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Abstract: Three-dimensional cell culturing to capture a life-like experimental environment has become
a versatile tool for basic and clinical research. Mucosal and skin tissues can be grown as “organoids”
in a petri dish and serve a wide variety of research questions. Here, we report our experience
with human cervical organoids which could also include an immune component, e.g., Langerhans
cells. We employ commercially available human cervical keratinocytes and fibroblasts as well as
a myeloid cell line matured and purified into langerin-positive Langerhans cells. These are then
seeded on a layer of keratinocytes with underlying dermal equivalent. Using about 10-fold more than
the reported number in healthy cervical tissue (1–3%), we obtain differentiated cervical epithelium
after 14 days with ~1% being Langerhans cells. We provide a detailed protocol for interested
researchers to apply the described “aseptic” organoid model for all sorts of investigations—with or
without Langerhans cells.
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1. Introduction

Three-dimensional culture of human keratinocytes has seen an ongoing progress for more than
four decades starting as in vitro skin grafting for clinical purposes [1]. Next-generation “organoids”
not only contained skin components (keratinocytes, fibroblasts, and dermal collagen) but also immune
cells to study the role of innate and adaptive immunity, e.g., lymphocytes [2] and epithelium-specific
dendritic cells (DCs)—Langerhans cells (LCs) [3]. Regarding LCs, a technical advance with better
reproducibility may be the bone marrow-derived cell line called MUTZ-3 [4] which can be matured into
DCs and LCs using specific cytokine cocktails [1,5]. Currently, the Gibbs group seems to be making use
of this approach most extensively, e.g., in the context of allergy and skin keratinocytes [5]. LCs typically
make up approximately 1–3% of epithelial tissues [6], a ratio that is very precise [7].

Nevertheless, these methods used equally many or even twice the amount for organoids compared
to the number of keratinocytes. The fact that not all cytokine-treated MUTZ-3 cells differentiate into
CD1a+/CD207+ LCs has been the motivation for this undertaking. Indeed, a proportion of differentiated
LCs could “switch back”, die or not attach, especially in an organoid scenario due to LCs maturing
and migrating out of the epithelium before it is harvested. The obtained LC ratio in fully-grown
organoids was not systematically investigated in any previous study. A comprehensive protocol is
likewise lacking in the scientific literature.

Here, we describe a fully-detailed and reproducible procedure where the sub-group of LCs derived
from MUTZ-3 cells is further “enriched” for seeding a more realistic proportion of myeloid cells (2 vs.
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20% relative to keratinocytes) than reported above [7]. The outcome is a multi-layered, differentiated
3D organoid ready to study a wide spectrum of processes and functions in mucosal (e.g., cervical
and oral) and skin tissues alike. While our focus is on human cervical epithelium, we describe
an “aseptic” organoid tested for mucosa, as well as skin, with broad applicability, e.g., commensal
microorganisms of healthy tissue; pathogens including bacteria, fungi, protozoan parasites, and RNA
and DNA viruses, alone or in combination, as well as any other disease affecting mucosal and skin
epithelia. Our research questions pertain to human papillomavirus (HPV) evolution and persistence
leading to cancer, specifically regarding sub-lineages of type 16 [1,8,9]. This model, with or without
varying ratios of LCs, can be used for investigations in health and disease where stratified epithelia are
required for valid inferences.

2. Materials and Methods

2.1. Pre-Organoid Phase: Culture Concomitantly Two Primary Cell Types and Two Cell Lines

All cell types described herein are of human origin and were commercially obtained.
Before growing organoid rafts with mucosal keratinocytes, cell culture has to be coordinated with
the growth of primary cervical keratinocytes (Human Cervical Epithelial Cells (HCerEpiC); ScienCell
Research Laboratories, Carlsbad, California, USA; Cat. #7060; no RRID number available), primary
uterine fibroblasts (Human Uterine Fibroblasts (HUF); ScienCell Research Laboratories, Carlsbad,
California, USA; Cat. #7040; no RRID number available), Langerhans cells (LCs) derived from
menschliche und tierische Zellkultur-3 (MUTZ-3) cells of an acute myeloid leukemia from a human
male patient [Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany;
Cat. #ACC 295; RRID:CVCL_1433] and 5637 cells derived from a bladder carcinoma from a human male
patient (American Type Culture Collection, Manassas, Virginia, USA; Cat. #HTB-9; RRID:CVCL_0126).

To generate the conditioned medium, 5637 cells (containing cytokines required for cultivating
MUTZ-3) are grown in RPMI (Roswell Park Memorial Institute; medium traditionally used to grow
lymphocytes)-1640 (Fisher Scientific, Cat. #A1049101), 10% fetal bovine serum (FBS) (HyClone,
Cat. #SH3039603) and 1% antibiotics/antimycotics (AB/AM) (HyClone, Cat. #SV30079.01).

MUTZ-3 cells are grown in Dulbecco’s Modified Eagles Medium (DMEM) (HyClone,
Cat. #SH3024301), 20% FBS, 20% 5637-conditioned medium, 1% AB/AM; for the progenitor population
expansion and characterization: the number of MUTZ-3 cells needed for flow and the intended
experiments, is based on subsequent cell counts and flow verification for determining the starting
population. For the above experiments, we calculated a large starting population of 8 x 106 MUTZ-3
cells, providing an excess in case they yielded only a low proportion of double-positive cells (e.g., 10%).
The CD34/CD14 flow assessment of the MUTZ-3 cells is to verify their suitability for being progenitors of
LCs (using PE mouse monoclonal anti-human CD34, clone 561, BioLegend, Cat. #343606 and FITC mouse
monoclonal anti-human CD14, clone M5E2, BioLegend, Cat. #301804), as there are three subpopulation
phenotypes within MUTZ-3 cells (each roughly a third of the total): the CD34+/CD14− cells are
the proliferative third, these can sequentially differentiate into CD34−/CD14−, which are a transitional
third, and these can further differentiate into the non-proliferative “pre-LC” or “LC/DC precursor” third,
which are CD34−/CD14+ [10]. Checking the initial population of MUTZ-3 progenitors is important as
their phenotype changes during expansion; CD14+ and CD34+ populations should be approximately
equal to start [10]. The differentiation process from MUTZ-3 to LCs (CD1a+/CD207+) takes 10 days
and requires a cytokine cocktail (2.5 ng/mL TNFα, 100 ng/mL GM-CSF, and 10 ng/mL TGF-β1) in
DMEM with 20% FBS and 1% AB/AM. LC ratio is then determined by flow cytometry (using PE mouse
monoclonal anti-human CD1a, clone HI149, Novus Biologicals, Cat. #NB500-506PE and AlexaFluor
488 mouse monoclonal anti-human langerin/CD207, clone DCGM4/122D5, Novus Biologicals,
Cat. #DDX0363A488-100). Since in our hands only~20% of the resulting cells are langerin+, further
purification (enrichment) with magnetic microbeads (anti-CD207) (Miltenyi Biotec, Cat. #130-097-898)
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is done right before rafting, so the purified cells are viable and known to be CD207+. The process can
be easily followed in the Miltenyi datasheet protocol for MS columns.

Concurrently with culturing MUTZ-3 cells: primary cervical keratinocytes are grown in
EpiLife (Gibco, Cat. #LSMEPI500CA) with human keratinocyte growth supplement (HKGS)
(Gibco, Cat. #LSS0015) and 1% AB/AM on collagen-coated T-75s (Corning Life Sciences, Cat. #C353136)
as reported previously [11]; human dermal fibroblasts are grown in DMEM + 10% FBS + 1% AB/AM
and expanded as described below or needed (Figure A1).

2.2. Organoid Rafting Procedure

Prior to beginning the organoid rafting procedure, the LCs must be grown first with conditioned
medium from 5637 cells (as described above). Next, keratinocytes and fibroblasts are cultured.
An example of growing organoids rafts with cervical keratinocytes is given. A suitable number of
organoids, depending on the experimental design, should be prepared for morphological investigation,
downstream molecular analyses, and bioinformatics. The steps are described in chronological order
and illustrated in Figure A1.

This multi-step process requiring sterilized tools, preparation of several reagents and a good
pair of steady lab hands, takes three days to prepare the organoids after which they have to grow for
14 days to mature to full-thickness epithelium.

Day 1: dermal equivalents are prepared in 48-well plates requiring 80,000 fibroblasts and 0.3 mL of
rat tail-derived collagen (EMD Millipore, Cat. #08-115) per raft. Batch mixtures of dermal equivalents
can be prepared based on the number of rafts using a small sterile glass beaker and stir-bar, surrounded
by ice or cold beads on a stir-plate. Alternatively, for small preparations, a 50 mL conical tube on ice
could be used and mixed carefully by hand. In either case, preparing additional dermal equivalents is
recommended due to the high viscosity of collagen-containing solutions. To prepare the mixture in
the cold glass beaker or tube, first add 0.3 mL/raft of collagen (diluted to 4 mg/mL in 0.02 N acetic acid).
While mixing, 40 µL/raft of 10X Hanks’ Balanced Salt Solution containing phenol red (Millipore Sigma,
Cat. #H4385) is added to indicate pH, followed by increments of 5 N NaOH (~1 µL/raft) to neutralize
the solution (just enough to stay reddish-pink). Once neutralized, it is essential to work quickly while
keeping the solution mixing (avoiding bubbles, however) and on ice, to prevent the collagen from
prematurely solidifying. To the neutralized solution, add 80 µL/raft of fibroblasts in FBS (80,000 cells
at 1 × 106 cells/mL FBS) dropwise, while continuing to mix, and begin dispensing 400 µL/raft of mix
to the 48-well plate. Incubate the plate for 20 min at 37 ◦C and 5% CO2 to allow gel solidification
(opaque appearance). Carefully add 400 µL of fibroblast growth medium atop each dermal equivalent
and return to the incubator overnight. The next morning, fibroblast elongation and colour change
(from neutral to more acidic, red to orange) is observed. These are both good signs that the fibroblasts
survived and are healthy.

Day 2: 250,000 keratinocytes/raft kept in 50 µL of medium are seeded on 48-well plates to form
the basal keratinocyte layer, ensure they are homogeneously distributed across the top of the dermal
equivalent by rocking the plate back and forth, allow 2 h attachment; seed LCs (e.g., 2 and 20% of an
anticipated 500,000 keratinocytes upon an additional doubling after their initial seeding) kept in 50 µL
of PBS (Fisher Scientific, Cat. #SH30028.02) and incubate for 30 min to improve attachment [12]; top up
with 400 µL complete EpiLife medium to allow one more population doubling before differentiation
medium is applied the next day (amounting to 500,000 cells before rafts are lifted). This calculation only
applies to the further purified LC populations using magnetic beads with close to 100% double positive
CD1a+/CD207+ LCs (i.e., experimental groups 2 and 3). Based on previous work [5], further purification
like ours is not described which leaves us with only ~20% CD207+ LCs. Hence for experimental groups
4 and 5, we used 50,000 and 500,000 cells, respectively, of which the latter approximately equals their
1:1 epithelial-myeloid cell ratio.

Day 3: lifting to the air interphase is the most intricate part of the process requiring a
steady hand and a small lifting spoon (e.g., Fisher Scientific, Cat. #21-401-15) to position the rafts,
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following careful aspiration of the medium on top, to round membrane inserts (Millipore Sigma,
Cat. #PICMORG50) in 6-well plates; differentiation medium CnT-Prime 3D Barrier (CELLNTEC,
Cat. #CNT-PR-3D) is now applied at 1.1 mL/well.

During the 14-day growth, medium changes occur every 2 days, and the collected medium is
frozen to −80 ◦C (optional) to assess the supernatants for cytokines and growth factors if desired: 24 h
prior to harvest, BrdU (10 µM final concentration) can be added to monitor proliferation (optional);
also e.g., drug treatment or other manipulation can be administered as determined by study design.

2.3. Organoid Harvest

On day 15, remove medium followed by two PBS washes and then either fixing in 4% PBS-buffered
formaldehyde (formalin) solution ON at RT followed by washing with and transferring into 70% ethanol
to minimize protein over-crosslinking (morphological investigations with histological processing,
hematoxylin and eosin staining, and various markers via in situ techniques, e.g., immunofluorescence
(using a pan-cytokeratin mix of rabbit monoclonals anti-human cytokeratin 14, clone EPR17350,
Abcam, Cat. #ab181595 and cytokeratin 19, clone EP1580Y, Abcam, Cat. #ab52625, and for LCs: mouse
monoclonal anti-human langerin/CD207, clone 310F7.02, Novus Biologicals, Cat. #DDX0361P-100
and secondary) and immunohistochemistry as well as in situ DNA hybridization) or flash-freeze
for molecular tests, e.g., DNA, RNA, and protein. We use the NucleoSpin® TriPrep kit to
simultaneously extract DNA, RNA, and protein (Macherey-Nagel, Cat. #740966); DNA is then
stored at −20 ◦C; RNA and protein at −80 ◦C in 1.5 mL microcentrifuge tubes until used for subsequent
assays. DNA/RNA purity and concentration are tested spectrophotometrically, e.g., with Nanodrop
(PowerWave XS with Take3 Micro-Volume Plate, BioTek Instruments) and RNA integrity is tested with
automated electrophoresis, e.g., Experion (Model #7007010, Bio-Rad Laboratories) before proceeding
to downstream molecular analyses. Notably, RNA and especially DNA can also be extracted from
formalin-fixed material, but some limitations such as fragmented nucleic acids have to be considered.

3. Results & Discussion

A framework for incorporating LCs into a keratinocyte organoid model is discussed in our recent
publication [1], which revealed that incorporating these cells into the model is challenging. We wanted
to avoid using an excess of LCs as this may hinder multi-layered epithelial differentiation and asked
the following questions: (A) Does further enrichment of the CD207+ LCs allow us to use fewer myeloid
cells than previously described? (B) How many myeloid cells are required to obtain a clinically relevant
number of LCs in the harvested organoid? (C) What are the conditions to obtain properly differentiated
organoids reminiscent of human cervical epithelium when interfacing with LCs?

We have optimized cytokine-induced differentiation of MUTZ-3 cells into LCs (CD1a+/CD207+,
assessed via flow cytometry) and have attempted incorporating them into the organoid model.
Experiments were performed using magnetic-enrichment to purify the differentiated MUTZ-3 (10–30%
population of CD1a+/CD207+ when “unpurified”) and seeding different ratios of these cells relative
to the primary human keratinocytes (2%, a realistic mean amount found in epithelia, assuming
all embed vs 20%, 10× greater, in case there was loss). The same approach was performed using
LCs without further purification. Altogether five experimental raft groups were grown. Group 1
contained cervical keratinocytes only; groups 2 and 3 contained purified (~98%) LCs at a ratio of 1:50
(10,000 LCs/500,000 keratinocytes) and 1:5 (100,000 LCs/500,000 keratinocytes), respectively; groups 4
and 5 contained unpurified (~20%) LCs at a ratio of 1:10 (50,000 LCs/500,000 keratinocytes) and 1:1
(500,000 LCs/500,000 keratinocytes), respectively.

The complex experimental design to grow organoids requires skilled lab hands, the ability to
multi-task and coordinate lab work, organizing the substantial reagent stocks needed and the capacity
to troubleshoot and find solutions. Knowledge of tissue morphology is essential as the detection of
tissue-embedded LCs may be challenging for the inexperienced investigator. The time of LC seeding
is crucial. We reckoned that it would be best to seed the LCs two hours after seeding the cervical
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keratinocytes as we know from previous experiments over the years of rafting that keratinocytes need
approximately that time to adhere to the underlying dermal equivalents. Two independent proficient
observers (R.J., I.Z.) calculated total keratinocyte yield using DAPI-stained nuclei as their criterion
using the Northern Eclipse or ImageJ software counting feature. LC identification was pre-screened
by R.J. and randomly confirmed by I.Z. A detailed overview of the pre-organoid phase and rafting
procedure can be found in the Materials & Methods and Figure A1.

Optimal epithelial stratification was associated with increased purity and a lower ratio of LCs,
as expected. Notably, tissue culture medium collections just before lifting the rafts to the air-liquid
interface showed shed cells relative to the number of LCs seeded, but most for group 5 followed by
groups 3, 4, and 2. Using 10-fold of the expected LC presence (group 3) yielded ~1% in the harvested
rafts (i.e., within the normal range) rather than 20%. It could be possible that a large number of
the LCs did not survive through the two-week rafting period (perhaps due to lack of optimal medium
containing essential cytokines such as IL-4 and TNF-α). Using serial sections along with optimization
of the immunostaining finally yielded their (rare) detection (Figure 1).

While we have developed the current epithelial organoid for modelling HPV infection to
obtain insight into host innate immune defenses within the overall tissue microenvironment in
dermal and epidermal compartments, it is also suitable for wider applications such as any type of
pathogen-host relationships, general epithelial biology and personalized treatment testing. An extensive
array of phenotypical and molecular tests on the single cell level or cell complexes for all cell types
residing in the organoid can be performed, visualized, and analyzed with novel imaging tools
in research and clinical settings. Results thereof can be matched and complemented with next
generation sequencing (NGS) data and customized bioinformatics software triangulating qualitative
and quantitative data. An important consideration for NGS is that the abundance of these keratinocyte
immune markers may be very low and require sensitive methods i.e., deeper sequencing, as was
the case in Jackson et al. [9], where the average read depth of ~40 million/sample was not enough to
detect desired keratinocyte markers via RNA-Seq.

In Figure 2, we have suggested to elaborate on the study of signaling differences between
keratinocytes and LCs for instance, specifically to elucidate the biology of keratinocyte and resident
immune cell differentiation and function, but many other future directions can be explored in the context
of the organoid’s intact morphology, molecular biology, imaging, and computer modeling. Prior to
embarking on the complex organoid containing LCs, however, it may be worth considering that
innate immunity can be assessed without LCs, using endogenous keratinocyte pathways and markers.
Keratinocytes express a variety of relevant biomarkers that could provide insight into the innate
immune environment and whether changes, e.g., due to viral activity could be immuno-evasive:
innate sensing molecules such as TLRs, chemokines such as CCL27/28 and IL-18; pro-inflammatory
cytokine expression such as TNF-α, TGF-β, and type I IFNs; cell-to-cell adhesion molecules, such as
E-cadherin; and cell-surface receptors such as MHC I/II. Only a few works have considered the effect
LC has on surrounding keratinocytes [13]. Interestingly, IL-15 signaling (Figure 2) may impact
proliferation and induce anti-apoptotic effects—all aspects of wound healing, which an LC-free model
could not capture. Future mucosal organoid research investigating IL-15 signaling in the context of
microorganisms may yield new and unexpected results.
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Figure 1. Immunocompetent cervical epithelium trial. Haematoxylin and eosin (H&E) stained
micrographs (200×magnification, cropped) and immunofluorescence micrographs (400×magnification)
of five cervical organoids with differential purity and ratios of Langerhans cells to keratinocytes.
Nuclei are stained blue (via DAPI), green represents pan-cytokeratin immunostaining (CKs, a cocktail
of cytokeratin 14 and 19, rabbit monoclonals anti-human cytokeratin 14, clone EPR17350,
Abcam, Cat. #ab181595 and cytokeratin 19, clone EP1580Y, Abcam, Cat. #ab52625 with secondary
antibody AlexaFluor 488 donkey anti-rabbit, Invitrogen, Cat. #A21206), and red represents
langerin (CD207, mouse monoclonal anti-human langerin/CD207, clone 310F7.02, Novus Biologicals,
Cat. #DDX0361P-100 and secondary antibody AlexaFluor 594 donkey anti-mouse, Invitrogen,
Cat. #A21203). Using formalin-fixed and paraffin-embedded tissue, antigen retrieval had to be
performed with Tris-HCl (pH 9) rather than citrate buffer (pH 6). Only then, could langerin+ (CD207)
LCs be detected at a physiologically relevant level (~1%) in rafts of group 3. Groups 4 and 5 resulted in
an LC detection rate of >1%, but at the cost of epithelial thickness. It should be noted that the langerin+

micrographs presented in this figure are not a complete reflection of the ratio that has identified in
the organoids.



Viruses 2020, 12, 1375 7 of 9

Figure 2. Langerhans cell signaling enhances the survival and proliferation of keratinocytes. Langerhans
cells (LCs) that patrol the epithelium secrete two cytokines—IL-15 and IL-12—which are vital to
the survival and proliferation of keratinocytes [14]. The IL-15 pathway (shown in blue) is initiated
upon the binding of IL-15 to its respective receptor on the keratinocyte. The activated receptor induces
the dimerization of STAT proteins, which in turn, activate the proteins Ras and Raf, known for their
prominent roles in proliferation [13,15]. NF-kB can also be stimulated within this pathway, ultimately
leading to the production of proinflammatory cytokines [15]. The IL-12 pathway (shown in red),
activated upon the binding of IL-12 to the IL-12 receptor, triggers a phosphorylation cascade resulting
in the phosphorylation of the Akt protein, a protein responsible for moderating cell survival [16].
A downstream effect of the IL-12 pathway is the production of IFN-γ, caused by the dimerization
and phosphorylation of STAT proteins.

4. Conclusions

We sought to develop a reproducible immune-competent cervical organoid model with retained
tissue integrity (e.g., differentiation). While we deem our described technical approach successful, due to
the scarce presence of LCs in vivo (and in our model), it is debatable whether we will detect differences
in the expression of the numerous immunomarkers expected in the HPV-infected cervical epithelium.
To detect even subtle changes of such markers, a careful power analysis defining the appropriate
sample size will be essential for our own and others’ investigations. Nevertheless, the fact that LCs
are known to be relatively scarce in the cervical mucosa and that most HPV infections are cleared,
it would be intriguing to be able to distinguish immune marker expression between their presence
and absence in the engineered cervical organoid. Alternatively, LCs may not have the importance that
we hypothesize, and may be minor actors in the HPV-infected epithelial microenvironment.
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Appendix A

Figure A1. Overview of the cervical organoid rafting procedure. Pre-organoid phase: MUTZ-3 cells
are differentiated over 10 days with 5637 cell conditioned media and a cytokine cocktail. Primary
fibroblasts and cervical keratinocytes are expanded simultaneously. Organoid rafting: Dermal layer of
organoid is established by seeding fibroblasts with collagen on day 1. Keratinocytes and Langerhans
cells are layered onto the dermal layer on day 2. On day 3, rafts are lifted, and an air-liquid interface
is established to promote keratinocyte differentiation. Organoids are harvested on day 15 and set
for downstream applications. This figure was assembled using the Servier Medical Art templates,
a free online resource which is licensed under a Creative Commons Attribution 3.0 Unported License;
https://smart.servier.com.

https://smart.servier.com


Viruses 2020, 12, 1375 9 of 9

References

1. Jackson, R.; Eade, S.; Zehbe, I. An epithelial organoid model with Langerhans cells for assessing virus-host
interactions. Philos. T. R. Soc. B. 2019, 374. [CrossRef] [PubMed]

2. Jacobs, N.; Moutschen, M.P.; Franzen-Detrooz, E.; Boniver, V.; Boniver, J.; Delvenne, P. Organotypic culture
of HPV-transformed keratinocytes: A model for testing lymphocyte infiltration of (pre)neoplastic lesions of
the uterine cervix. Virchows Arch. 1998, 432, 323–330. [CrossRef] [PubMed]

3. Hubert, P.; van den Brûle, F.; Giannini, S.L.; Franzen-Detrooz, E.; Boniver, J.; Delvenne, P. Colonization
of in vitro-formed cervical human papillomavirus-associated (pre)neoplastic lesions with dendritic cells:
Role of granulocyte/macrophage colonystimulating factor. Am. J. Pathol. 1999, 154, 775–784. [CrossRef]

4. Masterson, A.J.; Sombroek, C.C.; de Gruijl, T.D.; Graus, Y.M.; van der Vliet, H.J.; Lougheed, S.M.;
van den Eertwegh, A.J.; Pinedo, H.M.; Scheper, R.J. MUTZ-3, a human cell line model for the cytokine-induced
differentiation of dendritic cells from CD34+ precursors. Blood 2002, 100, 701–703. [CrossRef] [PubMed]

5. Kosten, I.J.; Spiekstra, S.W.; de Gruijl, T.D.; Gibbs, S. MUTZ-3 derived Langerhans cells in human skin
equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure.
Toxicol. Appl. Pharm. 2015, 287, 35–42. [CrossRef] [PubMed]

6. Romani, N.; Holzmann, S.; Tripp, C.H.; Koch, F.; Stoitzner, P. Langerhans cells-dendritic cells of the epidermis.
APMIS 2003, 111, 725–740. [CrossRef] [PubMed]

7. Bauer, J.; Bahmer, F.A.; Wörl, J.; Neuhuber, W.; Schuler, G.; Fartasch, M.A. Strikingly constant ratio exists
between Langerhans cells and other epidermal cells in human skin. A stereologic study using the Optical
Disector methods and the confocal laser scanning microscope. J. Investig. Dermatol. 2001, 116, 313–318.
[CrossRef] [PubMed]

8. Jackson, R.; Togtema, M.; Lambert, P.F.; Zehbe, I. Tumourigenesis driven by the human papillomavirus
type 16 Asian-American E6 variant in a three-dimensional keratinocyte model. PLoS ONE 2014, 9, e101540.
[CrossRef] [PubMed]

9. Jackson, R.; Rosa, B.A.; Lameiras, S.; Cuninghame, S.; Bernard, J.; Floriano, W.B.; Lambert, P.F.; Nicolas, A.;
Zehbe, I. Functional variants of human papillomavirus type 16 demonstrate host genome integration
and transcriptional alterations corresponding to their unique cancer epidemiology. BMC Genom. 2016, 17, 851.
[CrossRef] [PubMed]

10. Santegoets, S.J.A.M.; Masterson, A.J.; van der Sluis, P.C.; Lougheed, S.M.; Fluitsma, D.M.;
van den Eertwegh, A.J.M.; Pinedo, H.M.; Scheper, R.J.; de Gruijl, T.D. A CD34+ human cell line model of
myeloid dendritic cell differentiation: Evidence for a CD14+CD11b+ Langerhans cell precursor. J. Leukoc.
Biol. 2006, 80, 1337–1344. [CrossRef] [PubMed]

11. Villa, P.L.; Jackson, R.; Eade, S.; Escott, N.; Zehbe, I. Isolation of biopsy-derived, human cervical keratinocytes
propagated as monolayer and organoid cultures. Sci. Rep. 2018, 8, 17869. [CrossRef] [PubMed]

12. Tsang, M.; Gantchev, J.; Ghazawi, F.M.; Litvinov, I.V. Protocol for adhesion and immunostaining of
lymphocytes and other non-adherent cells in culture. Biotechniques 2018, 63, 230–233. [CrossRef] [PubMed]

13. Jones, A.M.; Griffiths, J.L.; Sanders, A.J.; Owen, S.; Ruge, F.; Harding, K.G.; Jiang, W.G. The clinical significance
and impact of interleukin 15 on keratinocyte cell growth and migration. Int. J. Mol. Med. 2016, 38, 679–686.
[CrossRef] [PubMed]

14. Potten, C.S.; Allen, T.D. A model implicating the Langerhans cell in keratinocyte proliferation control.
Differentiation 1976, 5, 43–47. [CrossRef] [PubMed]

15. Yano, S.; Komine, M.; Fujimoto, M.; Okochi, H.; Tamaki, K. Interleukin 15 induces the signals of epidermal
proliferation through ERK and PI 3-kinase in a human epidermal keratinocyte cell line, HaCaT. Biochem.
Biophys. Res. Commun. 2003, 301, 841–847. [CrossRef]

16. Watford, W.T.; Hissong, B.D.; Bream, J.H.; Kanno, Y.; Muul, L.; O’Shea, J.J. Signaling by IL-12 and IL-23
and the immunoregulatory roles of STAT4. Immunol. Rev. 2004, 202, 139–156. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1098/rstb.2018.0288
http://www.ncbi.nlm.nih.gov/pubmed/30955491
http://dx.doi.org/10.1007/s004280050173
http://www.ncbi.nlm.nih.gov/pubmed/9565341
http://dx.doi.org/10.1016/S0002-9440(10)65324-2
http://dx.doi.org/10.1182/blood.V100.2.701
http://www.ncbi.nlm.nih.gov/pubmed/12091369
http://dx.doi.org/10.1016/j.taap.2015.05.017
http://www.ncbi.nlm.nih.gov/pubmed/26028481
http://dx.doi.org/10.1034/j.1600-0463.2003.11107805.x
http://www.ncbi.nlm.nih.gov/pubmed/12974775
http://dx.doi.org/10.1046/j.1523-1747.2001.01247.x
http://www.ncbi.nlm.nih.gov/pubmed/11180009
http://dx.doi.org/10.1371/journal.pone.0101540
http://www.ncbi.nlm.nih.gov/pubmed/24983759
http://dx.doi.org/10.1186/s12864-016-3203-3
http://www.ncbi.nlm.nih.gov/pubmed/27806689
http://dx.doi.org/10.1189/jlb.0206111
http://www.ncbi.nlm.nih.gov/pubmed/16959899
http://dx.doi.org/10.1038/s41598-018-36150-4
http://www.ncbi.nlm.nih.gov/pubmed/30552408
http://dx.doi.org/10.2144/000114610
http://www.ncbi.nlm.nih.gov/pubmed/29185924
http://dx.doi.org/10.3892/ijmm.2016.2687
http://www.ncbi.nlm.nih.gov/pubmed/27460304
http://dx.doi.org/10.1111/j.1432-0436.1976.tb00890.x
http://www.ncbi.nlm.nih.gov/pubmed/976646
http://dx.doi.org/10.1016/S0006-291X(03)00060-3
http://dx.doi.org/10.1111/j.0105-2896.2004.00211.x
http://www.ncbi.nlm.nih.gov/pubmed/15546391
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Pre-Organoid Phase: Culture Concomitantly Two Primary Cell Types and Two Cell Lines 
	Organoid Rafting Procedure 
	Organoid Harvest 

	Results & Discussion 
	Conclusions 
	
	References

