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Table S2. List of residues identified as possibly involved in changing the pathogenicity, virulence or 

fitness of IAVs  

 

Encoding protein 
– amino acid 
position 

Effect described in literature References 

PB2-9 D9N increases virulence [1, 2]  

PB2-45 Impacts thermo-sensitive phenotype [3] 

PB2-158 E158K/G increase pathogenicity of H4N6 and H1N1pdm 
viruses 

[4-6]  

PB2-199 199S increases pathogenicity of H5N1 in mice [2, 5, 7, 8]  

PB2-251 R251K increases replication and pathogenicity [9, 10] 

PB2-253 D253N increases pathogenicity [5, 11, 12] 

PB2-265 N265S thermo-sensitive phenotype [13-15] 

PB2-271 T271A increases polymerase activity [5, 7, 16] 

PB2-339 K339T modulates polymerase activity and virulence  [17] 

PB2-368 368K increases pathogenicity when combined with PB2-627K  [18] 

PB2-431 M431I reduces Pimodivir susceptibility and virulence [19, 20]  

PB2-478 V478L thermo-sensitive phenotype [14, 21] 

PB2-504 Interacts with residue PA-550 in RNAP II degradation [22] 

PB2-588 T588I increases virulence [7, 8, 23] 

PB2-590 S590 compensates mutation PB2-E627K with PB2-R591 [5, 24, 25] 

PB2-591 Q591R/K increases pathogenicity and compensates mutation 
PB2-E627K 

[5, 24-26]  

PB2-627 Major determinant of transcription / replication efficiency 
E627K increases pathogenicity of H4N6 but attenuates swine 
H3N2 

[5, 6, 8, 27-
30] 

PB2-685 increases virulence when combined mutation in HA-190 or 
HA-212 

[31] 

PB2-701 D701N compensates effect of mutation PB2-E627K and 
enhances replication and pathogenicity of H1N1pdm and 
H1avN1 viruses 

[5, 9, 32, 
33] 

PB2-714 714R increases the cap-binding efficiency of PB2 when 
combined with PB2-701N 

[5] 

PB1-27 D27N increases polymerase activity [34] 

PB1-180 G180E enhances virus growth kinetics  [35] 

PB1-181 I181T increases virulence of H5N2 in mice [36]  

PB1-216 S216G enhances virus growth kinetics and virulence [35, 37] 

PB1-229 K229R reduces favipiravir susceptibility and viral fitness [19] 

PB1-265 K265N attenuates virus [14] 

PB1-353 K353R impacts virulence  [38] 

PB1-361 S361R enhances virus growth kinetics [35] 

PB1-391 K391E increases virus temperature sensitivity [13-15] 

PB1-456 H456Y plays a role in virulence and adaptation in mice [39]  

PB1-469 A469T enhances replication, pathogenicity and transmission [40]  

PB1-473 V473 increases polymerase activity, L473 decreases 
polymerase activity in H1N1pdm virus 

[5, 41] 

PB1-566 T566A could impact virulence [38]  
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PB1-581 E581G increases virus temperature sensitivity [13, 15] 

PB1-591 V591I attenuates virus [14]  

PB1-598 Increase polymerase activity  [5, 41]  

PB1-621 Q621R could enhance virus growth kinetics [35] 

PB1-653 P653L increases polymerase activity [19] 

PB1-654 N654S could enhance virus growth kinetics [35] 

PB1-661 A661T increases virus temperature sensitivity [13-15] 

PB1-F2-51 T51M decreases lethality [42] 

PB1-F2-56 V56A decreases lethality [42] 

PB1-F2-62 L62: impacts inflammatory activity and enhanced 
pathogenicity of bacterial superinfection /P62: impacts 
antimicrobial activity  

[42-44] 

PB1-F2-66 N66S increases virulence in mice with limited effect in 
H1N1pdm virus  
66S enhances pathogenicity of bacterial superinfection 

[44-46] 

PB1-F2-68 68I : responsible for promotion of the peptide’s cytotoxicity 
and permeabilization of the mitochondrial membrane (in 
combination with PB1-F2-69L and -70V) 

[47] 

PB1-F2-69 69L: responsible for promotion of the peptide’s cytotoxicity 
and permeabilization of the mitochondrial membrane (in 
combination with PB1-F2-68I and -70V)  

[47] 

PB1-F2-70 70V: responsible for promotion of the peptide’s cytotoxicity 
and permeabilization of the mitochondrial membrane (in 
combination with PB1-F2-68I and -69L)  

[47] 

PB1-F2-79 R79: impacts inflammatory activity and enhances 
pathogenicity of bacterial superinfection /Q79: impacts 
antimicrobial activity 

[7, 42-44] 

PB1-F2-82 L82: Impacts inflammatory activity and enhances 
pathogenicity of bacterial superinfection /S82: impacts 
antimicrobial activity 

[7, 42-44] 

PB1-F2-87 E87G decreases lethality [7] 

PA-85 85I enhances activity of the Cal polymerase [48] 

PA-129 I129T enhances replication, pathogenicity and transmission [40] 

PA-142 142N increases pathogenicity of H5N1 in mice, 142E affects 
pathogenicity when combined with PB2-627K  

[2, 21] 

PA-224 Affects endonuclease activity  
S224P highly virulent phenotype of H5N1 in duck 

[49, 50] 

PA-295 L295P is responsible for transcription and replication activity [51] 

PA-298 E298K contributes to virulence [52]  

PA-336 336M increases avian polymerase activity in mammals cells [5, 48] 

PA-343 A343T increases H1N1pdm virulence [8, 38] 

PA-383 N383D highly virulent phenotype of H5N1 in duck [21, 50] 

PA-409 S409N increases transmissibility of H1N1pdm virus [7, 8] 

PA-421 421I increases pathogenicity of H5N1 in mice [2, 18, 21] 

PA-552 552S increases polymerase activity  [5, 7, 8, 53] 

PA-615 615N increases polymerase activity [5] 

PA-666 L666F reduces polymerase activity [19] 

PA-713 H713R defects packaging [54] 

PA-714 A714G defects packaging [54] 

NP-16 G16D increases MxA resistance [7, 8, 55] 
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NP-34 34G increases temperature sensitivity [13] 

NP-41 41V enhances polymerase activities and replication of H7N9 [56] 

NP-48 affectes MxA resistance [57] 

NP-53 53D increases MxA resistance  [55] 

NP-64 D64G increases thermosensitivity of strains [13] 

NP-72 D72A affects incorporation of vRNAs into VLPs [58] 

NP-74 R74A affects incorporation of vRNAs into VLPs [58] 

NP-98 affects MxA resistance [21, 57] 

NP-99 affects MxA resistance [57] 

NP-100 100I/V increases MxA resistance  [7, 8, 55] 

NP-101 D101G contributes to virulence [28, 51] 

NP-108 Thermos-sensitive phenotype [3] 

NP-109 I109T increases replication in chicken [7, 8, 59] 

NP-113 K113A affects incorporation of vRNAs into VLPs [58] 

NP-150 R150A affects viral-genome replication and transcription  [58] 

NP-156 R156A affects incorporation of vRNAs into VLPs [58] 

NP-174 R174A affects incorporation of vRNAs into VLPs [58] 

NP-175 R175A affects incorporation of vRNAs into VLPs [58] 

NP-188 T188 regulates viral replication by controlling NES2-dependent 
NP nuclear export and the polymerase activity of the vRNP 
complex 

[60] 

NP-195 R195A affects incorporation of vRNAs into VLPs [60] 

NP-199 R199A affects incorporation of vRNAs into VLPs [60] 

NP-204 S204 requires for NP binding to viral polymerase [61] 

NP-207 W207 requires for NP binding to viral polymerase [61] 

NP-208 R208A affects viral-genome replication and transcription [58, 61] 

NP-210 210D enhances polymerase activities and replication of H7N9 [56] 

NP-213 R213A affects viral-genome replication and transcription  [58] 

NP-214 Involves in the conversion of filamentous virions into spherical 
virions 

[7, 8, 62] 

NP-217 Involves in the conversion of filamentous virions into spherical 
virions 

[21, 62, 63] 

NP-239 M239L thermos-sensistive lesion [64] 

NP-253 Involves in the conversion of filamentous virions into spherical 
virions 

[62] 

NP-254 E254A affects viral-genome replication and transcription  [58] 

NP-260 A260R affects viral-genome replication and transcription  [58] 

NP-273 K273A affects viral-genome replication and transcription [58] 

NP-283 L283P increases MxA resistance [7, 8, 55] 

NP-289 289H increases MxA resistance [55] 

NP-305 305K increases MxA resistance [7, 8, 28, 
55] 

NP-313 F313Y/V increases MxA resistance  [7, 8, 55] 

NP-316 316M increases MxA resistance [55] 

NP-319 N319K enhances viral replication  [5] 

NP-325 K325A affects incorporation of vRNAs into VLPs [58] 

NP-337 A337R affects viral-genome replication and transcription [58] 

NP-343 NP-V343L mutation switched from being highly BNP-sensitive 
to moderately BNP-resistant 

[65] 

NP-350 350K increases MxA resistance [55] 
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NP-351 351K increases MxA resistance [55] 

NP-353 353I/S increases MxA resistance [21, 28, 55] 

NP-355 R355A affects viral-genome replication and transcription [58] 

NP-357 Q357K increases MxA resistance and virulence affects also the 
pathogenicity when associated to PB2-627K  

[7, 8, 55, 
66] 

NP-361 R361A affects incorporation of vRNAs into VLPs [58] 

NP-387 A387R affects viral-genome replication and transcription [58] 

NP-405 Q405A affects viral-genome replication and/or transcription [58] 

NP-412 F412A affects viral-genome replication and/or transcription [58] 

NP-488 F488A affects viral-genome replication and/or transcription [58] 

NP-489 F489A affects viral-genome replication and/or transcription [58] 

M1-30 Influences the morphology of virions [62] 

M1-41 P41A alters virion morphology, reducing the number and 
length of filamentous virions, as well as reducing the 
neuraminidase activity of virions 

[67] 

M1-90 P90 inhibes ribonucleoproteins transcription [68] 

M1-95 R95K described in pathogenic strains of H5N1  [69] 

M1-101 R101S affects viral replication and thermo-sensibility [70] 

M1-105 R105S affects viral replication and thermo-sensibility [70] 

M1-108 T108 inhibes ribonucleoproteins transcription [68] 

M1-132 Role in nuclear import [71] 

M1-142 Impacts morphology of virions [72] 

M1-207 Impacts morphology of virions [72] 

M1-209 Impacts morphology of virions [72] 

M1-224 N224S described in pathogenic strains of H5N1 [69] 

M1-230 R230K described in pathogenic strains of H5N1 [69] 

M2-55 C55F increases transmissibility [18] 

NS1-18 V18A thermo-sensitive phenotype [73] 

NS1-35 R35 and R46 critical for binding to and blocking activation of 
PKR and for efficient virus propagation 

[74] 

NS1-38 critical role in RNA binding and inhibition of IFN production [75] 

NS1-42 P42S increases virulence in mice  
S42D attenuates virulence 

[76-78] 

NS1-44 R44K thermo-sensitive phenotype [73] 

NS1-46 R35 and R46 critical  for binding to and blocking activation of 
PKR and for efficient virus propagation 

[74] 

NS1-48 S48A/D affects virus replication [78] 

NS1-55 K55E, K66E, and C133F restored ability to conteract interferon 
response 

[79] 

NS1-64 I64T affects interferon response and virulence [80] 

NS1-66 K55E, K66E, and C133F restored ability to conteract interferon 
response 

[79] 

NS1-92 E92 increases clinical signs [8] 

NS1-97 E97A decreases TRIM25 activity [81] 

NS1-103 F103L increases virulence  
F103 critical for CPSF binding 

[82-84] 

NS1-106 M106I increases virulence  
M106 critical for CPSF binding 

[82-84] 

NS1-123 Suspected to have a role in human adaptation, and virulence  [49, 85] 
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NS1-133 K55E, K66E, and C133F restore ability to conteract interferon 
response 

[79] 

NS1-149 A149 antagonizes interferon production and increases 
pathogenicity of H5N1 in chicken 

[86] 

NS1-171 A171Y increases NS1 expression and reduces IFN expression  [87, 88] 

NS1-195 S195P thermo-sensitive phenotype [73] 

NS1-200 N200S increase virulence of H5N1 in ferret, enhanced IFN 1 
activity 

[89] 

NS1-205 N205K enhanced replication, pathogenicity and transmission 
G205R increase virulence of H5N1 in ferret, enhanced IFN 1 
activity 

[40, 89] 

NS1-215 T215A attenuates viral replication [18, 28, 78] 

NEP-47 T47A increases virulence of H5N1 in ferret [89] 

NEP-48 T48N enhances replication, pathogenicity and transmission [40] 

NEP-51 M51I increases virulence of H5N1 in ferret [89] 

NEP-69 E69G increases virulence H5N2 in mice [36] 
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