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Abstract: Shotgun metagenomic sequencing (SMg) enables the simultaneous detection and
characterization of viruses in human, animal and environmental samples. However, lack of sensitivity
still poses a challenge and may lead to poor detection and data acquisition for detailed analysis.
To improve sensitivity, we assessed a broad scope targeted sequence capture (TSC) panel (ViroCap) in
both human and animal samples. Moreover, we adjusted TSC for the Oxford Nanopore MinION and
compared the performance to an SMg approach. TSC on the Illumina NextSeq served as the gold
standard. Overall, TSC increased the viral read count significantly in challenging human samples,
with the highest genome coverage achieved using the TSC on the MinION. TSC also improved the
genome coverage and sequencing depth in clinically relevant viruses in the animal samples, such as
influenza A virus. However, SMg was shown to be adequate for characterizing a highly diverse
animal virome. TSC on the MinION was comparable to the NextSeq and can provide a valuable
alternative, offering longer reads, portability and lower initial cost. Developing new viral enrichment
approaches to detect and characterize significant human and animal viruses is essential for the One
Health Initiative.

Keywords: next-generation sequencing; one health; shotgun metagenomic sequencing; porcine viruses;
targeted sequence capture; viral metagenomics; virome

1. Introduction

Genomic identification and characterization of viruses in both humans and animals play a central
role in the diagnosis, monitoring and control of infectious diseases [1]. Clinical diagnostics remains a
challenge in infections with indiscriminate clinical presentation, coupled with pathogen diversity and
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microbial abundance in clinical samples [2]. New approaches to identify potentially significant viruses
in humans and animals (e.g., pigs, important mixing vessels) are a crucial part of the One Health
Initiative. With the increasing global population and intensification of agriculture, zoonotic pathogen
spillover at the human–animal–wildlife interface, such as the recent outbreaks of SARS-CoV-2 [3] and
swine influenza virus (SIV) [4], remains a challenge.

Metagenomic testing allows for the detection of pathogens directly from clinical specimens without
a priori knowledge of target sequences. Metagenomics uses genome sequencing and bioinformatics
techniques to identify and characterize microorganisms, including viruses, fungi and bacteria [5,6].
The approach makes it a promising tool after targeted conventional methods fail [7]. On the other hand,
the untargeted nature of SMg entails the sequencing of non-pathogenic, host and environmental nucleic
acids, along with sequences of interest. This can result in an overall reduced sensitivity compared to
conventional targeted approaches, such as qPCR [6].

Pre-lysis enrichment procedures such as centrifugation and/or filtration have been reported to
increase viral sensitivity [8]. However, pre-lysis procedures rely on the structural integrity of the
microbial and host background cells. Due to the high costs of SMg, it is often applied retrospectively
on selected and usually clinically relevant frozen samples after other diagnostic tests have failed.
Alternatively, post-lysis enrichment procedures including DNase treatment [9], targeted PCR amplicon
sequencing [7] and viral targeted sequence capture (TSC) offer depletion of background nucleic acids
and improve the recovery of viral reads. Targeted capture probes are more tolerant of mismatches
in target sequences than PCR primers, making them suitable for use with highly diverse targets
such as RNA viruses, and have been reported to increase the number of viral reads and maintain
viral diversity [10]. For example, the ViroCap share developer TSC panel from KAPA (Roche)
contains approximately 2 million capture probes from all vertebrate viral genomes known in 2014 [11].
These oligonucleotide bait probes hybridize with target viral nucleic acids and isolate them from
background nucleic acids using magnetic streptavidin-coated beads [7].

Currently, developed TSC panels such as those from KAPA (ViroCap) [11,12], Illumina and TwistBio
are available for next-generation sequencing (NGS) Illumina platforms. Although highly adapted in
clinical microbiology [13], Illumina sequencing is limited by short sequencing reads (≤2× 300 bp) [14].
Oxford Nanopore Technologies (ONT) sequencing platforms offer comparatively lower accuracy
and output but provide long reads that can be analyzed in real-time. Moreover, with the low initial
cost of the MinION sequencing device, ONT has steadily edged its way to the broader scientific
community [15]. However, to the best of our knowledge, the only (commercial) sequence capture
assay tested with ONT platforms is the Agilent SureSelect (Sequence capture (SQK-LSK109) Version:
SCE_9075_v109_revO_14Aug2019) on human DNA cancer panels (https://nanoporetech.com/resource-
centre/incorporating-sequence-capture-library-preparation-minion-gridion-and-promethion-0) and
custom TSC probes on spiked viruses in cell-culture samples [16,17].

In this study, the ViroCap TSC panel was evaluated for the detection and characterization of
viruses in challenging human and animal samples using long-read sequencing (LRS) on the ONT
MinION device—firstly, by comparing it to a shotgun metagenomic approach on the MinION and
secondly, by comparing it with the established ViroCap workflow on the Illumina NextSeq as a
gold standard.

2. Materials and Methods

2.1. Sample Collection

Human and animal samples were collected to evaluate the applicability of the ViroCap TSC
panel which covers a broad range of viruses. Four samples from transplant patients, presenting either
respiratory or gastrointestinal symptoms, were selected based on a positive qPCR result [18] for
two clinically relevant viruses: enterovirus (n = 4) and norovirus (n = 1) (Table 1). Conventional
routine Sanger sequencing was able to characterize norovirus as GII.4; however, genotypes could
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not be determined for the enteroviruses. Four pig samples (each consisting of 5 pooled pig samples)
were collected from farms within the German/Dutch border region between 2017 and 2018 for the
Food Pro-tec-ts project. Samples were selected based on clinically relevant qPCR results from both
non-symptomatic (n = 2) and symptomatic pigs (n = 2) (Table 1). qPCR was performed to screen for SIV
(VetMAX™-Gold SIV Detection Kit) (Life Technologies, Carlsbad, CA, USA) and porcine reproductive
and respiratory syndrome virus (PRRSV) (Virotype® PRRSV RT-PCR Kit) (Qiagen, Hilden, Germany),
according to the manufacturer’s recommendations.

Table 1. Description of human and animal sample information.

Sample ID Sample Type qPCR Target Ct Value Symptoms Sampling Date

H1 Flocked swab
nasopharynx Enterovirus 25 Fever, dyspnea and

coughing 09/2018

H2 Fecal Enterovirus 30 Chronic diarrhea 05/2016

H3 Fecal Norovirus
Enterovirus

17
29

Fever, vomiting and
abdominal pain 11/2018

H4 Fecal Enterovirus 21 Fever, diarrhea and
abdominal pain 10/2016

A1 Blood plasma PRSSV 1 - None 12/2017

A2 Blood plasma PRSSV 1 26 (pool) None 10/2018

A3 Blood plasma PRSSV 1 25 (pool) Respiratory 10/2017

A4 Nasal swab SIV 2 19 Respiratory
(closed enteral system) 10/2018

1 PRRSV, porcine reproductive and respiratory syndrome virus; 2 SIV, swine influenza virus. Abbreviations:
H, human; A, animal; Ct, cycle threshold.

2.2. Nucleic Acid Extraction and cDNA Synthesis

Human samples were initially centrifuged at 6000× g for 2 min. A total of 190 µL of the
supernatant was isolated using the easyMAG (bioMérieux, Inc., Marcy l’Etoile, France) and eluted
in 110 µL of elution buffer. Pig samples were centrifuged at 6000× g for 2 min. A total of 240 µL of
supernatant was isolated using the QIAamp Viral RNA Mini Kit (Qiagen), with carrier RNA replaced
by linear polyacrylamide and eluted in 90 µL of elution buffer. Lysis buffer was used as a negative
control. Nucleic acids were cleaned and concentrated to 8 µL using the RNA clean and concentrator
kit (Zymo Research, Irvine, CA, USA), including an in-column DNase treatment, according to the
manufacturer’s recommendations.

Sequence-Independent Single-Primer-Amplification (SISPA) offers amplification and recovery
of low biomass samples [19], while offering great flexibility. It can be utilized for both Illumina and
ONT platforms [14]. Reverse transcription and generation of the second strand cDNA were performed
as described [8]. Amplification of cDNA was performed as previously described [14]. Briefly, 5 µL
of cDNA was amplified with AccuTaq LA (Sigma, Poole, United Kingdom) and 1 µL (100 pmol/µL)
Sol-Primer B (5′-GTTTCCCACTGGAGGATA-3′) in a total reaction volume of 50 µL, according to the
manufacturer’s recommendation. PCR reaction conditions were as follows: 98 ◦C for 30 s; 30 cycles of
94 ◦C for 15 s, 50 ◦C for 20 s and 68 ◦C for 5 min, followed by 68 ◦C for 10 min. The SISPA cDNA was
then used as an untargeted basis for all three approaches; shotgun metagenomic sequencing on the
MinION (M) (Figure 1a), viral TSC with ViroCap on the MinION (MV) (Figure 1b,c) and viral TSC
with ViroCap on the NextSeq (NV) (Figure 1d).
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pools using a 20 min and 20 h hybridization time; (c) ViroCap on individual samples using a 20 h 
hybridization time; (d) standard ViroCap protocol on Illumina platforms. Abbreviations: ONT, 
Oxford Nanopore Technologies; SISPA, Sequence-Independent Single-Primer-Amplification. 
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generated from 8 samples using the PCR barcoding kit (SQK-PBK004) (ONT, Oxford, England) and 
pooled together prior to TSC. The captured library pool was then re-amplified using 0.4 µL of each 
of the respective barcode primers and sequenced using the MinION device. To reduce the overall 
turn-over time, the impact of a shorter hybridization time of 20 min was also evaluated to the 
recommended 20 h using the pooled cDNA (Figure 1b). 

For the individual approach (Figure 1c), the following changes were applied to the ViroCap TSC 
protocol to adjust for long-read cDNA. The user guide was followed starting from the hybridization 
procedure (chapter 5) using the SeqCap EZ Developer Reagent, while the blocking oligos (for the 
KAPA library prep adapters) were not added. Next, the initial denaturation time for the hybridization 
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to re-amplification. Captured cDNA was re-amplified using the round B SISPA primer and 
amplification parameters, as described previously [14]. This was followed by sequence library 
generation with the Ligation Sequencing Kit (SQK-LSK109) (ONT) and native barcoding expansion 
(EXP-NBD104) (ONT) using a modified One-pot protocol [20]. Moreover, a 50% dilution of 
recommended reagents and sample input quantities (to keep the same probe/sample ratio) were 
applied for individual sample TSC reactions to reduce the cost per sample. The eight individual TSC 
libraries were pooled together by equal mass prior to sequencing on the MinION device. For each 
approach (TSC on pooled or individual samples), the same eight samples (Table 1) and a negative 
control were sequenced on a MinION device (ONT) on FLO-MIN106 R9.4.1 flow cells (ONT). 

Figure 1. Workflow of the laboratory procedures evaluated in this study. (a) Shotgun approach
for a baseline on Oxford Nanopore Technologies (ONT) platforms; (b) ViroCap on pooled barcoded
library pools using a 20 min and 20 h hybridization time; (c) ViroCap on individual samples using a
20 h hybridization time; (d) standard ViroCap protocol on Illumina platforms. Abbreviations: ONT,
Oxford Nanopore Technologies; SISPA, Sequence-Independent Single-Primer-Amplification.

2.3. Oxford Nanopore Technologies SMg and TSC

To evaluate TSC for ONT platforms, the untargeted SISPA cDNA served as a baseline (Figure 1a).
Sequencing libraries were generated with the Ligation Sequencing Kit (SQK-LSK109) (ONT) and native
barcoding expansion (EXP-NBD104) (ONT) using a modified One-pot protocol [20] (for details see:
dx.doi.org/10.17504/protocols.io.bbnmimc6).

To create enriched long-read sequences using ONT, the ViroCap share developer panel (SeqCap EZ
HyperCap Workflow User’s Guide version 2.1) from Roche NimbleGen (Madison, WI, USA) was
used [11]. Viral TSC was evaluated on pooled samples (n = 8) (standard protocol) and individual
samples (n = 8) (Figure 1b,c). For the pooled approach (Figure 1b), sequencing libraries were first
generated from 8 samples using the PCR barcoding kit (SQK-PBK004) (ONT, Oxford, England) and
pooled together prior to TSC. The captured library pool was then re-amplified using 0.4 µL of each of the
respective barcode primers and sequenced using the MinION device. To reduce the overall turn-over
time, the impact of a shorter hybridization time of 20 min was also evaluated to the recommended 20 h
using the pooled cDNA (Figure 1b).

For the individual approach (Figure 1c), the following changes were applied to the ViroCap TSC
protocol to adjust for long-read cDNA. The user guide was followed starting from the hybridization
procedure (chapter 5) using the SeqCap EZ Developer Reagent, while the blocking oligos (for the
KAPA library prep adapters) were not added. Next, the initial denaturation time for the hybridization
incubation was reduced from 5 min to 45 sec (step 22). Washing and recovery steps were followed
(chapter 6), ending with eluting the captured cDNA off the beads with 20 µL of water (step 29) prior to
re-amplification. Captured cDNA was re-amplified using the round B SISPA primer and amplification
parameters, as described previously [14]. This was followed by sequence library generation with the
Ligation Sequencing Kit (SQK-LSK109) (ONT) and native barcoding expansion (EXP-NBD104) (ONT)
using a modified One-pot protocol [20]. Moreover, a 50% dilution of recommended reagents and
sample input quantities (to keep the same probe/sample ratio) were applied for individual sample
TSC reactions to reduce the cost per sample. The eight individual TSC libraries were pooled together
by equal mass prior to sequencing on the MinION device. For each approach (TSC on pooled or
individual samples), the same eight samples (Table 1) and a negative control were sequenced on a
MinION device (ONT) on FLO-MIN106 R9.4.1 flow cells (ONT).
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2.4. Illumina TSC

To create enriched short-read sequencing (SRS) libraries for Illumina, the ViroCap share developer
panel from Roche NimbleGen (Madison, WI, USA) was also used (Figure 1d). The SeqCap EZ HyperCap
Workflow User’s Guide version 2.1 was followed according to the manufacturer’s recommendation.
Briefly, eight sequence libraries and a negative control library were pooled prior to a target sequence
capture reaction. A probe hybridization time of 20 h was selected. The captured library pool was then
sequenced on an Illumina NextSeq 500 (Illumina, San Diego, CA, USA) with a medium output kit to
generate paired-end 76 bp reads.

2.5. Data Analysis

ONT reads were base-called with Guppy v3.2.10 and trimmed using Porechop v0.2.4
(https://github.com/rrwick/Porechop). Illumina reads were trimmed using CLC Genomics Server
20.0.3 (Qiagen) (referred to as CLC from here on) using the default settings, with the quality limit set
to 0.05. SISPA primer sequences were then removed from ONT and Illumina reads using the Trim
adapter list on CLC. Library quality control (QC) metrics were derived from BaseSpace for SRS and
from FastQC for LRS. For read-based taxonomic analysis, trimmed reads were uploaded using the
web-based tool Taxonomer [21] and analyzed in full analysis mode. Additionally, the reads were
mapped against an in-house viral database consisting of 67,324 complete viral sequences derived
from GenBank on the 13/08/2019 using CLC with 80% nucleotide identity and 70% length fraction.
The resulting consensus sequences were subsequently confirmed by NCBI BLASTn. To account
for possible barcode cross-contamination and crosstalk, a cut-off was applied based on 0.1% of the
total reads for that virus [22]. Coverage and read tracks were derived using CLC, by mapping the
reads against the best viral hit using 80% nucleotide identity and 70% length fraction. Antiviral
susceptibility to influenza virus was investigated using the online tool Influenza Research Database
(https://www.fludb.org).

2.6. Ethics Statement

The human samples used for this study were collected during routine diagnostics and infection
prevention control. Oral consent for the use of such clinical samples for research purposes was routinely
obtained upon patient admission to the UMCG, in accordance with the guidelines of the Medical Ethics
Committee of the University Medical Center Groningen. All experiments were performed in accordance
with the guidelines of the Declaration of Helsinki and the institutional regulations, and all samples
were anonymized. The animal samples used for this study were collected within the Food Pro-tec-ts
project, which has been classified as an animal study and was approved on 22.09.2017 by the respective
state office for nature, environment and consumer protection (file reference: 84.02.05.40.17.079).

2.7. Data Availability

Sequencing reads from all the approaches have been deposited at Sequence Read Archive under
the BioProject number: PRJNA670157.

3. Results

3.1. Hybridization Time and Sample Pooling on the MinION

The increased sample handling and hybridization time are important limitations of TSC. To evaluate
the impact of probe hybridization time on the MinION, samples were pooled before a 20 min and
20 h hybridization time. Pooling samples prior to a 20 h hybridization time is recommended in the
ViroCap User’s Guide v.2.1. TSC was also performed on individual samples (using a hybridization
time of 20 h), as a result of unspecific bindingobserved after amplification of captured library pools.
The individual sample fastq files were concatenated to compare the number of viral reads with the

https://github.com/rrwick/Porechop
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20 min and 20 h pools (Table 2). Sequence reads were mapped against an in-house viral database on
CLC and normalized.

Table 2. Sensitivity of detected viruses in pooled (20 min and 20 h hybridization) and individual
targeted sequence capture (TSC) reactions. Sequencing reads were normalized against the total number
of reads.

Type Detected Viruses 20 min (Pool) % 20 h (Pool) % 20 h (Individual) 1 %

Human samples
(n = 4)

Coxsackievirus A22 0.001 0.004 0.192
Enterovirus A71 0.00004 0.00011 0.00028
Enterovirus D68 0.003 0.027 0.775
Norovirus GII.4 1.42 4.77 10.56

Animal samples
(n = 4)

Astrovirus wild boar (n = 2) 0.002 0.010 0.001
Bocavirus pig 0.001 0.007 0.003

Influenza A virus * 55.31 51.15 9.39
Mamastrovirus 2 0.0004 0.0017 0.0003

Pasivirus A1 0.002 0.010 0.053
PERV 2 (n = 4) 10.63 11.83 11.34

Porcine astrovirus 4 0.001 0.008 0.001
Porcine bocavirus H18 0.009 0.029 0.016
Porcine enterovirus B 0.0002 0.0002 4.75 × 10−5

Porcine kobuvirus 0.49 1.35 0.28
Porcine respirovirus 1 3 0.019 0.064 0.033
Porcine sapelovirus 1 0.0001 0.0019 0.0003

PRRSV 4 (n = 3) 9.75 6.82 15.75
Rotavirus C * 0.00004 0.00005 0.00007

Ungulate tetraparvovirus 3 10.02 0.44 5.24

Total viral reads % 87.66 76.53 53.64
1 Sequencing reads from the individual TSC reactions were concatenated into one single file to provide a comparison
to the pooled samples. 2 PERV, porcine endogenous retrovirus. 3 Porcine respirovirus 1 is also known as porcine
parainfluenza virus 1. 4 PRRSV, porcine reproductive and respiratory syndrome virus; * segments were combined
into one single genome.

Interestingly, a hybridization time of 20 min resulted in the highest percentage of viral reads with
87.66%, while 20 h resulted in 76.53%. TSC reactions of individual samples (that were loaded onto the
MinION by equal mass) resulted in the lowest percentage of viral reads (53.60%). Differences in viral
loads could account for the lower percentage of viral reads in the individual TSC reactions. Viruses
with high loads (e.g., influenza A virus (IAV) with a Ct of 19) could result in an overrepresentation
bias in the pooled samples. Indeed, reads from IAV represented more than half of the total viral
reads in both pooled reactions (20 min and 20 h). Meanwhile, in the individual capture reactions
(in which libraries were loaded by equal mass), IAV reads accounted for 9.39% of viral reads. Therefore,
the individual reaction had a more even IAV read representation.

Some viruses benefited from the shorter hybridization time of 20 min, such as ungulate
tetraparvovirus 3 (10.02% of viral reads after 20 min, 0.44% after 20 h and 5.24% after 20 h individual).
For other viruses, a shorter hybridization time seemed to have a negative impact, particularly in
the human samples. Considerable differences were detected between the individual and pooled
approaches in the human samples, with norovirus GII.4, enterovirus D68 (EV-D68), enterovirus A71
(EV-A71) and coxsackievirus A22 (CV-A22) yielding a higher percentage of viral reads from the
individual approach. This study therefore highlights important differences to be considered when
investigating different hosts and sample origins.

Significantly, we also observed that post-capture re-amplification of library pools using the ONT
PCR barcoding kit proved to be too unspecific, resulting in excessive barcode crosstalk. As a result,
an individual sample reaction with 20 h hybridization time was selected as the best option to proceed.
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3.2. TSC and Taxonomic Binning

To illustrate the impact of TSC on a microbial and host nucleic acid background, trimmed reads
were uploaded to Taxonomer to obtain sample compositions. The following graph provides a
comparison overview between the approaches; ONT MinION device (M), ONT MinION device with
ViroCap (MV) and Illumina NextSeq with ViroCap (NV) (Figure 2).
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Figure 2. Sample composition with and without TSC on the ONT MinION and with TSC on the
Illumina NextSeq. Abbreviations: M, MinION; MV, MinION with ViroCap; NV, NextSeq with ViroCap.

Shotgun metagenomic cDNA sequenced on the MinION (M) resulted in 1.17% viral reads,
while MV increased the percentage of viral reads to 55.12%. Interestingly, NextSeq TSC resulted in a
viral read count of 28.15%. This could suggest that longer unfragmented cDNA might be captured
more efficiently. Prior to TSC, background host nucleic acid accounted for 34.48% of reads using the
MinION. This decreased to 14.16% using TSC on the MinION. Meanwhile, background host nucleic
acids accounted for 24.32% using TSC on the NextSeq. Furthermore, while bacterial nucleic acids
accounted for 46.09% of MinION sequencing reads, they accounted for only 36.99% of reads after
using TSC. Additionally, MV reduced the number of unclassified reads, compared to NV. Finally,
an increased Q score was found using captured libraries compared to metagenomic libraries on the
MinION (Table S1).

3.3. Viral Genome Coverage and Sequencing Depth

TSC can not only be used to increase the sensitivity of virus detection, but also to increase the
genome coverage and sequencing depth. Sensitivity is particularly important in challenging patient
samples with a low viral load, or samples with a high viral diversity such as pig samples. To assess
genome coverage and genome coverage depth (sequencing depth) between the three approaches,
trimmed reads were mapped against representative genome references using CLC (Table 3). As the
MinION device produces a lower output compared to the NextSeq, the data were not normalized to
reflect a realistic outcome of sequencing runs using both approaches.

Overall, 27 viruses were detected; four in the human samples and 23 in the animal samples (Table 3).
Despite a lower read count generated using the ONT platform (Table S1), only porcine bocavirus 5 was
not detected, compared to the Illumina NextSeq. Moreover, viruses that were not part of the ViroCap
panel were still detected, albeit with fewer reads in some viruses (e.g., astrovirus wild boar/WBAstV-1
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and atypical porcine pestivirus 1) following targeted capture. While the average genome coverage
was lower in the MV animal libraries (63%) compared to the M libraries (67%), the sequencing depth
of MV was considerably higher, indicating coverage bias (Table 3). Yet, MV yielded more clinically
relevant near full-length genomes. Overall, ViroCap increased the average sequencing depth of 4/4
detected viruses in the human samples and 13/22 detected viruses in the animal samples on the
MinION. Illumina sequencing (NV), compared to MinION with ViroCap, yielded the highest average
sequencing depth.

Table 3. Genome coverage (%) and sequencing depth of trimmed sequencing reads against the
appropriate viral reference sequence.

ID GenBank
Reference

Length Reference
Genome Coverage (%) Average Sequencing Depth

M MV NV M MV NV

H1 MH341731.1 7345 Enterovirus D68 89 100 96 2 3342 2664
H2 – – No virus detected – – – – – –
H3 MK073885.1 7555 Norovirus GII.4 99 100 100 55 44,148 374,921
H3 LR027546.1 7410 Enterovirus A71 20 39 40 <1 1 4
H4 DQ995647.1 7401 Coxsackievirus A22 35 100 85 <1 898 152

Average (Human Samples) 61 85 80 14 12097 94,435

A1 HM159246 8774 PERV 1 C 83 71 64 28 7536 608

A1 NC_038546 5114 Porcine hokovirus
HK7 18 41 74 1 977 6893

A1 NC_035180 5533 Ungulate
tetraparvovirus 3 100 100 96 773 35518 380,898

A2 NC_038537 4786 Bocavirus
pig/SX/China 43 59 82 5 143 425

A2 NC_038538 5267 Porcine bocavirus P18 39 56 61 5 130 479
A2 HM159246 8774 PERV 1 C 100 100 92 408 37,379 22,903
A2 NC_025402 15396 Porcine respirovirus 1 79 85 98 9 75 980
A2 GU067771.1 15098 PRRSV 2 (Amervac) 89 100 100 21 21,836 11,949
A3 NC_016896 6707 Astrovirus wild boar 10 17 32 60 1 144

A3 NC_030653 10908 Atypical porcine
pestivirus 1 100 20 100 69 <1 36

A3 NC_018226 6916 Pasivirus A1 91 78 63 38 243 478
A3 HM159246 8774 PERV 1 C 33 81 49 2 1627 62
A3 KT344816.1 15095 PRRSV 2 (GER09-613) 99 100 96 85 17,451 8459
A4 NC_016896 6707 Astrovirus wild boar 98 81 76 20 12 128
A4 NC_027711 6327 Dromedary astrovirus 83 44 38 5 5 23
A4 KY250316-23 13200 Influenza A virus * 100 100 100 1512 24,292 197,905
A4 NC_034974 6347 Mamastrovirus 2 83 39 51 4 5 22
A4 NC_023675 6639 Porcine astrovirus 4 99 82 65 18 12 151
A4 NC_023636 6500 Porcine astrovirus 5 46 41 76 1 1 4
A4 NC_016647 5076 Porcine bocavirus 5 0 0 12 0 0 4
A4 HQ540591 9182 PERV 1 A 73 96 58 1 7 6
A4 KY214435 8043 Porcine enterovirus b 94 21 85 5 0.4 6
A4 NC_016769 8210 Porcine kobuvirus 99 100 99 152 1457 4056
A4 NC_003987 7491 Porcine sapelovirus 1 98 59 66 3 2 26
A4 GU067771.1 15098 PRRSV (Amervac) 2 20 93 100 <1 10 66
A4 MN102366-75 18286 Rotavirus A pig * 4 2 10 <1 <1 <1
A4 NC_003985 7117 Teschovirus A 23 41 62 <1 1 13

Average (animal samples) 67 63 71 120 5508 23,582
1 PERV, porcine endogenous retrovirus; 2 PRRSV, porcine reproductive and respiratory syndrome virus; * Influenza
A virus and rotavirus A segments were concatenated into a single contig, respectively. Near full-length genomes
(>94% coverage). Abbreviations: H, human; A, animal; M, MinION; MV, MinION with ViroCap; NV, NextSeq
with ViroCap.

3.4. Viral Detection in Human Samples

Four viruses were detected with each approach. Although the patient viruses were detected in
routine diagnostics, the enteroviruses were recorded as untypeable. Both the shotgun metagenomic
and TSC approaches enabled the characterization of enteroviruses in greater detail, highlighting a
well-established advantage of NGS [7]. ViroCap resulted in a substantial increase in the number of viral
reads and sequencing depth in all human samples. Three full-length genomes were recovered by MV
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(EV-D68, norovirus GII.4 and CV-A22), while only one full-length genome (norovirus GII.4) and one
near full-length genome (EV-D68) were recovered by NV. The shotgun metagenomic approach on the
MinION (M) did not perform as well, with only one near full-length genome recovered (norovirus GII.4).
None of the approaches were able to detect the enterovirus from the Ct 30 human fecal sample (H2),
suggesting a limit of detection. Enterovirus A71 (Ct 29) was detected (albeit at lower coverage)
with each approach, supporting a potential cut-off in fecal samples. A co-infection was detected in
human sample 3; norovirus GII.4 and enterovirus A71. It is interesting to note that while a shotgun
metagenomic approach covered 20% of the EV-A71 genome, this was in fact accounted for by only
one single long read. TSC increased the genome coverage and sequencing depth on both ONT and
Illumina platforms and could confirm the presence of EV-A71.

3.5. Viral Detection in Animal Samples

The animal samples, on the other hand, proved to be highly diverse. We detected 22 viruses using
both ONT approaches, while we detected 23 viruses using Illumina. Indeed, porcine bocavirus 5 was
only detected by TSC on the NextSeq. M yielded four full-length genomes, while targeted capture
yielded six and four using the MV and NV, respectively. Regarding near full-length genomes, M yielded
six, MV yielded one and NV yielded four. Furthermore, MV increased the genome coverage in 9/22
viruses, compared to M. All approaches enabled us to determine in silico susceptibility of IAV (H1N1)
to the neuraminidase inhibitors—Oseltamivir, Zanamivir and Peramivir—with 100% concordance.

3.6. ONT Accuracy

To assess the accuracy of ONT sequencing, selected viral species with a high sequencing depth
(≥1457) were compared to the corresponding Illumina consensus sequences, which served as a gold
standard (Table 4). ONT achieved an consensus accuracy of 98.71–99.89% (average 99.44%) compared
to the NextSeq ViroCap consensus sequences.

Table 4. Similarity of ONT consensus sequences compared to Illumina consensus sequences.

Detected Virus Percentage Identity (%) Average Sequencing Depth (MV)

Norovirus GII.4 99.89 44,148
Influenza A virus * 99.88 24,292

Enterovirus D68 99.83 3342
Ungulate tateraparvovirus 3 99.37 35,518

PRRSV 1 98.95 17,451
Porcine kobuvirus 98.71 1457

Average 99.44 21,035
1 PRRSV, porcine reproductive and respiratory syndrome virus. * Influenza A virus segments were concatenated
into a single contig.

3.7. Coverage Depth of Clinically Relevant Viruses

To visualize and compare coverage patterns and sequencing depths between M, MV and NV,
reads were mapped across clinically relevant viral genomes detected in our study. Figure 3 indicates
differences between human and animal samples in terms of genome coverage, following TSC.

Apart from IAV, in which the NextSeq showed a different pattern, most other viruses in Figure 3
display a similar pattern before and after enrichment. This indicates that the coverage pattern is
somewhat more dependent on the SISPA approach than on enrichment or the sequencing platform.
Interestingly, after using TSC, a high sequencing depth was obtained for the previously untypeable
Sanger sequencing enterovirus target, VP1 (position 2300–3300 bp).
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(a) IAV*

(b) PRV1

(c) EV-D68

(d) NoV GII.4

Figure 3. Visualization of the coverage depth for four clinically relevant viruses detected in our
study. (a) Influenza A virus; (b) Porcine respirovirus 1; (c) Enterovirus D68; (d) Norovirus GII.4.
Reads were not normalized and therefore actual depth was dependent on the number of total reads of
the sample. * All 8 influenza A virus segments were concatenated into a single genome. Abbreviations:
M, MinION; MV, MinION with ViroCap; NV, NextSeq with ViroCap; IAV, influenza A virus; PRV1,
porcine respirovirus 1; EV-D68, enterovirus D68; NoV GII.4, norovirus GII.4.

4. Discussion

SMg has the potential for broad-range detection and characterization of viruses but is hindered by
sample complexity, which can reduce viral sensitivity. Therefore, applying TSC such as ViroCap has
been shown to increase virus detection [11,12,22]. While current Illumina-based NGS platforms offer
high accuracy and sequencing depth, factors such as speed, mobility, sequence length and flexibility
are disadvantageous compared to the ONT platforms.

Here, we show that a viral target enrichment assay designed for second generation SRS platforms
can also be used with LRS ONT platforms, with only slight modifications. To assess the performance
of TSC on ONT platforms, we also ran Illumina deep sequencing as a gold standard on challenging
clinical samples. Moreover, SMg without enrichment was also performed using ONT. The SISPA
methodology was selected as it offers robustness and flexibility and can be used both for Illumina and
ONT platforms [14]. Due to the broad scope of ViroCap, it has also been reported to enrich uncommon
viruses [11]. Therefore, we also evaluated the benefits and drawbacks of TSC in highly diverse animal
samples next to human samples. While a TSC panel was evaluated in farm animals on the Illumina
platform previously [23], to the best of our knowledge, this is one of the first reports to sequence
directly from animal samples using ONT and the first report that uses viral target enrichment using
ONT with human and animal samples.
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Detecting viruses and obtaining full-length genomes directly from samples has several benefits.
Firstly, it enables the detection of viruses without a priori knowledge, thereby allowing the detection of
novel and unexpected viruses. For example, we detected full- or near full-length genomes of bocavirus
pig/SX/China/2010, porcine kobuvirus SH-W-CHN/2010/China and porcine respirovirus 1 [24,25] in
this study. Secondly, it can be used to detect co-infections, such as norovirus GII.4 and the previously
untypeable enterovirus A71 in sample H3. Thirdly, due to the untargeted nature of SMg and the
58% variation within the ViroCap panel [11], both approaches do not rely solely on primer-target
identity. The latter can be problematic for highly diverse and evolving RNA viruses, such as PRRSV
or enteroviruses [7]. Using NGS, we were able to characterize enteroviruses that were previously
untypeable using conventional targeted Sanger sequencing in our human cohort. Detection and
characterization are essential in revealing prolonged infections (particularly in vulnerable patients),
following immunosuppressive drugs and provide crucial patient management information for infections
with unknown etiologies or co-infections. Finally, full-length genomes can be used to predict antiviral
resistance in silico—e.g., the susceptibility of the detected IAV H1N1 to neuraminidase inhibitors.

Genome coverage and sequencing depth (number of supporting reads) are essential to attain
high-quality genome sequences. In this study, ViroCap increased the percentage of viral reads from
1.17% to 55.12% using ONT sequencing. ViroCap has been reported previously to improve viral
detection in patient samples [11,12]. In this study, MV resulted in an overall better genome coverage
in the human samples compared to NV (Table 3), despite a much lower sequencing depth (Table S1).
Furthermore, ViroCap on the MinION had a considerably higher percentage of viral reads, compared
to ViroCap on the NextSeq (Figure 2). This could be due to the Illumina workflow, in which cDNA is
fragmented before generating libraries and performing hybridization. Therefore, more non-viral short
fragments are likely to compete with viral cDNA for probe binding. Unfragmented long non-viral cDNA
on the ONT is more likely to contain longer regions that are not binding (or have weaker interactions) to the
probes. These whole fragments are then captured less often and washed away. Unfragmented long non-viral
cDNA will therefore be competing less for probe binding, resulting in a more efficient viral enrichment.

Despite the improved viral sensitivity using ViroCap, a Ct 30 enterovirus was not detected on
either platform from a fecal sample (sample H2). However, in sample H3 (another fecal sample),
ONT with TSC covered 39% of the EV-A71 genome (Ct 29). Similarly, Illumina covered 40% of the
EV-A71 genome in sample H3, suggesting a detection cut-off in fecal samples. Fecal samples are
notoriously difficult to sequence in an untargeted fashion, due to the vast amount of nucleic acid
background. Consequently, even a fecal sample with a low Ct of 21 (sample H4) resulted in only 35%
genome coverage of CV-A22 with SMg. TSC was therefore required to obtain both a better sequencing
depth and whole-genome coverage, enabling a more accurate viral classification.

Similarly to human samples, viral metagenomic sequencing has also been applied to farm animal
samples. In a recent systematic review, only one publication used an ONT platform to sequence
directly from animal samples, while Illumina was the predominant platform [26]. Pigs are the most
frequently sequenced farm animals [26]. This is likely due to several global emerging swine viruses
such as African Swine Fever [27], PRRSV [28] and zoonotic viruses such as IAV [29], which have been
emerging in recent decades. Indeed, we detected an IAV that was closely related to a previously
sequenced sample from a Dutch child presenting with a severe acute respiratory infection and requiring
oxygenation [29]. Furthermore, sequencing of pig samples in this study revealed a highly diverse
virome (Table 3). NV detected porcine bocavirus 5, which was not detectable in either M or MV,
likely due to the former’s higher sequencing output (Table S1). Although M and MV detected the
same number of viruses in the animal samples, MV yielded the highest number of full-length genomes,
similarly to the human samples. NV had, on average, a higher overall genome coverage compared to
MV in the detected viruses within the animal samples.

Sequencing errors remain a drawback in ONT platforms. Even in very high sequencing depths
(≥1457), ONT achieved an average consensus accuracy of 99.44% (Table 4). This is likely the result of
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ONT sequencing errors which have not occurred randomly. As a result, high sequencing depths might
not always improve the accuracy of consensus sequences.

The animal samples highlight an inherent limitation of TSC panels, as highly divergent or new
viruses which are neither present in the panel nor share homology with viruses covered in the panel
will not be enriched (Table 3). This is particularly relevant as the animal virome is less explored than
the human virome. While these viruses were not enriched, they were still detectable, albeit with less
genome coverage, such as porcine sapelovirus 1 (Table 3). ViroCap did enrich clinically significant
viruses such as IAV and PRRSV substantially. Nevertheless, a simple shotgun approach proved to be
very suitable for the virome characterization in the animal samples in this study.

Inherent limitations of TSC are the increased hours of sample handling and significant hybridization
time before sequencing. Reported hybridization times in targeted sequence capture can range up
to 72 h [12] or 16–20 h in the standard protocol. To reduce the turnaround time, we evaluated a
hybridization time of 20 min. We found that a 20 min hybridization time resulted in a higher percentage
of viral reads compared to 20 h. However, several viral species were underrepresented compared to
the 20 h hybridization time, and, as a result, this hybridization time was not explored further. However,
this study does show the potential of shorter incubation times, particularly if time is an essential factor.
A further limitation of this study is the use of DNase treatment to improve viral sensitivity of RNA
viruses in SMg. As a result, only actively transcribed DNA viruses would be expected to be detectable.
Additionally, mapping with 80% nucleotide identity could result in the mapping of unknown or closely
related viruses, particularly in highly divergent or complex samples [30]. With the established protocol
for Illumina libraries, pooling multiple sequence libraries per capture reaction decreases costs and
ensures an efficient workload, compared to running samples individually. In this study, we found that
barcode primers in the ONT PCR barcoding kit were not specific enough for re-amplifying captured library
pools. As a result, we observed significant crosstalk and an impossibility to demultiplex. Consequently,
individual sample capture was used with 50% of the recommended ViroCap reagents to decrease the cost
per reaction. Pooling of sequencing libraries prior to TSC using the ONT PCR barcoding kit might be feasible
with the design of custom primers to enforce specificity during captured library pool re-amplification.

5. Conclusions

This study has shown that TSC on ONT platforms can be an alternative to Illumina sequencing,
particularly if rapid results with few samples are required. Furthermore, ONT platforms can offer
great flexibility as flow cells can be washed and re-used. ViroCap substantially improved the viral
sensitivity and reduced background noise in the human samples considerably, increasing both genome
coverage and sequencing depth compared to SMg. Although ViroCap did improve the sequencing
depth for clinically relevant animal viruses such as influenza A virus, SMg alone was shown to have a
higher overall genome coverage. Importantly, viruses that did not exist on the ViroCap panel were still
detectable. Developing and evaluating new viral enrichment approaches applicable to both human
and animal samples may prove crucial for the surveillance, detection and characterization of known
and unknown viral infections.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/12/1358/s1,
Table S1: Description of human and animal sample information with corresponding Illumina and ONT approaches:
MinION (M), MinION with ViroCap (MV) and NextSeq with ViroCap (NV).
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