a virus fitted by φDOD5 would begin by considering 2IDD5 which provides new
geometric constraints which are above those in φDOD5. These arrays and their 514 double point array
combinations will be used to classify viral capsids in this paper.

Table 2. The 55 admissible point arrays [1,2], grouped by extension vectors ~T5,~T3 and ~T2, ordered from
largest to smallest relative radii. The initial scaling of the base point arrays before affine extension is
as shown. The gauge points and their location on the great circles are listed (Figure 1). The number
of distinct radial levels, size of the full point array (cardinality) and sister point arrays are also given
(3 arrays do not have sister arrays). While all sister arrays have identical point clouds, the two
point arrays which are identical are indicated with †. The 14 point arrays with only a single radial
level located on the icosahedral symmetry axes are indicated with an asterisk *. Three point arrays
ICO5, DOD3 and IDD2 have an element at the origin, which is degenerate. Note that φ′ = −1/φ;
however all of the base polyhedra are invariant under multiplication by −1, therefore we only report
the absolute value of the scaling.

The 13 T5 Affine Extensions The 25 T2 Affine Extensions
Scale Base GP Loc Lvs Size Sister (∼) Scale Base GP Loc Lvs Size Sister (∼)

2φ IDD5 16 5-2 6 290 .5φ′ ICO2 2φ IDD∗2 15 2-fold 16 870 .5φ′ IDD∗2
φ2 DOD5 5 5-3 5 200 φ′2 ICO3 φ2 DOD2 7 2-3 11 590 φ′2 IDD3
φ ICO5 1 ~5 5 116 φ′ ICO5 φ2 IDD2 15 2-fold 14 710 φ′2 IDD2
2 IDD5 17 5-2 6 242 0.5 ICO3 .5φ3 DOD∗2 8 2-3 9 500 2φ′3 IDD∗3
φ DOD5 4 5-3 5 172 φ′ ICO3 2 IDD∗2 15 2-fold 16 870 .5 IDD∗2
1 ICO5 1 ~5 5 85 − − φ ICO2 21 5-2 7 342 φ′ IDD5

2φ′ IDD5 18 5-2 6 242 .5φ ICO3 φ DOD∗2 9 2-3 10 560 φ′ IDD∗3
1 DOD5 3 5-3 5 172 1 ICO3 φ IDD†

2 15 2-fold 12 552 φ′ IDD2
1 IDD5 19 5-2 7 360 1 ICO3 .5φ2 ICO2 20 5-2 6 272 2φ′2 IDD5
φ′ ICO5 1 ~5 5 116 φ ICO3 .5φ2 DOD2 10 2-3 7 332 2φ′2 IDD3

2φ′2 IDD5 20 5-2 6 290 .5φ2 ICO3 2φ′ IDD2 15 2-fold 16 870 .5φ IDD2
φ′ DOD5 2 5-3 5 200 φ ICO3 1 ICO2 19 5-2 7 342 1 IDD5
φ′ IDD5 21 5-2 7 360 φ ICO3 1 DOD2 11 2-3 11 590 1 IDD3

The 17 T3 Affine Extensions 1 IDD∗2 15 2-fold 9 361 − −
Scale Base GP Loc Lvs Size Sister (∼) .5φ ICO2 18 5-2 5 212 2φ′ IDD5

2φ IDD∗3 14 2-3 9 510 .5φ′ DOD∗2 .5φ DOD2 12 2-3 8 344 2φ′ IDD3
φ2 DOD∗3 6 3-fold 8 360 φ′2 DOD∗3 .5φ IDD∗2 15 2-fold 16 870 2φ′ IDD∗2
2 IDD3 13 2-3 8 362 .5φ′ DOD2 φ′ IDD†

2 15 2-fold 12 552 φ IDD2
φ ICO3 2 5-3 5 192 φ′ DOD5 0.5 ICO2 17 5-2 5 212 2 IDD5
φ DOD3 6 ~3 7 252 φ′ DOD3 0.5 DOD2 13 2-3 7 332 2 IDD3

2φ′ IDD3 12 2-3 9 374 .5φ DOD2 0.5 IDD∗2 15 2-fold 15 840 2 IDD∗2
1 DOD3 6 ~3 7 191 − − φ′2 IDD2 15 2-fold 14 710 φ2 IDD2
1 ICO3 3 5-2 5 164 1 DOD5 .5φ′ ICO2 16 5-2 6 272 2φ IDD5
1 IDD3 11 2-3 11 600 1 DOD2 .5φ′ DOD∗2 14 2-3 9 500 2φ IDD∗3

2φ′2 IDD3 10 2-3 8 362 .5φ2 DOD2 .5φ′ IDD∗2 15 2-fold 16 870 2φ IDD∗2
φ′ DOD3 6 ~3 7 252 φ DOD3
φ′ ICO3 4 5-3 5 164 φ DOD5
φ′ IDD∗3 9 2-3 10 570 φ DOD∗2

2φ′3 IDD∗3 8 2-3 9 510 .5φ3 DOD∗2
φ′2 DOD∗3 6 ~3 8 360 φ2 DOD∗3
φ′2 ICO3 5 5-3 5 192 φ2 DOD5
φ′2 IDD3 7 2-3 11 600 φ2 DOD2
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2.5. Point Array Fitness Algorithm

We now present our modified point array fitness algorithm which requires gauge point agreement
and low relative surface RMSD (Figure 9).

2.5.1. Identify Protruding Features of a Virus

Our algorithm determines the most radially distal protruding features of each viral capsid.
These external features can be critically important in the lifecycle of the virus. In practice, we have
found that the outer 3% of atoms by radius in a capsid are sufficient for locating protruding features.
We then cluster the atoms in the outer 3% with those beneath them and in the upper half of the capsid.
We consider this cluster as our protrusion. We then find the geometric center of mass, treating all
atoms as if they have the same mass. This process is described in more detail in our previous work on
protruding features [4].

2.5.2. Determine Gauge Point Scaling

We start the 21 gauge points 5 angstroms beyond the atom with the largest radius. We then allow
them to fall radially onto the capsid. A gauge point is stopped when it reaches its nearest distance to
the protein surface, which we model as an overlap of 1.5 Å spheres which is slightly smaller than the
average van der Waals radii of each of the heavy atoms [22]. If a gauge point would fall through the
surface of the capsid, we stop it at its point of closest approach. We only consider point arrays with
gauge points located on or near these protruding features, referred to as admissible gauge points [4].
This dramatically reduces the number of point arrays which need to be considered when characterizing
a virus, see Table 2. The gauge points are presented in Figure 1. An example of this step applied to
Hepatitis B can be seen in Figure 10. The yellow gauge points on the 3-fold axis would have fallen
through the capsid, but were stopped at the location of nearest approach. The determination of the
admissible gauge points will prove to be a critical step in understanding the restrictions conferred by
point array geometries on the entire capsid structure.

2.5.3. Scale and Truncate Point Arrays

Next we scale point arrays with admissible gauge points to match the virus capsids. Generally,
point arrays cover a larger radial extent than the capsid proteins, going well into the interior of the
virus. We interpret these interior points as characterizing the constraints on genetic material contained
within and therefore truncate them from the point arrays. We carefully truncate the point arrays as
dropping interior points while optimizing scaling can dramatically alter the RMSD fit. When a point
array is first scaled to gauge point, we determine the nearest point array elements to all the capsid
atoms and keep any points above the minimum radii of this set. Next we compute the distance to each
point below the protein capsid’s inner surface and keep all those points within 4 Å. This set of point
array elements is referred to as our truncated point array. We find that most capsids use a truncated
point array.

2.5.4. Compute RMSD from Truncated Point Arrays to the Viral Capsid Proteins

The surface RMSD for the point array elements within the asymmetric unit according to [2]
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Rsurf =


N
∑

i=1
mi pid2

i

N
∑

i=1
mi pi


1/2

(2)

where di is the minimum distance from the ith point array element to the nearest protein surface(s), pi
is the protein multiplicity (number of distinct proteins) near the point i (e.g., 5 for a point on a 5-fold
axes or 2 if two proteins are equidistant from the same point). Finally, mi is the number of times the
point appears in the full point array (e.g., 12, 20, 30 etc.) and N is the total number of point array
elements. Protein multiplicity pi is a weighting factor in the RMSD for when two or more proteins are
roughly equidistant from the same point to within a few tenths of an angstrom, e.g., if a point array
element were sitting on a 3-fold axis, it would be counted 3 times. Figure 10 provides an examples of
protein multiplicity and the number of times a point appears in the AU of the point array mi.

We minimize the RMSD by radially shunting the entire point array radially by ±5 Å in 0.25 Å
steps. During this shunting, we eliminate point arrays which contain points within the protein surfaces
or small pockets, as point arrays represent external material boundaries [2,15]. We do not allow further
interior point array elements to be cutoff during this optimization, we refer to this as gauge fixing.
This modified algorithm eliminates most spurious point arrays from considerations, improving upon
the fits of [2].

2.5.5. Determine Best Fit Point Arrays

In general, we only find a handful of point arrays which have the correct gauge point(s) and low
RMSD. Often a point array and its sister point array will both meet the same criteria and without
knowledge of the genetic material, they are indistinguishable. The following criteria to break ties

i If a point array has a lower RMSD score by 0.5 Å or more.
ii Have at least one element near each protein.
iii Encase the protein capsid with points above and below.
iv Have a better agreement with the gauge point fits, as seen in Figure 11.
v Have more points of contact with capsid proteins, e.g., each point on the five-fold axes have

at least 5 points of contact with protein surfaces. We consider this step after checking gauge
point fits (d), as the number of contacts can be quite large for point arrays with IDD bases or ~T2

extensions which can considerably lower the RMSD score.
vi Have the largest range of prevalence (Figure 10), indicating a wide range of radial agreement [2].

The most important discriminant in this process is step 1, determination of the protruding features
and the admissible gauge points. Afterwards when point arrays have comparable RMSD values,
we consider point arrays which pass criteria (b) and (c) to be the best fitting point arrays. If a tie
still exists, we consider steps (d)–(f) in order, though most point array fits are determined by step (c).
When ties still exist, we report both point arrays, which is a common occurrence with sister point
arrays, which we consider to be equally valid (indistinguishable) (Figure 9). These ties might further
be broken by including genetic material where available. The results of this algorithm for the viruses
studied in this paper can be found in Table 3.
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Figure 9. Schematic representation of the fitness algorithm for point array matching to viral capsids.
Most viruses only have a few point arrays that have a low RMSD. Many ties are due to sister
point arrays.
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Figure 10. Features of the point array fitting algorithm. Here we have docked the gauge points on
HBV, a T = 4 virus with dimeric protrusions. We only consider the point arrays with gauge points
nearest the most radially distal protruding features, e.g., the nearest gauge points to the protruding
dimers are GP: 17, 18 and 19 (yellow circles) and 4 and 5 (blue circles), see Table 2. In this example,
there are 3 gauge points that would have fallen through the capsid surface when docked, which were
instead stopped at their minimum distance to the surface. We see that most points sit on the surface of
the proteins, and some on the symmetry axes in between proteins. Points which are near more than
one protein are weighted more in the RMSD, through protein multiplicity pi, see Equation (2). High
multiplicity always occurs on symmetry axes e.g., Gauge Point 1 (red) on the 5-fold axis would count
5 times. There are several points which would lead to a high prevalence, i.e., they do not intersect
proteins over a large range of radial scaling, including Gauge Point 15 (blue) which is on a 2-fold axis
and Gauge Point 3 (orange). In this example, these points would lead to a poor RMSD fit, as they are
each several angstroms away from the surface.

Figure 11. A section of the swollen CCMV capsid radially colored and fitted with φICO2. In our fitness
measure we consider all gauge points which are near protrusions. In this example, we see how a
point array can have a low RMSD value, but not match the protruding features well and therefore be
excluded later. In this case Gauge Point 21 is 10 Å below the most external atoms, and the other gauge
points which sit atop the blue sections are the better fit.
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2.6. Comparison with Previous Measure

We will now review the key differences between the fitness measure of Keef et al. [2] and our
own measure.

2.6.1. Gauge Point Agreement

We only allow point arrays with gauge points near the protruding features of viruses, dramatically
limiting the number of point arrays to consider. This set of criteria is based on angular proximity with
the protruding features, rather than overall scale of the point arrays, which has provided the single
largest improvement to the fitness criteria.

2.6.2. Simplified RMSD Measure

The prior fitness measure used a topological RMSD in addition to the surface RMSD, via RMSD =(
RMSD2

surf + RMSD2
top

)1/2
, which was very sensitive to the overall radial scaling of the point arrays,

and could allow a poor RMSDtop score to be overcome by an abundance of good surface points deep
within the capsid. These point arrays often included IDD and ~T2 elements, failed to describe the outer
surface of the virus. By contrast, gauge point agreement is independent of radial scaling.

2.6.3. Gauge Fixing of Truncated Point Arrays

We make a single interior point array cutoff when the initial gauge point scaling is determined,
which prevents poor interior points from being accidentally removed while optimizing the
RMSDsurf score.

2.6.4. Recognition of Sister Point Arrays

Many point array fits appear distinct, but upon inspection are doubly represented at the level of
single base point arrays due to the radial truncation of the point arrays.

2.6.5. Tie Breaking Criteria

We introduce several criteria to break any RMSD ties, such as requiring at least one point per
protein (Figure 9). We also added a new criterion, that all point arrays have at least one point
which corresponds to each protein within the asymmetric unit (AU). While we consider prevalence,
we generally find that excluding point arrays due to their being located within a small pocket of a
protein to be sufficient.

3. Results and Discussion

The radial and angular locations specified by point arrays serve as contact points for proteins,
as well as external and internal material boundaries. The majority of points are located on the
icosahedral great circles. See Figures 5, 7 and 8 for examples of radial distributions of point arrays.
We interpret these locations as boundary constraints in the sense of Janner’s encasing forms [5–9],
for the protein capsid and genetic material contained within.

This interpretation makes sense, as proteins cannot be located directly atop the symmetry axes, so
these points provide a convenient location for the proteins to maintain contact while adhering to the
overall symmetry. We believe that some of these points might act as mechanical equilibrium locations
for the icosahedral vibrational modes of the capsids. Given that multiple proteins often make contacts
at these points and that meeting these geometric restrictions appears to be advantageous, it is plausible
that proteins could be oscillating around these locations similar to a mass on a spring. We will see
below that the chemically identical protein dimers of HBV have different vibrational properties which
are consistent with the locations of the point array elements.
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While it remains unclear exactly why viruses are adopting these geometries, we agree with
the conjecture that viruses adhering to this extended symmetry could help explain their inherent
stability [2]. We suspect that the structural rearrangements of capsid proteins throughout maturation
can be explained by the capsid transitioning from one point array to another, as we will see with
CCMV below. A capsid could in principle gain or lose stability by changing point arrays. Maturation
can be triggered by relatively small, local modifications to proteins that could have a dramatic effect
on the RMSD fit. These point array locations serve to impose new geometric constraints on the spatial
arrangement of protein chains, which can serve as a pseudo-steric hinderance to adding new ligands.
These constraints can indicate where modifications are likely to succeed, although not what form they
should take. We will see that in MS2, the gauge points reveal critical structural locations which are
nearly impossible to modify [23,24].

It can often be frustratingly difficult to modify protein capsids at particular sites. The exact
reasons are often unknown as these sites appear ideal based on local chemistry, solvent accessibility
and a lack of steric hinderance. As we will see, knowledge of point array fits provides insight for
these modifications, based purely geometric constraints that would be overlooked in other analyses.
The stability implied by a virus capsid’s adherence to the geometric constraints of point array might be
disrupted by deviations from these constraints. It is also possible that these point arrays could specify
multiple sites which must be modified to remain stable, depending on the distribution of point arrays
by radius and the rules of combining point arrays.

3.1. Virus Point Array Classification

Here we present our results of the Point Array Fitness Algorithm for 16 viruses ranging over
T = 1, 3, 4 and 7 virus capsids of RNA and DNA viruses in Table 3. Overall, we found that all these
viruses had only a single best array, up to sister array fits, with RMSD values generally less than 2 Å.
The criteria which made the largest difference after RMSD ties, were requiring a description of all
proteins, best gauge point agreement and points above and below the capsid. We found that the only
fits which could not be distinguished from other point arrays were those which resulted from sister
point arrays. We generally find that relatively thin viral capsids, such as GA and MS2, are equally
co-fit by their sister point arrays. This brings the effective number of distinct single base point clouds
down to 29 when considering thin capsids. Without knowing the locations of the genetic material, it is
not yet possible to distinguish between these two point arrays. The three T = 1 capsids in Figure 2,
Infectious Bursal Virus, Hepatitis E VLP and the Penton Base of Adenovirus A (Ad3) do not have ties
for their best fit.

We see from Table 3 that knowing the T-number does not predict which point array a virus
will utilize, nor does knowledge of the point array predict the T-number. Each of these structural
classifications communicates different information about the capsid. We have not yet found any
viruses with a 3-fold protrusion in the Viper Database, which is consistent with our earlier work [4],
though there are several viruses with protrusions near GP:5 and 7. Based on these results, we suspect
that most viral capsid will have only a single best fit point array, up to its sister array. We also
acknowledge that if a virus simultaneously conformed to several point array geometries, it could be
found to be more stable.

The only virus which we needed to consider prevalence for tie breaking was STMV (T = 1,
1a34 [26]), which had two fits φ′DOD5 and ICO3 ∼ DOD5, with RMSD values of 0.8 Å and 1.2 Å,
respectively. However this turned out to be coincidental, as one of the interior points was essentially
stuck within a protein van der Waals pocket, and only permitted the point array to be scaled up or
down by 0.25 Å, less than the diameter of a hydrogen atom. We therefore eliminated the point array
φ′DOD5 from consideration. Of the 16 viruses presented here, each affine extension, 2-fold, 3-fold and
5-fold were used. We also found that 5 of the 6 possible enveloping point array shapes were needed to
describe these viruses with only DOD3 like capsids being absent, consistent with our lack of 3-fold
protrusions [4].
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Table 3. Here we present the results of our fitness algorithm of 16 viruses, considering RMSD scores,
gauge points (GP), and points of contact (NAU). All fits are decided as in Figure 9. Most RMSD fits
are at least better than 0.5 Å than the next best array. Several viruses are equally well fit by a point
array and its sister array. When both sister point arrays are equally valid, e.g., ICO3 or DOD5 of STMV,
both are listed. If two point arrays are tied for best, that is stated explicitly. There are two cryo-EM fit
solutions for CCMV (swln1) in the swollen state, we analyzed ccmvswln1 [25]. All structures analyzed
in this paper were obtained from the Viper Database [21].

Best Fit Point Arrays with RMSD Values

Name T PA RMSD (Å) GP NAU PDBID

Adenovirus Ad3 Dodecahedron 1 IDD5 3.7 19 7 4aqq [20]
Hepatitis E VLP 1 2φIDD2 ∪ φ2IDD2 2.8 15 26 3hag [19]
Infectious Bursal Virus 1 .5φ3DOD2 4.5 8 9 2gsy [18]
STMV 1 ICO3 ∼ DOD5 1.2 3 3 1a34 [26]
L-A Virus 2 φDOD5 ∪DOD5 1.4 4 3 1m1c [27]
Bacteriophage GA 3 φICO3 ∼ φ′DOD5 0.2 2 2 1gav [28]
Bacteriophage MS2 3 φICO3 ∼ φ′DOD5 0.7 2 2 2ms2 [29]
CCMV Native 3 φ′2ICO3 0.7 5 3 1cwp [30]
CCMV Swollen 3 φ2DOD5 2.7 5 4 swln1 [25]
Tobacco Necrosis Virus 3 φ′ICO5 ∪ 2φ′2IDD5 0.9 1 5 1c8n [31]
Cowpea Mosaic Virus (CPMV) pT3 φ′ICO5 ∪ 2φ′2IDD5 1.5 1 5 1ny7 [32]
Helicoverpa (HASV) 4 IDD5 ∪ φ′ICO5 1.1 19 6 3s6p [33]
Hepatitis B 4 ICO2 ∪ .5ICO2 1.3 19 5 1qgt [34]
Nudaurelia Capensis ω Virus 4 DOD5 ∪ φ′ICO5 1.5 3 5 1ohf [35]
Bacteriophage P22 Mature 7l φICO5 ∪ φDOD5 0.8 1 3 5uu5 [36]
HK97 Prohead II 7l φ′ICO5 ∪ φ′IDD5 1.8 1 4 3e8k [37]

3.2. Advantage of Sister Point Arrays

When a virus is equally fitted by sister point arrays, there may be several possible double base
point array combinations which indicate modifications open to the virus. For example consider STMV,
which is equally well fit by ICO3 and DOD5. From Table 2 we see that ICO3 can be combined with
IDD3, DOD3 and IDD3 and that DOD5 can be combined with IDD5, 2φ′IDD5 and ICO5 allowing
potentially 6 distinct surface modifications to this T = 1 virus. For more examples of combining point
arrays, see Figure 7.

3.3. Penton Base of Adenovirus Ad3 Dodecahedron (HEV, T = 1, 4aqq)

The first viral system that we explore is human adenovirus serotype 3 (Ad3) [20]. During its
lifecycle an excess of free pentameric Ad3 capsid proteins are synthesized compared to its trimeric
fibers. These capsid proteins form a 12-component dodecahedral virus-like particle (Figure 12) which
is stabilized by strand-swapping near the N-termini. The complex of these dodecamer capsids with
the trimeric fiber proteins are responsible for virus penetration into the cell [20]. We find remarkable
agreement between the precise location of the strand-swapping and the geometric constraints of the
point arrays. The strand-swapping is required for stabilization of the capsid [20] and we have no ability
to remove this geometric constraint from the overall constraint set, demonstrating how powerful the
lack of free parameters is in the use of point arrays. Adenovirus Ad2, a different serotype, has residues
which stabilize the dodecamerization [38] and does not use the strand-swapping.

We find that this capsid is best fitted by IDD5 and it is not equally co-fit by its sister point array
ICO2. While these two point arrays contain nearly identical points, the radial location of the IDD and
ICO bases (Figure 8) lead to a considerable difference in their RMSD see Table 3. The difference comes
from a hole in the pentameric protein volume (Figure 12c), which leaves the inner protein surface
several angstroms away from the 5-fold point in ICO2. This result is distinct from most other fits, as it
employs all the radial levels of the point array without requiring any genetic cargo within. This RMSD
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fit is not perfect however, as there are points in between the pentameric towers which are several
angstroms off the protein surface between the 3-fold and 5-fold axes leading to an RMSD of 3.7 Å.

Figure 12. (a) Adenovirus Ad3 Dodecahedron is composed of a penton base (Ad3, T = 1, 4aqq [20])
and is best fitted by IDD5 with an RMSD of 3.7 Å and Gauge Point 19. Ad3 is not equally co-fit by
the sister point array ICO2. The radial histogram of these sister point arrays appear in Figure 8b. It is
noteworthy that the entire point array was used in the fitness algorithm, without any radial cutoff.
While the gauge points and interior points agree well with the protein surface, there are several points
(orange and black) that float a few angstroms off the surface. (b) The interior view of the capsid. Ad3 is
stabilized by strand-swapping between neighboring pentamers, which occurs across the 2-fold axes
between the IDD base (blue points encircled in yellow) of IDD5 and the innermost (lowest radial level)
points (blue) which sit on the underside of the strand-swapping. (c) A side view of one of the pentamer
subunits with a section of protein removed to show the interior 5-fold point (red) contained by ICO2

only and the interior 2-fold points (blue) contained by IDD5 only. These 2-fold points (blue) provided
by IDD5 only, are situated at the major point of contact between the adjacent pentameric units, above
the strand-swapping. As the two sister point arrays are identical except for these points (Figure 8),
they are the deciding factors on which RMSD is lower. Here the ICO2 point (red) is sitting in an empty
pocket, making the RMSD 4.9 Å 1.2 Å higher than IDD5 with an RMSD of 3.7 Å.

3.4. Hepatitis E VLP (HEV, T = 1, 3hag)

The Hepatitis E virus-like particle illustrates how combining point arrays can lead to an improved
point array description (Figure 13). Of the 55 single point arrays, HEV is best fitted by 2φIDD2.
However, there are no points located on the interior surface of this capsid. When we consider the
additional 514 double point arrays, we find that 2φIDD2 ∪ φ2IDD2 lowers the RMSD from 3.2 Å to 2.8 Å
and provides points on the interior of the capsid as well. The fit of 2φIDD2 is interesting, because it
is the largest radius point array in the ~T2 extensions (Table 2). We believe that this implies it will be
difficult to add new surface features beyond the radius of 2-fold Gauge Point 15 without also changing
some interior structure of the capsid to fit the new embedding array. This lack of external modifications
is consistent with the T = 1 HEV being non-enveloped. There may be another way to modify T = 1
HEV, by modifying the capsid to fit the sister point array 0.5φ′IDD2 instead. This approach however
introduces new challenges as this point array is now the smallest radius point array within the ~T2

extensions, and thus there would no longer have any interior point arrays which to make contact with
the inner surface, which could indicate a lack of stability.

As it can be challenging to fully grasp how well point arrays fit all the nooks and crannies of
the van der Waals surface of the protein capsid, as well as the interior point of contact, we will now
examine a ribbon side view around the 2-fold axis of HEV in Figure 14. Here it is easier to see how
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the points fit in and around the boundaries of each protein, providing sites of coordination for their
contacts. We see that the protruding dimer perfectly fits around the 2-fold GP: 15 and that this contact
occurs again at points along the 5-2 great circle and 2-fold axes inside the capsid surface. The bulk
points also provide a set of geometric constraints, to which the individual proteins are clearly adhering.
In future work, we will explore the native T = 3 HEV.

Figure 13. A demonstration of how point array fits may be improved using double base point arrays.
In (a) we see T = 1 Hepatitis E virus-like particle (T = 1, 3hag [19]) fitted only by 2φIDD2 with an RMSD
of 3.2 Å and Gauge Point 15. This point array however does not have any points on the interior surface
of the capsid. In (b) we combine 2φIDD2 with the smaller radius point array φ2IDD2, shown here as
magenta points, irrespective of their geometric locations deviating from Table 1. These new points sit
perfectly on the surface and add interior surface locations and lower the RMSD to 2.8 Å. In (c) we see
the interior of our capsid, φ2IDD2 shown in orange along the 5-2 great circle. The point array fitting of
the capsid interior can also be seen in Figure 14.

Figure 14. Exhibiting the point array description of Hepatitis E virus-like particle (T = 1, 3hag [19])
using a ribbon view with each protein colored separately. In (a) we are viewing down a 2-fold axis,
the gauge point is 15 (blue) on the 2-fold axes. We can see the many point array elements nestled in
and around the protein surface. In (b) we are looking at the same section from the side view, and you
can see how the proteins fit neatly between the point arrays. The lowest radial points (orange) were
added by φ2IDD2.
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3.5. Bacteriophage MS2 (MS2, T = 3, 2ms2)

The protein capsid of Bacteriophage MS2 fits entirely in between the outer two radial levels of
the sister point arrays φICO3 ∼ φ′DOD5, which each have five radial levels total. Knowledge of
the interior structure of the ssRNA should enable us to distinguish between these two point arrays.
Recently a series of very clever experiments were conducted by Hartman et al. [23,24], where they
systemically replaced every amino acid, one by one, of the subunit proteins of MS2 with each of the 19
other possible α-amino acids. As MS2 encapsulates its RNA genome upon formation of the capsid, they
were able to determine which locations they could swap out and still form a stable virus. Curiously,
they found that they had almost no ability to replace the amino acids in the pentamer and hexamer
protrusions, which are in identical locations in each of the three proteins of the AU. We see in Figure 15
that the gauge points sit on the sides pentameric protrusions, where they were almost completely
unable to make any amino acid substitutions. They also had only partial success in substitutions
on the opposite side of the same protrusion with nearly equivalent amino acids. This suggests that
this geometric location is of critical importance to the stability of the capsid. This immutability is
unexpected, as the protruding feature is a relatively small protein loop on top of a much larger capsid,
and is not involved in enclosing the genome. While the location and composition of these surface
loops are important with regards to host infections, it should still be physically possible to make stable,
even if not viable, mutations. We believe that this is clear evidence that viruses are indeed gaining
stability by adhering to the geometric constraints of point arrays, and that most mutations or changes
in this loop on the pentamer would decrease the overall stability, as it would deviate from the point
array. They also found that they were able to freely modify the f-g loop (Figure 15), which is a desirable
location as it is not sterically hindered and should easily accommodate different amino acid residues.
This result is also in agreement with the point array description, as it does not impose any restrictions
near the center of the hexamer, rather only on the interior surface, several residues away from the f-g
loop. Their results also suggest it is difficult to swap amino acids near the inner points, though this
difficulty is not unexpected as it is located near protein β-sheets.

The capsid structure of the bacteriophage GA (T = 3, 1gav [28]) is nearly indistinguishable from
the bacteriophage MS2. We also find this to also be true in terms of the point array descriptions, each
being well fit by φICO3 ∼ φ′DOD5 with RMSD 0.7 Å for MS2 and 0.2 Å for GA. In our previous
study of protruding features [4], we observed that the orientation of the hexamer surface loops of
bacteriophage GA were parallel to the surface, rather than oriented radially as with MS2. This variance
is perfectly consistent with the point array description; while the protruding features of the pentamers
and hexamers are chemically identical, their geometric constraints are not as there are no restriction on
the hexamer loop. The point array description indicates that it should be possible to selectively modify
the hexamer protrusions on GA and MS2 post-assembly.

3.6. Hepatitis B (HBV, T = 4, 1qgt)

The Hepatitis B (T = 4) capsid is composed of 120 protein homodimers and is best fitted by the
double base point array ICO2 ∪ .5ICO2 with has an RMSD of 1.3 Å. There are two distinct dimeric
units, the AB and CD dimers, which have the same primary and secondary structure, though differ
slightly in their tertiary structures when part of the capsid (Figure 16). Each of these dimeric units are
sandwiched between elements of the point array (Figure 16b,c). The geometric constraints on the AB
and CD dimers are not equivalent as the AB dimer is restricted to meet at the top of the α-helices and
the CD dimer near the center of the α-helices interface. If we treat the elements of the point arrays as
equilibrium points for thermal fluctuations of the capsid, we would expect the dimers to have different
flexibility parameters. We would expect the AB dimer to be stiffer than the CD dimer, as it has fewer
fluctuations which leave it in contact with the gauge point at the top of the dimer and the point below
(Figure 16b). In contrast, the CD dimer has more fluctuations available which leave the α-helices in
contact along their interface, and the points below (Figure 16c). This difference was indeed observe by
Hadden et al. [39] in their enormous all-atom, non-symmetry enforced, molecular dynamics simulation
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of HBV over a timescale of 1 µs with 2 f s time steps. They found that the CD dimers were more
flexible than the AB dimers. Their simulation also found that the capsid was never truly converged
to an icosahedral capsid despite the long relaxation time, which could imply that the virus only has
icosahedral symmetry on average. Another interesting feature of the HBV (T = 4) capsid is that the
hexamers are centered on 2-fold axes, which is consistent with T = 4 geometries. This requires that the
hexamers have 2-fold rather than 3-fold symmetry. The hexamers accomplish this by arranging the
CD dimers and AB dimers differently, creating a squashed 2-fold symmetric hexamer (Figure 16d).

Figure 15. (a) Bacteriophage MS2 (T = 3, 2ms2 [29]), viewed down the 5-fold axes, is fitted best by
φICO3 ∼ φ′DOD5 with an RMSD of 0.7 Å and Gauge Point 2. Equivalent capsid proteins are colored
blue, gray and cyan. Though this fit uses only 2 of the 5 radial levels of the point arrays, its agreement
with experiments is remarkable, as it is nearly impossible to substitute different amino acids near
the gauge points (orange) [23,24]. (b) A perspective view of the gauge points sitting right next to the
pentamer protrusions, which were found to be nearly immutable, suggesting this geometric location is
critical to the stability of MS2. As MS2 is composed of 180 chemically identical proteins, the hexamer
protrusions are similarly immutable, at least pre-assembly of the capsid. (c) It was shown that the f-g
loop which is the inner surface of the hexamer hole was very mutable, which is also in agreement with
the point array fit, as the restricted points are several angstroms away (orange). Directly above these
points are the β-sheets.

The all-atom simulation by Hadden et al. [39] also demonstrated that HBV was never found to
be in an idealized icosahedral configuration. Wang et al. [40] have suggested that spherical viruses
may only be icosahedral on average, and that it might be incorrect to characterize deviations from
icosahedral symmetry as defects rather than the norm. This fact would not be in in conflict with point
arrays, as they provide a network of radially distributed locations which can facilitate multiple protein
contacts. These contacts could serve to stabilize the capsids in lieu of perfect icosahedral symmetry.
In this view, the points would specify equilibrium locations, or possibly nodes, for the proteins to
oscillate about due to thermal fluctuations or other defects. It is important to point out that while these
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arrays provide many new constraints, asymmetric distortions are certainly possible as the arrays do
not fully constrain the capsid. It has also suggested that reactive sites may be the reasons for these
defects [40]. We are currently seeking data on these systems to test out point arrays.

Figure 16. (a) A view down the 2-fold axis of Hepatitis B (T = 4, 1qgt [34]) which is composed of
120 homodimers. The AB dimers (A is pink and B is white) forms the 12 pentamers (pink) and the
CD dimer (C is blue and D is gray) along with the B-protein form the 30 hexamer subunits (blue,
gray and white). The capsid is best fitted by the double base point array point ICO2 ∪ .5ICO2 with
an RMSD of 1.3 Å and Gauge Point 19 (purple) located on the AB pentamer dimers. There are also
points (orange) located at the internal interface of the CD dimer (Semi-translucent blue proteins for
clarity). (b) The AB dimer is bounded above (purple) and below (black) by point arrays elements. (c)
The CD dimer of the hexamers has an orange point on the line of contact between the two α-helices of
the CD dimer and rest atop two bulk points (black) on the bottom of each protein of the dimer. The CD
dimer is more flexible than the AB dimer [39]. (d) Looking out from the interior of the capsid along a
2-fold axis, we see a slightly squashed hexamer (white, gray and blue) centered on 2-fold axis. Each
hexamer is in contact with four interior bulk points (black) and two interior 5-2 GC points (purple).
As such, the hexamers do not have local 3-fold symmetry, which is consistent with the point array
constraints. For comparison, a squashed hexagon is shown as a solid line (pink) and an ideal hexagon
is shown as a dotted line (green). Note that even though this point arrays was generated from two base
icosahedra (ICO∪ .5ICO), all of the 5-fold points have been truncated as they are more than 4 Å below
the interior capsid.

3.7. Cowpea Chlorotic Mottle Virus Maturation (CCMV, T = 3, 1cwp)

CCMV is a well-known T = 3, ssRNA virus with a well-studied pH induced maturation. One of
the first applications of point arrays was to study possible maturation pathways in higher-dimensional
space to use quasi-crystallographic techniques to characterize the maturation [41]. We begin by
analyzing the native state which is best fitted by φ′2ICO3 with an RMSD of 0.7 Å and Gauge Point 5.
We excluded one of the point arrays (2φ′IDD3) considered by [41] as it had a point located within a
protein pocket. The hexamer subunits seem to be the most important to the stability of the capsid in
terms of point arrays. The hexamer subunit is sandwiched above, below and at the two-fold axes by
point array elements (Figure 17). While about 200 atoms of the RNA structure are known in the native
capsid, we did not consider them in our point array fit as we do not know any of the RNA structure in
the mature capsid. The best fit point array φ′2ICO3 extends about 50 Å below the interior surface of
the capsid, so there may also be restrictions placed upon the interior ssRNA.
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Figure 17. (a) A look down the 2-fold axes of CCMV (T = 3, 1cwp [30]) which is best fitted by φ′2ICO3

with an RMSD of 0.7 Å and Gauge Point 5. The pentamers are shown in pink and the hexamers are
gray and blue. (b) Inside the capsid view of the points as they coordinate the pentamer and hexamer
meeting. (c) Outside view of the hexamers. The pentamer proteins only make contact with one point,
though the hexmamer unit makes contact with 3 points, above, below and at their junction.

The all-atom coordinates of the swollen CCMV capsid are not known from a crystallographic data,
rather they come from fitting the native capsid protein structures into cryo-EM data [25]. We found
several apparent point array fits, which are given in Table 4. Interestingly, the native state point array
still fits the capsid after maturation, though not as well, as the RMSD increased by 1.2 Å This lower
RMSD agreement could signal the loss of stability of the capsid which is observed after maturation [25].
In this case, we consider the sister point array to be a better description, as the interior center of the
hexamer contracts relative to the native state to meet a new 3-fold point array location and therefore
has 120 more points of contact with the proteins (Figure 18). This demonstrates how point arrays can
be a powerful tool for studying maturation, while the T-number remains constant throughout, protein
orientations are able to change considerably.

Table 4. At first glance, there appear to be several point arrays tied for the best fit of the swollen CCMV
particle; however 3 of these were excluded based on poor agreement with the gauge points (Figure 11).

CCMV Swollen (T = 3)

PA RMSD GP NAU Notes

φ′2ICO3 1.9 5 3
φICO2 ∪ .5φ2ICO2 2.2 21 6 excluded
φICO2 ∪ 2φ′IDD2 2.3 21 7 excluded
φICO2 ∪ φIDD2 2.6 21 8 excluded
φ2DOD5 2.7 5 4
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Numeric studies of the normal modes of the protein capsid showed that for CCMV, the dominant
change in structure during maturation could be captured through the breathing mode, or roughly
uniform expansion of the protein components [42]. Given that the mature state is still well characterized
by the native state array, though with a larger radius, this is consistent with uniform radial expansion.
One aspect which is not captured in their numeric studies however is the changing shape of the interior
of the hexamer which now makes the sister point array viable (Figure 18d).

Figure 18. A comparison of the structural changes of CCMV (T = 3) which occur during maturation
using point arrays. Each capsid is radially colored. (a) Exterior view of CCMV native state, showing
the prominent role that hexameric features play in determining the point array fit. (b) The interior of
CCMV natives state. There are point array locations (orange) in contact with the interior surface of the
pentamer, as was seen in Figure 17. (c) The swollen CCMV capsid is approximately a uniformly scaled
native state, though the orientation of the hexamer chains rotate slightly and the center of the hexamer
opens up at the top and closes at the bottom, allowing the sister point array φ2DOD5 to fit the capsid.
The overall effect of this reorganization is to create holes in the protein capsid. (d) The interior view
of the mature capsid showing how the hexamer unit changes to accommodate a new point (yellow)
after maturation.
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3.8. Cowpea Mosaic Virus (CPMV, pT3, 1ny7) Lysine Analysis

CPMV is a pseudo-T=3 capsid composed of 60 multi-domain proteins which mimics a T = 3
capsid geometry with 12 pentamers and 20 hexamers. CPMV is a robust icosahedral capsid, with many
successful surface modifications [17]. The surface reactivity was carefully studied site by site through
systematically replacing the 5 solvent exposed lysine residues one at a time with arginine residues [32].
There are two nearly identical point arrays which are good fits to CPMV, φ′ICO5 ∪ 2φ′2IDD5 and
φICO5 ∪ φDOD5, which after being truncated only differ by a single point (Figure 19). While we
typically consider the point array with more points of contact to be a better fit, it does not mean that
other point arrays simply discarded. As we will see, CPMV likely switches point arrays after the
lysine attachments (Figure 19). For our analysis, we treat the 3 protein domains A, B and C as separate
protein chains. Our comparison of the point arrays fit and their restrictions to the relative reactivity
data is given in Table 5.

Table 5. A comparison of the reactivity of the 5 solvent exposed lysine residues of CPMV [17] and the
geometric restrictions imposed by the point arrays. An X indicates that the point array is unlikely to
permit changes at this location and a + indicates no specific geometric restriction. We also indicate
our naive expectation of capsid reactivity based on good solvent accessibility (+) and lack of steric
hindrance (–). Both point arrays indicate that A LYS 82 and B LYS 199 should have low reactivity as
there is a point array element nearly atop each, implying that the site is a key structural feature, similar
to the loop protrusions of MS2. Both point arrays also agree that C LYS 99 should have no restrictions
on reactivity. While φ′ICO5 ∪ 2φ′2IDD5 is the best fit point array, it indicates that the most reactive
site A LYS 38 should not be reactive; however there is a loophole here as φICO5 ∪ φDOD5 have the
same truncated points except for this single geometric restriction, so CPMV can be reactive here as this
location is not critical to the other point array stability. This reactive site A LYS 38 is a bit paradoxical as
it is slightly hidden and less solvent exposed, yet it is very reactive. Lastly neither point array implies
any restrictions for C LYS 34 though it has low reactivity and good solvent accessibility and low steric
hinderance. It is possible that including the genomic material in the point array fitness would clarify
this case [17].

CPMV (pT = 3) LYS Reactivity Comparison

Residue Reactivity φ′ ICO5 ∪ 2φ′2 IDD5 or Accessibility Naive
φ ICO5 ∪ φ DOD5 Prediction

A LYS 82 Low X/X Solvent: +, Sterics: − Good
A LYS 38 Highest X/+ Solvent: −, Sterics: + Poor
B LYS 199 Low X/X Solvent: +, Sterics: − Good
C LYS 34 Low +/+ Solvent: +, Sterics: − Good
C LYS 99 Second +/+ Solvent: −, Sterics: + Poor

3.9. Bacteriophage HK97 Prohead II (HK97, T = 7l, 3e8k)

For our final analysis, we examine dsDNA Bacteriophage HK97 Prohead II (HK97, T = 7l,
3e8k [37]), one of the few procapsid X-ray structures known. This viral capsid has a unique protein
motif, referred to as chainmail [37,43]. The best fit point array places geometric restrictions on the
hexamers which break local 3-fold symmetry (Figure 20). It has been observed that there is a conserved
subunit interaction near the three-fold axes [37], which point arrays might be able to explain. The best
fit point array was φ′ICO5 ∪ φ′IDD5 (Figure 20). There were two other point arrays also with close fits,
φICO5 ∪ φDOD5 with RMSD 1.9 Å and ICO5 ∪DOD5 with RMSD 2.1 Å, though these failed to have
any points on the interior of the capsid surface. Interestingly, none of these three point arrays described
all proteins; however, all proteins were described by the three total point arrays. Unfortunately, we
are unable to simply merge these point arrays as they have different scaling lengths and would have
to shift relative to each other (Figure 6). It is possible that the capsid is stabilizing itself by adopting
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multiple point arrays until it is packaged with DNA. In future work we will explore how the point
array description changes throughout the maturation of HK97.

Figure 19. CPMV (pT3, 1ny7 [32]) has five solvent exposed exterior lysine residues found to be
reactive which are labeled here by the protein domain they occupy [17]. There are two point arrays
φ′ICO5 ∪ 2φ′2IDD5 and φICO5 ∪ φDOD5 that fit equally well with an RMSD of 1.5 Å and Gauge Point
1. This agreement is not surprising, as their truncated point arrays are identical except for a single point
(purple) along the 5-2 GC. The geometric restrictions of the point arrays are in remarkable agreement
with the reactivity data [17], explaining at least 4 of the 5 reactivity sites (Table 5).

3.10. Limitations of Point Arrays

As with any new idea in science, we must step back and question these results. As of now, we do
not offer a deterministic understanding of precisely why viruses use these point arrays, though we
posit that an explanation involving energetics and stability must exist. Even if it were shown that
these point arrays are simply a geometric coincidence of icosahedral packing, rather than energetically
favorable, these results would still offer valuable insights into the best ways to determine where and
how to modify viral capsids. As we have seen these point arrays describe a range of Triangulation
numbers, though we do not believe it will hold for all spherical viruses. As the diameter of viral
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capsids increases, the thickness of their capsids remains relatively constant [44] whereas the spacing
between radial levels increases with capsid diameter. At some point, the capsids will no longer be able
to meet the radially distributed requirements and at most will satisfy only the gauge point locations,
suggesting another scheme or dramatic modification would be needed for giant spherical viruses.

Figure 20. Point arrays may predict a loss of local symmetry of hexameric subunits for Bacteriophage
HK97 Prohead II (T = 7l, 3e8k [37]), as the hexamer subunits have different geometric restrictions
at non-equivalent locations. (a) This capsid is best fitted by φ′(ICO ∪ IDD)5 with an RMSD of 1.8 Å.
The pentamer protrudes at Gauge Point 1, as do many T = 7 viruses, and then the surface bows inward
to fit beneath the 2nd radial level (purple). (b) There are small pockets within the hexamers, where the
3rd radial level along the 5-3 GC sits just below the surface of the hexamer (purple), the atoms above
the pocket have been made translucent. (c) Inside view, each hexamer is bounded on the inside by the
4th radial level along the 5-3 GC point (orange). The pentamers and hexamers are each bounded by
two different points within the AU.

4. Conclusions

Our characterization and understanding of spherical virus architecture has been enhanced
using the icosahedral point arrays first introduced by Keef and Twarock [1]. This characterization
is independent of Triangulation number and quasi-equivalence. It provides entirely new angular
and radial constraints on the relative locations and orientations of the capsid proteins and their
interior genetic cargo. Thus, providing a complementary set of geometric restrictions in tandem with
the constraints on the pentamer and hexamer subunits, specified by the Triangulation number for
spherical viruses.

While viruses could, in principle conform to multiple point arrays, we have shown that over a
range of Triangulation numbers from T = 1 to T = 7 capsids, they are generally characterized, up to sister
point arrays, by a singular point array. Our measure clarifies and simplifies the fitting of point arrays
from previous work [2,15]. The recognition of sister point arrays aids in our understanding of single
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point arrays as well as the construction of double point arrays. The geometric constraints combined
with a lack of free parameters, make these arrays an exciting predictive tool for understanding viral
architecture, including modifications, drug placement and potential limits on viral evolution.

All the viruses that we have investigated conform to the restrictions of the affine extended point
arrays. We believe that these points may indicate sites of stabilization, conditions for modifications,
as well as mechanical flexibility, which would otherwise be missed by traditional chemical analysis,
such as binding affinity, solvent accessibility, steric hinderance and local reactivity. These sites are also
not required by Triangulation number nor by quasi-equivalence. We have explained the surprising
geometric importance of the immutable surface loops on the MS2 penton, as well as a consistent
description of the relative reactivity of surface lysine residues on CPMV. We demonstrated that these
geometric locations also correlate with locations of mechanical equilibrium and flexibility, as in the
case of the AB and CD dimers of HBV. In addition, these restrictions are important throughout the
capsid interior, as seen in the freedom to modify the hexametric subunits known as the f-g loop of MS2,
as well as the location of the critically important strand-swapping stabilization of the Adenovirus 3
dodecahedral base.

As point arrays are also able to specify important internal surface locations, they could be useful
for genome attachment, interior surface modifications, as well as drug placement for nanomedicine
VLPs. Double point arrays may offer a new predictive tool for surface and interior modifications,
as we saw with the double point arrays fit of T = 1 HEV. This fit also indicated that there was a lack of
potential surface modifications without potentially large reorientation of the capsid proteins and/or
multiple sites of modification. This also applies to decoration proteins and other ligand attachments.
These point arrays capture important structural changes in the maturation of CCMV and may provide
similar details for systems like HK97 and P22. Rossmann [45] suggested that viruses conserve tertiary
and quaternary structure under mutation, we suggest that this may be due, in part to preserving key
geometric relationships of the point arrays. This new understanding may provide new clues to past
and future viral evolutionary pathways.

In the future, we will work on developing a web tool which will allow scientists and engineers to
have their viruses categorized, key geometric locations indicated and to receive point array suggestions
for modifications. We are also exploring the link between point arrays and mechanical flexibility via
normal mode analysis. While there is still much to learn about how viruses use these point arrays, it is
clear that viruses are playing an intriguing game.
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Appendix A

Appendix A.1. Icosahedral Rotation Matrices

The group of 60 icosahedral rotation matrices can be generated using different combinations of
the 2-fold rotation matrix (a) and the 3-fold rotation matrix (b). The product of these two matrices,
(ba) is a 5-fold rotation. These rotation matrices produce rotations about the 2-, 3- and 5-fold axes
which define the asymmetric unit in Figure 1. There are two 3-fold axes within the AU. We use the one
on the righthand side of this image. The choice of which 2- and 3- fold matrices does not affect the
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final 60 matrices which are generated by this process. These matrix representations of a, band ba given
in the Viperdb orientation [21],

a =

 −1 0 0
0 −1 0
0 0 1

 , b =
1
2

 −
1
φ φ 1
−φ −1 1

φ

1 − 1
φ φ

 , ba =
1
2


1
φ −φ 1
φ 1 1

φ

−1 1
φ φ


Appendix A.2. Vertices of the Icosahedral Polyhedra

Here we present the vertices for the icosahedral polyhedra, which are all oriented in the Viper
Database coordinates [21].

The 12 vertices (wi) of ICO are The 30 vertices (ui) of IDD are
w1 = [ 0, 1, φ] u1 = [ 0 0 φ]

w2 = [ 0, −1, φ] u2 = 1
2 [ φ 1 φ2]

w3 = [ φ, 0, 1] u3 = 1
2 [ −φ −1 φ2]

w4 = [ −φ, 0, 1] u4 = 1
2 [ φ −1 φ2]

w5 = [ 1, φ, 0] u5 = 1
2 [ −φ 1 φ2]

w6 = [ −1, −φ, 0] u6 = 1
2 [ 1 φ2 φ]

w7 = [ 1, −φ, 0] u7 = 1
2 [ −1 −φ2 φ]

w8 = [ −1, φ, 0] u8 = 1
2 [ −1 φ2 φ]

w9 = [ φ, 0, −1] u9 = 1
2 [ 1 −φ2 φ]

w10 = [ −φ, 0, −1] u10 = 1
2 [ −φ2 φ 1]

w11 = [ 0, 1, −φ] u11 = 1
2 [ φ2 −φ 1]

w12 = [ 0, −1, −φ] u12 = 1
2 [ −φ2 −φ 1]

u13 = 1
2 [ φ2 φ 1]

The 20 vertices (vi) of DOD are u14 = [ 0 φ 0]
v1 = [ 1/φ, 0, φ] u15 = [ 0 −φ 0]
v2 = [ −1/φ, 0, φ] u16 = [ φ 0 0]
v3 = [ 1, 1, 1] u17 = [ −φ 0 0]
v4 = [ −1, −1, 1] u18 = 1

2 [ φ2 φ −1]
v5 = [ 1, −1, 1] u19 = 1

2 [ −φ2 −φ −1]
v6 = [ −1, 1, 1] u20 = 1

2 [ φ2 −φ −1]
v7 = [ 0, φ, 1/φ] u21 = 1

2 [ −φ2 φ −1]
v8 = [ 0, −φ, 1/φ] u22 = 1

2 [ 1 φ2 −φ]

v9 = [ φ, 1/φ, 0] u23 = 1
2 [ −1 −φ2 −φ]

v10 = [ −φ, −1/φ, 0] u24 = 1
2 [ −1 φ2 −φ]

v11 = [ φ, −1/φ, 0] u25 = 1
2 [ 1 −φ2 −φ]

v12 = [ −φ, 1/φ, 0] u26 = 1
2 [ φ 1 −φ2]

v13 = [ 0, φ, −1/φ] u27 = 1
2 [ −φ −1 −φ2]

v14 = [ 0, −φ, −1/φ] u28 = 1
2 [ −φ 1 −φ2]

v15 = [ 1, 1, −1] u29 = 1
2 [ φ −1 −φ2]

v16 = [ −1, −1, −1] u30 = [ 0 0 −φ]

v17 = [ 1, −1, −1]
v18 = [ −1, 1, −1]
v19 = [ 1/φ, 0, −φ]

v20 = [ −1/φ, 0, −φ]
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Appendix A.3. Worked Example of an Affine Extension

Now we examine the construction of φICO5 = φICO ∪ I(φICO + ~T5) from Figure 4. The base
array is φICO which has 12 points, which we then displace by vector ~T5 = [0, 1, φ], followed by the
application of the 60 icosahedral rotation matrices I , generating 116 unique points at 5 radial levels as
12(ICO) + 20(DOD) + 12(ICO) + 60(5-2) + 12(ICO) see Figure 5.

φICO5 =

φICO︷ ︸︸ ︷

0 φ φ2

0 −φ φ2

φ2 0, φ

−φ2 0, φ

φ φ2 0
−φ −φ2 0
φ −φ2 0
−φ φ2 0
φ2 0 −φ

−φ2, 0, −φ

0 φ −φ2

0, −φ, −φ2



∪ I



φICO︷ ︸︸ ︷

0 φ φ2

0 −φ φ2

φ2 0, φ

−φ2 0, φ

φ φ2 0
−φ −φ2 0
φ −φ2 0
−φ φ2 0
φ2 0 −φ

−φ2, 0, −φ

0 φ −φ2

0, −φ, −φ2



+

~T5︷ ︸︸ ︷

0 1 φ

0 1 φ

0 1 φ

0 1 φ

0 1 φ

0 1 φ

0 1 φ

0 1 φ

0 1 φ

0 1 φ

0 1 φ

0 1 φ





(A1)

The points of φICO5 which are located within the asymmetric unit are

φICO5(AU) =


0 φ2 φ3

0 1/φ φ3

0 φ φ2

1 0 φ2

0 1/φ 1

 (A2)

where we have used the golden ratio identities φ3 = φ2 + φ, φ2 = φ + 1 and 1
φ = φ− 1 to simplify.
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