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Abstract: The African swine fever (ASF) pandemic is currently affecting pigs throughout Eurasia,
resulting in significant swine production losses. The causative agent, ASF virus (ASFV), is a
large, structurally complex virus with a genome encoding more than 160 genes. The function of
most of those genes remains unknown. Here, we presented the previously uncharacterized ASFV
gene MGF360-1L, the first gene in the genome. The kinetic studies of virus RNA transcription
demonstrated that the MGF360-1L gene was transcribed as a late virus protein. The essentiality
of MGF360-1L to virus replication was evaluated by developing a recombinant ASFV lacking the
gene (ASFV-G-∆MGF360-1L). In primary swine macrophage cell cultures, ASFV-G-∆MGF360-1L
showed similar replication kinetics as the parental highly virulent field isolate Georgia2007 (ASFV-G).
Domestic pigs experimentally infected with ASFV-G-∆MGF360-1L presented with a clinical disease
indistinguishable from that caused by ASFV-G, demonstrating that MGF360-1L was not involved in
virulence in swine, the natural host of ASFV.

Keywords: ASFV; ASF; African swine fever virus; MGF360-1L

1. Introduction

African swine fever (ASF) is a disease of domestic and wild swine that produces a spectrum of
disease, from sub-clinical to highly lethal, depending on the acting virus strain [1]. The causative
agent, ASF virus (ASFV), is a large, highly structured, enveloped DNA virus with a double-stranded
DNA genome (180–190 kilobase pairs) encoding for at least 160 open reading frames (ORFs) [1].
The identification of viral proteins involved in virus replication and virus virulence in swine is critical to
developing novel countermeasures to control the disease. However, the role of most of these ORFs has
been predicted using functional genomics without experimental characterization, limiting application
to the development of therapeutics.

Although historically restricted to sub-Saharan countries and Sardinia (Italy), the disease was
detected in 2007 in the Republic of Georgia and has since expanded into Eastern Europe, China,
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and South Asia [2]. There are no commercially available vaccines for ASF, so disease outbreaks are
usually quelled by removing infected animals. The rapid spread of ASF, combined with its high
lethality, makes it a significant threat to global protein availability [2].

Experimental vaccines have been developed that effectively produce protection against the current
strain circulating in Europe and Asia. These experimental vaccines are recombinant live attenuated
viruses derived from the virus isolate that initiated the outbreak in the Republic of Georgia in 2007.
These recombinant viruses are attenuated by deleting one or more genes from the field isolate genome
by genetic manipulation [3–9]. Interestingly, only a few virus genes have been successfully deleted
from the ASFV Georgia genome (e.g., TK, NL, CD2, MGF360-16R, L83L, C962R, X69R) [10–15], while a
smaller number of genes have been shown to be essential for virus replication (e.g., EP152R, p. 30,
p. 54, p. 72) [16–19]. Understanding the role of individual genes in virus virulence is a critical step
in the development of novel ASF vaccines. However, the lack of experimental information limits
the understanding of gene function and the possibility of using that knowledge to develop novel
countermeasures to control the disease.

ASFV Georgia (ASFV-G) contains 16 genes within the multigene family 360 (MGF360) located on
both ends of the ASFV-G genome—thirteen genes in the left terminal repeat region (MGF360-1L, 2L,
3L, 4L, 6L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, and 15L) and three genes in the right terminal repeat region
(MGF360-16R, 19R, and 21R). There are currently 19 ORFs that are considered paralogs that belong to
MGF360, with ASFV-G missing genes annotated as MGF360-1.5L, 5L, 22R (these three members of the
MGF360 family have been found in very few sequenced ASFV genomes). Recently, MGF360- 17R, 18R,
and 20R are determined not to be members of the MGF360, as they were initially misannotated [20].
The lengths of all MGF360 paralogs are highly conserved, approximately 960–1100 bp in length for all
known family members in all sequenced isolates. The MGF360 gene family contains several examples
of ortholog fusions and truncations and contains cross-MGF-series fusions [20]. It has been shown that
the deletion of some of the MGF360 genes along with others of the MGF505 gene family on the left arm
of the genome produces no attenuation of highly virulent isolate Georgia 2010 [11,21]. A recombinant
virus with a large deletion of the MGF360 family along with the MGF505 family does not induce
circulating interferon when compared to the parental virus, yet cell culture interferon could inhibit
non-virulent ASFV with a deletion of similar MGF genes [22]. Besides, it has been described that ASFV
replication in Ornithodoros porcinus ticks, a vector of ASFV, is dependent on the presence of specific
MGF360 genes [23]. However, only a small number of reports have studied the role of any individual
MGF genes [11]. Currently, MGF360-1L has not been studied individually or as part of any larger
deletions through virus adaptation or recombination studies.

In this report, we studied the role of the previously uncharacterized ASFV gene MGF360-1L,
the first gene encoded in the genome of ASFV-G. In this study, a recombinant ASFV lacking the
MGF360-1L gene was constructed (ASFV-G-∆MGF360-1L) and assessed for its ability to replicate
in vitro and in vivo. In addition, the experimental infection of domestic pigs with ASFV-G-∆MGF360-1L
demonstrated that MGF360-1L was not essential for virus virulence.

2. Materials and Methods

2.1. Viruses and Pimary Swine Macrophage Cultures

Primary swine macrophage cell cultures were prepared from defibrinated swine blood,
as previously described [24]. Briefly, heparin-treated swine blood was incubated at 37 ◦C for
1 h to allow sedimentation of the erythrocyte fraction. Mononuclear leukocytes were separated by
flotation over a Ficoll-Paque (Pharmacia, Piscataway, NJ, USA) density gradient (specific gravity, 1.079).
The monocyte/macrophage cell fraction was cultured in plastic Primaria (Falcon; Becton Dickinson
Labware, Franklin Lakes, NJ, USA) tissue culture flasks containing macrophage media, composed of
RPMI 1640 Medium (Life Technologies, Grand Island, NY, USA) with 30% L929 supernatant and 20%
fetal bovine serum (HI-FBS, Thermo Scientific, Waltham, MA, USA) for 48 h at 37 ◦C under 5% CO2.
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Adherent cells were detached from the plastic by using 10 mM EDTA in phosphate-buffered saline
(PBS) and were then reseeded into Primaria T25, 6- or 96-well dishes at a density of 5 × 106 cells per mL
for use in assays 24 h later. ASFV Georgia (ASFV-G) was a field isolate, kindly provided by Dr. Nino
Vepkhvadze, from the Laboratory of the Ministry of Agriculture (LMA) in Tbilisi, Republic of Georgia.

2.2. Virus Growth Curves

Comparative growth curves between ASFV-G-∆MGF360-1L and parental ASFV-G were performed
in primary swine macrophage cell cultures. Preformed monolayers were prepared in 24-well plates and
infected at an MOI (Multiplicity of Infection) of 0.1 (based on hemoadsorbing doses, HAD50, previously
determined in primary swine macrophage cell cultures). After 1 h of adsorption at 37 ◦C under 5%
CO2, the inoculum was removed, and the cells were rinsed two times with PBS. The monolayers
were then rinsed with macrophage media and incubated for 2, 24, 48, 72, and 96 h at 37 ◦C under 5%
CO2. At appropriate times post-infection, the cells were frozen at ≤−70 ◦C, and the thawed lysates
were used to determine titers by HAD50/mL in primary swine macrophage cell cultures. All samples
were run simultaneously to avoid inter-assay variability. Virus titration was performed on primary
swine macrophage cell cultures in 96-well plates. Virus dilutions and cultures were performed using
macrophage medium. The presence of the virus was assessed by hemadsorption (HA), and the virus
titers were calculated, as previously described [25].

2.3. Construction of the Recombinant Viruses

Recombinant ASFV-G-∆MGF360-1L was generated by homologous recombination between
the parental ASFV genome and a recombination transfer vector following previously described
procedures [21]. The recombinant transfer vector (p72mCherry∆MGF360-1L) contained flanking
genomic regions: the left arm was located between genomic positions 1 and 861, and the right
arm was located between genomic positions 1935 and 2935, and there was a reporter gene cassette
containing the mCherry fluorescent protein (mCherry) gene under the control of the ASFV p72
late gene promoter, as previously described [21]. The recombinant transfer vector was obtained
by DNA synthesis (Epoch Life Sciences, Sugar Land, TX, USA). This construction created a
1073-nucleotide deletion between nucleotide positions 862 and 1934, deleting most of the ORF sequence
for MGF360-1L with the coding region for the last 10 nucleotides of the C-terminus remaining (Figure 1).
Macrophage cell cultures were infected with ASFV-G and transfected with p72mCherry∆MGF360-1L.
ASFV-G-∆MGF360-1L was obtained as a pure population after ten successive limiting dilution
purification steps in swine macrophage cell cultures. ASFV-G-∆MGF360-1L stocks were obtained after
a further amplification of the virus from the last round of purification.
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Figure 1. Schematic representation of the MGF360-1L ORF (blue) in the ASFV-G genome, showing
adjacent open reading frames (yellow). ORF, open reading frame.

ASFV DNA was extracted from infected cells, and a full-length sequence was obtained using
next-generation sequencing (NGS), as described previously [21], using an Illumina NextSeq500
sequencer, using standard sequencing protocols. The analysis of the sequence was done using CLC
Genomics Workbench software version 20 (QIAGEN, Hilden, Germany).
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2.4. Animal Experiments

ASFV-G-∆MGF360-1L was assessed for its virulence phenotype relative to the parental ASFV-G
virus using 80–90 pound Yorkshire crossbred female swine. Five pigs were inoculated intramuscularly
(IM) with 102 HAD50 of ASFV-G-∆MGF360-1L and compared with a group of pigs inoculated
with similar doses of ASFV-G. Clinical signs (anorexia, depression, fever, purple skin discoloration,
staggering gait, diarrhea, and cough) and changes in rectal body temperature were recorded daily
throughout the experiment (including the 5 days acclimation period). The original schedule considered
blood sampling times on days 4, 7, 11, 14, 21, and 28 post-infection.

2.5. Ethics Statement

Animal experiments were performed under biosafety level 3AG conditions in the animal facilities
at Plum Island Animal Disease Center (PIADC). All experimental procedures were carried out in
compliance with the Animal Welfare Act (AWA), the 2011 Guide for Care and Use of Laboratory
Animals, the 2002 PHS Policy for the Humane Care and Use of Laboratory Animals, and the U.S.
Government Principles for Utilization and Care of Vertebrate Animals Used in Testing, Research,
and Training (IRAC 1985), as well as specific animal protocols reviewed and approved by the PIADC
Institutional Animal Care and Use Committee of the U.S. Departments of Agriculture and Homeland
Security (protocol number 225.04-16-R, 09-07-16, approved on 9/10/19).

3. Results and Discussion

3.1. MGF360-1L Gene is Conserved in Most ASFV Isolates

ASFV ORF MGF360-1L is the first gene encoded in the ASFV genome and is located on the
negative strand of the ASFV-G genome between positions 852 and 1934. MGF360-1L is present in the
most sequenced isolates of ASFV, the exception being ASFV E75, which contains an MGF member
consisting of a fusion of ORFs—MGF360-1L and MGF360-2L. MGF360-1L is also absent from the
genomes of Mkuzi_1975, Ken06_Bus, and Malawi isolates. In the Malawi isolate, the genomic region for
MGF360-1L has the gene MGF360-21R, a protein unique to the Malawai isolate [20]. InterPro sequence
analysis [26] of MGF360-1L revealed that amino acids 99-309 are those that distinguish MGF360-1L as a
member of the MGF360 family. Furthermore, MGF360-1L is not detected in the proteome of ASFV viral
particles, which would be expected of genes involved in viral DNA replication [27]. These predicted
domains and locations in the genome are shown in Figure 1.

Multiple amino acid sequence alignments across all published isolates of ASFV that contain
MGF360-1L were extracted using the Viral Bioinformatics Research Centers Viral Orthologous Clusters
program and analyzed using CLC Genomics Workbench, revealing diversity in the MGF360-1L
proteins across ASFV genomes. MGF360-1L proteins vary in length, between 122 and 160 amino acids.
Overall alignment (Figure 2A) revealed that there is no conserved region within the MGF360-1L protein
across all virus isolates, which is not a surprise as some isolates of ASFV do not have MGF360-1L.
When compared to ASFV-G, an isolate containing one of the largest MGF360-1L proteins, some isolates
contain a smaller MGF360-1L that lacks the N-terminus region, the C-terminus region, or the middle
region of the protein. Further analysis at the amino acid level revealed a high degree of conservation
across isolates harboring similar areas of MGF360-1L, with the exception of the Kenya, Malawi, and R8
isolates, which have a higher degree of conservation with each other. In addition, there is a region
at amino acids 108-121, which appears to have two different groups of sequences, one group being
very similar to ASFV-G from both recent outbreak isolates and historical isolates (L60), and a separate
group being similar to that of the OURT/88 isolate.
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Figure 2. Multiple sequence alignment of the indicated ASFV isolates of viral protein MGF360-1L.
(A) An overview of matching areas of the protein. (B) Amino acid level alignment with matching
residues are represented as dots and missing residues as dashes. ASFV, African swine fever virus.

Previously deposited microarray data from a previous study [28] was used to determine the
transcriptional activity of the MGF360-1L gene during the infectious cycle kinetics of RNA transcription
in primary swine macrophages infected with ASFV-G. We determined that the transcription of
MGF360-1L occurs early with RNA that hybridizes to the microarray starting at 3 h post-infection,
with increasing amounts of RNA throughout the remaining duration of infection, and these expression
kinetics are similar to ASFV early protein p30 (CP204L) that has been previously reported using this
microarray data [3,11].

3.2. Development of the ASFV-G-∆MGF360-1LGgene Deletion Mutant

To determine the function, if any, of the MGF360-1L gene during in vitro virus replication,
a recombinant ASFV was developed (ASFV-G-∆MGF360-1L) using the highly virulent isolate ASFV
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Georgia 2007 (ASFV-G) as a template (Figure 3). ASFV-G-∆MGF360-1L genomic modifications resulted
in the partial deletion of the MGF360-1L ORF, leaving the C-terminal 10 bp.
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Figure 3. Schematic for the development of ASFV-G-∆MGF360-1L. The transfer vector contains the p72
promoter and a mCherry cassette; the flanking left and right arms are designed to have flanking ends
to both sides of the deletion/insertion cassette. The resulting ASFV-G-∆MGF360-1L with the cassette
inserted is shown on the bottom with the residual 10 amino acids of MGF360-1L, which are unlikely to
be transcribed, as indicated by the shortened arrow. The nucleotide positions shown are relative to the
parental virus.

Next-generation sequencing (NGS) was used to assess both the accuracy of the genetic
modifications introduced during recombination and the conservation of the genomic integrity of
the rest of the virus genome. Full-length genomic comparison between ASFV-G-∆MGF360-1L and
parental ASFV-G demonstrated a deletion of 1073 nucleotides and the insertion of a 1294-nucleotide
construct corresponding to the p72-mCherry cassette sequence. No additional significant differences
are observed between these two virus genomes. This confirmed that ASFV-G-∆MGF360-1L does not
acquire additional mutations during the process of homologous recombination or purification steps.
Besides, NGS data indicated the absence of any residual parental ASFV-G genome as a contaminant of
the ASFV-G-∆MGF360-1L virus stock.

3.3. Assessment of the Ability of ASFV-G-∆MGF360-1L to Replicate in Swine Macrophages

Several members of the ASFV multigene families have been shown to be involved in the process
of virus replication in its main target cell type, the macrophage [23,29]. To evaluate the potential role of
MGF360-1L in virus replication, the in vitro growth kinetics of ASFV-G-∆MGF360-1L was studied in
swine macrophage cultures and compared with that of the parental ASFV-G in a multistep growth
curve. Results demonstrated that ASFV-G-∆MGF360-1L presents an almost indistinguishable growth
kinetic when compared to the parental ASFV-G (Figure 4). Thus, the deletion of the MGF360-1L
gene does not significantly affect the ability of ASFV-G to replicate in swine macrophages. This was
somewhat unexpected, considering the deletion of most of the MGF genes studied affects the ability
of the recombinant virus to replicate in macrophages. Members of MGF360 have been shown to
be involved in the process of virus replication in both swine macrophages, the main target cell
during the infection in swine, and in cells from ticks, the alternative natural host [7,23]. However,
it is possible that the MGF360-1L function can be replaced by many of the MGF genes remaining
in the ASFV-G-∆MGF360-1L genome. Previous studies have demonstrated that the deletion of
specific MGF360 genes 13L, 14L, and 16R does not significantly affect virus replication in swine
macrophages [11,21]. Similarly, the deletion of MGF360-1L alone appears to not affect ASFV replication
in swine macrophages. However, it is possible that the MGF360-1L function can be replaced by other
MGF genes present in the ASFV-G-∆MGF360-1L genome.
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parental ASFV-G (empty circles) viruses. Samples were taken from three independent experiments
at the indicated time points and titrated. Data represent means and standard deviations. Sensitivity
using this methodology for detecting virus: ≥log10 1.8 HAD50/mL. (Median Hemeadsorbing infectious
dose/milliliter) No significant differences in viral yields between viruses are observed at any time point
tested determined using the Holm–Sidak method (α = 0.05), without assuming a consistent standard
deviation. All calculations were conducted using the software Graphpad Prism version 8.

3.4. Assessing the Role of the MGF360-1L Gene in Virulence During Swine Infection

Although replication of ASFV-G-∆MGF360-1L in primary swine macrophages cultures showed
no significant differences, it was important to determine if the recombinant virus efficiently replicates
in vivo and produces disease as efficiently as the parental ASFV-G. Several members of MGF360
and MGF505 are directly involved in virus virulence during infection in domestic swine [7,30,31].
The absence of several genes within the MGF360/505 in naturally attenuated isolates (as NHV and
OUT88/3) has been associated with a reduction of virulence in swine [32]. In addition, losing members
of these multigene families during adaptation of virulent field isolates (as BA71, Lisbon60, and Georgia
2010) to established cell lines has been linked to the progressive decrease of virulence in swine [29,33,34].
Simultaneous experimental deletion or insertion of several members of the MGF360/505 can result in
the attenuation of virulent parental viruses (i.e., Benin and Georgia) [7,30] or increased virulence of an
attenuated strain (i.e., E70∆NL) [31].

To assess how the deletion of the MGF360-1L gene affects ASFV-G virulence, a group (n = 5) of
80–90-pound pigs were IM inoculated with 102 HAD50 ASFV-G-∆MGF360-1L and compared with
a control group IM inoculated with 102 HAD50 parental ASFV-G. Animals inoculated with virulent
ASFV-G have elevated body temperature (>104 ◦F) by day 4–5 pi, followed by the rapid development
of ASF-associated clinical acute disease (anorexia, depression, purple skin discoloration, staggering
gait and diarrhea, and shivering) (Table 1 and Figure 5).
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Table 1. Swine survival and fever response following infection with ASFV-G-∆MGF360-1L and
parental ASFV-G.

Fever

Virus
(102 HAD50)

No. of
Survivors/Total

Mean Time to
Death

(±SD 1)

No. of Days to
Onset

(±SD 1)

Duration
No. of Days

(±SD 1)

Maximum
Daily Temp, ◦F

(±SD 1)

ASFV-G-∆MGF360-1L 0/5 7 (0) 5 (0) 2 (0) 106.18 (0.61)
ASFV-G 0/5 6.4 (0.55) 4.4 (0.55) 2 (1) 106 (0.69)

1 SD (Standard Deviation).
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Figure 5. Evolution of mortality (A) and body temperature (B) in animals (5 animals/group) IM
inoculated with 102 HAD50 of either ASFV-G-∆MGF360-1L (filled symbols) or parental ASFV-G
(open symbols). No significant differences in rectal temperatures between groups of pigs are found
at any sample time tested using the Holm–Sidak method (α = 0.05) without assuming a consistent
standard deviation. All calculations were conducted using the software Graphpad Prism version 8.

The clinical disease rapidly evolves into a severe form, with all animals euthanized in extremis
by day 6–7 pi. Interestingly, animals inoculated with ASFV-G-∆MGF360-1L present with a clinical
disease almost indistinguishable from that observed in animals infected with ASFV-G. Both the time to
presentation and severity of the clinical signs resemble those present in animals inoculated with the
parental virus. The deletion of the MGF360-1L gene from the ASFV-G genome does not significantly
alter virulence.

Viremias in animals IM inoculated with parental ASFV-G showed expected high titers
(107–108 HAD50/mL) on day 4 pi, remaining high until day 7 pi, when all animals were euthanized.
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Similarly, animals infected with ASFV-G-∆MGF360-1L present by day 4 with viremia values as high as
those found in the ASFV-G-infected group (Figure 6).
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Figure 6. Viremia titers detected in pigs IM inoculated with 102 HAD50 of either ASFV-G-∆MGF360-1L
(filled symbols) or ASFV-G (empty symbols). Each symbol represents the average of animal titers in
each of the groups. Sensitivity of virus detection: > log10 1.8 TCID50/mL. No significant differences in
viremia values between both groups of pigs are found at any sample time tested using the Holm–Sidak
method (α = 0.05) without assuming a consistent standard deviation. All calculations were conducted
on the software Graphpad Prism version 8.

In summary, we determined that ASFV-G-∆MGF360-1L is a relatively conserved protein among
most ASFV isolates, which is expressed as an early protein during virus replication. It is a non-essential
gene since its deletion from the ASFV-G genome does not significantly alter virus replication in vitro
or in vivo. Importantly, MGF360-1L is not critical for ASFV virulence in swine, as the deletion mutant
ASFV-G-∆MGF360-1L has similar pathogenesis as the parental ASFV-G. It is interesting that although
a group of MGFs is involved in virulence in swine [7,29,31–35], individual gene deletion so far cannot
be shown to reduce virulence [3,11].

To date, no reports characterizing the functionality of ASFV-G-∆MGF360-1L have been published.
A large deletion (approximately 14.5 Kb) in the left end of the Estonian isolate genome (a derivative
of the ASFV Georgia 2007 isolate) is associated with decreased virulence in domestic swine [36].
Twenty-six genes, including MGF360-1L, were naturally deleted in this isolate, making it difficult to
evaluate the contribution of MGF360-1L to virus virulence. From our results, it is evident that the
deletion of the MGF360-1L gene by itself does not affect virus replication or disease phenotype in
domestic swine. As it has been shown in many studies evaluating genes that are critical for virus
replication and/or pathogenesis, the functional assessment of previously uncharacterized ASFV genes
is critical to advance the development of novel experimental vaccines.
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