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Abstract: Ostrich diseases characterized by paralysis have been breaking out in broad areas of China
since 2015, causing major damage to the ostrich breeding industry in China. This report describes a
parvovirus detected in ostriches from four different regions. The entire genomes of four parvovirus
strains were sequenced following amplification by PCR, and we conducted comprehensive analysis of
the ostrich parvovirus genome. Results showed that the length genomes of the parvovirus contained
two open reading frames. Ostrich parvovirus (OsPV) is a branch of goose parvovirus (GPV). Genetic
distance analysis revealed a close relationship between the parvovirus and goose parvovirus strains
from China, with the closest being the 2016 goose parvovirus RC16 strain from Chongqing. This is the
first report of a parvovirus in ostriches. However, whether OsPV is the pathogen of ostrich paralysis
remains uncertain. This study contributes new information about the evolution and epidemiology of
parvovirus in China, which provides a new way for the study of paralysis in ostriches.
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1. Introduction

Parvoviruses are small, non-enveloped, linear single-stranded DNA viruses [1]. Parvoviruses
may have appeared millions of years ago, infecting invertebrates and vertebrates [2]. All parvoviruses
that infect vertebrates belong to the parvovirinae subfamily [3]. Parvoviruses are widespread in birds;
parvoviruses that cause harm to the health of avians mainly include goose parvovirus (GPV), Muscovy
duck parvovirus (MDPV), and chicken and turkey parvoviruses [2]. Recent studies have shown that
the diversity of known parvovirus species has greatly expanded and the host range of parvovirus may
include the entire animal kingdom [4].

In recent years, an outbreak of disease has occurred in farmed ostriches aged from 1 to 4 months,
with paralysis as the main clinical manifestation, and an incidence rate ranging from 30% to 80%. Sick
ostriches gradually become thin and weak, with the disease lasting for about one month from onset to
death. However, no visceral lesions have been found by gross examination in the heart, liver, lung,
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kidney, or spleen of sick ostriches. Small bleeding points in leg muscles, accompanied by increased
joint fluids, have been observed in a few animals, but no visible lesions have been detected in most
infected ostriches. Antibacterial drugs and antiviral drugs, such as ribavirin, have been ineffective in
the treatment of the disease. While paralysis of nestlings has caused extensive loss within the ostrich
farming industry in China, no effective solution has been reported so far.

Here, we describe a hitherto unknown ostrich parvovirus (OsPV), detected in paralyzed ostrich
nestlings from the Beijing municipality and Hebei, Shanxi, and Yunnan provinces. Whole genomic
sequencing and phylogenetic analyses have been carried out on strains, from each region, and their
molecular evolutionary relationship with goose parvovirus (GPV) and Muscovy duck parvovirus
(MDPYV) established.

2. Materials and Methods

2.1. Sample Collection and PCR Detection

Sources of pathological materials were paralyzed ostrich nestlings from different farms in Beijing,
Yunnan, Shanxi, and Hebei (Table 1). Livers, spleens, hearts, and brain tissues were collected from
dead animals, and samples were homogenized in PBS, followed by freezing and thawing (3 times)
and centrifugation for the collection of supernatants. DNA was extracted using a MiniBEST Viral
RNA/DNA Extraction Kit Ver.5.0 (Takara, Beijing, China), according to the manufacturer’s instructions.
The DNA of the samples was preserved at —20 °C. PCR was carried out according to the procedure
of Tatar-Kis et al. [5], and the primers were according to the method of Zadori Z et al. [6]. All of the
positive products were sequenced by Ruibiotech, Qingdao, China. Sampling was carried out by a
veterinarian, who took different samples as part of his routine work and under the permission of the
farm owner. For this reason, sampling did not require the approval of the Ethics Committee.

Table 1. Detection results of ostrich parvovirus (OsPV) in clinical samples.

Place of Origin Date Number of Positive Total of Samples Total Positive
Samples Rate per City Rate
2018.6 4 4/4 25 25/25
Beijing 2019.6 15 15/15
2019.7 6 6/6
Yunnan 2018.6 2 2/2 2 2/2
2018.7 2 2/2 30 29/30
2018.8 12 12/12
Hebei 2018.8 9 9/9
2019.7 6 6/6
2019.8 1 0/1
Shanxi 2018.8 11 11/11 11 11/11

2.2. Whole Genome Amplification of OsPV

The primers were designed as described by Li et al. [7] to amplify the complete genomes of the
OsPV strains. The genomes were amplified using PrimeStar HS DNA polymerase (TaKaRa, Beijng,
China). PCR conditions were as follows: initial denaturation at 95 °C for 5 min, followed by 33 cycles
of 95 °C for 45 s, 55 °C for 45 s, 72 °C for 60 s, and termination for 10 min at 72 °C. Amplified DNA
fragments were visualized after electrophoresis on a 1% agarose gel (Tsingke, Beijng, China). PCR
products were purified using a PCR purification kit (Cwbiotech, Beijng, China)., cloned into the
pMD18-T vector (Takara, Beijing, China), and were sequenced by Ruibiotech, Qingdao.
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2.3. Sequence Alignment and Phylogenetic Analysis

Sequence alignment and homology comparison based on nucleotide sequences between the
four OsPVs obtained in this study, and other parvovirus sequences published in GenBank (Table S1),
were conducted using Clustal W within the MegAlign program (DNASTAR Inc., Madison, WI,
USA). and the MEGA program was used for pairwise distance analysis Proteins with motifs and
domains were sought using profile hidden Markov models deployed by the HMMER server (https:
//www.ebi.ac.uk/Tools/hmmer/). RDP version 4.0 software was used for analyzing the recombination in
the four OsPVs, to understand the relationship of OsPVs with GPV, MDPV. Phylogenetic trees based on
replication (Rep) protein and capsid (Cap) protein sequences was constructed by using the maximum
likelihood method with a Poisson model, based on 1000 bootstrap duplicates. Bootstrap values >
70% were considered to be significant. The nucleotides of OsPVs and classical avian parvovirus were
compared by MegAlign, and the homology between OsPV and other avian parvovirus was analyzed.

3. Results

Parvoviral DNA was detected in a number of tissue samples (Table 1). Four positive samples,
from Yunnan (OsPV-YN, Genbank Accession No.MK281604), Shanxi (OsPV-YQ, Genbank Accession
No. MK281605), Hebei (OsPV-5JZ, Genbank Accession No. MK281603), and Beijing (OsPV-BJ, Genbank
Accession No. MK281602) were sequenced. Results showed that the OsPV genome contained two
major open reading frames (ORFs), which were similar to goose and Muscovy duck parvoviruses.
The genome contains two open reading frames (ORFs), which can be divided into left ORF and right
ORE. The left ORF encodes two replication (Rep) proteins, Repl and Rep2 [7]. The right ORF encodes
three capsid (Cap) proteins named VP1, VP2, and VP3 [6]. The length genomes ranged from 5041-5103
nt containing 416446 nt inverted terminal repeats (ITRs). The left ORF contained 1884 nt that encoding
the Rep protein with 628 amino acids, while the right ORF of 2199 nt coded for the Cap protein
with 733 amino acids. The nucleotide homology of the four OsPV genomes ranged from 99.0-99.4%.
The nucleotide homology of the encoded Cap protein was 98.8-99.4% while that of the encoded Rep
protein was 99.0-99.7%. The highest homology, 99.4%, was between the Shanxi and Hebei strains.

3.1. Gene Homology Comparisons with Other Avian Parvoviruses

Table 2 provides a gene homology comparison of OsPV, GPV, NGPV (parvovirus isolated from duck
tongue disease), and MDPV. The OsPVs showed higher homology with GPV and NGPV—especially
the GPV RC16 strain—than with MDPV.

Table 2. Gene homology comparisons with other avian parvoviruses.

MDPV 2 GPV?P NGPV ¢ Gpvd GPV ¢ NGPV f MDPV &
(FM (SYG6lv  (SDLY1602 e (RC16 (HuN18 (JH10
Strain) Strain) Strain) rain Strain) Strain) Strain)

whole genome  80.8-81.3%  94.1-94.4% 94.4-947% 97.7-97.9% 99.2-99.6% 95.5-95.9%  86.0-86.3%
Rep sequence  82.3-82.9% 93.7-944% 959-96.4% 98.6-99.3% 99.0-99.9% 95.9-96.3%  82.6-83.2%
Cap sequence  80.3-80.4% 95.3-95.5% 94.5-948% 96.2-96.6% 99.3-99.6% 96.0-96.3%  89.6-89.8%

a. The MDPV EM strain of Muscovy duck parvovirus (MDPV), discovered in Hungary in 1993 by Zadori et al. [6];
b. SYG61v strain (vaccine strain) of goose parvovirus (GPV); c. novel goose parvovirus-related virus (NGPV)
strain SDLY1602 responsible for duck tongue disease, found in Shandong province in 2016 by Li et al. [7]; d. GPV
strain B isolated from grey goose in Hungary [6]; e. GPV-RC16 strain from Chongqing reported in 2017 by
Liu et al. [1,8]; f. the NGPV HuN18 strain of Novel goose parvovirus (NGPV), discovered in Hunan province in
2018 by Wan C et al. [9]; g. MDPYV strain JH10 isolated from Muscovy duck in China [10].
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3.2. Sequence Analysis among OsPV, GPV, and NGPV
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OsPV-YN and OsPV-BJ have 15 nt deletion at 145 nt, OsPV-YN, OsPV-BJ, and OsPV-SJZ have 15nt
deletion at 279 nt, OsPV-YN has 15nt insertion at 4844. OsPV-B]J, OsPV-SJZ, and OsPV-YQ have 15nt

deletion at 4859 nt (Figure 1).
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Figure 1. Sequence alignments of the inverted terminal repeats (ITRs) of the OsPVs, GPVs (goose
parvovirus strains SYG61v and B) and NGPV (novel goose parvovirus related virus strain SDLY1602).
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3.3. Phylogenetic Analysis
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Phylogenetic analysis of the whole genome, the sequences of Rep protein and Cap protein.
(Figure 2) revealed a close genetic relationship between the four OsPVs and GPV RC16 strains (goose
parvoviruses isolated in Chongging in 2016), forming a separate branch. The phylogenetic and
alignment analysis showed that OsPV is a branch of GPV. There was a greater genetic distance between
the OsPVs and SYG61, and an even greater one between the OsPVs and NGPV.
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Figure 2. Phylogenetic trees based on complete genomic sequence (a), capsid proteins (b), replication
proteins (c) were constructed by using the maximum likelihood method with a Poisson model, based
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4. Discussion
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In our study, OsPVs were detected in paralyzed nestlings from four different areas, which indicates
that these viruses are widely distributed in ostrich farms in China. Use of yolk antibody against gosling
plague to treat paralyzed ostrich nestlings in a number of farms was ineffective. In the absence of
experimental animal infection, whether OsPV is the pathogen of ostrich paralysis remains uncertain.
Phylogenetic analysis showed that OsPV is a branch of GPV, and OsPV strains were most closely
related to the GPV RC16 strain isolated from Chongqing, China, in 2016. The replication protein
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of OsPV-5]Z and adeno-associated virus (AAV2) have the least E-value (3e-176), the capsid protein
of OsPV-YN and AAV have the least E-value (1.4e-258), according to the search results of HMMER
server.The results of RDP analysis showed that there were no reorganization events in OSPVs.

While the ITRs of the OsPVs showed significant differences from those of the GPVs, MDPYV,
and NGPYV, the biological significance of this remains unclear. The ITR not only functions as an origin
of genome replication, but also contains several transcription factor binding sites, including E-box, ATF
(activating transcription factor)/CREB (cyclic AMP-responsive element binding), and MLTF (upstream
stimulate factor) [6,11]. Whether the nucleotide differences in the ITRs of OsPV have an effect on the
transcription efficiency or virulence remain to be investigated. Numerous short repeat motifs and
transcription factor binding sites are distributed in the ITRs of MDPV and GPV [6]. The OsPV-YN and
OsPV-BJ strains have 15nt deletion (CTTCCGGTCATGTGA) at the left ITR, the distance between the
repeat motif TTCCGGT and the transcription factor binding site E-box has been changed [12].

Some parvoviruses elicit DNA damage response (DDR) pathways, activation of DDR pathways is
triggered by the complex hairpin structures in the genome [13]. The interplay of the virus replication
cycle and the DDR machinery may play a critical role in viral pathogenesis [13].

The left ITR contains the replication starting point of viral DNA, the terminal resolution
site (trs), and many repetitive sequences and domains consistent with the recognition motif of
transcription factors [6,14]. The OsPV-YN, OsPV-BJ], and OsPV-S]Z strains have 15nt deletion
(5-GTCACGTGACAGGAA-3’) at 279nt and E-box motifs (CACATG) are widely involved in gene
transcriptional regulation; thus, affecting cell cycle, immune response, and other physiological and
pathological processes [15].

According to previous reports, GPV infects only geese and Muscovy ducks, but parvoviruses
have a wide host range [4,16-18]. Avian parvoviruses have been detected in different areas of China,
but this is the first report of a parvovirus in ostriches. However, whether OsPV is the pathogen of
ostrich paralysis remains uncertain.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/3/334/s1,
Table S1: GPV and MDPV isolates used in this study for sequence comparison.
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