

Article

Diversity of tRNA Clusters in the Chloroviruses

Garry A. Duncan¹, David D. Dunigan^{1,2} and James L. Van Etten^{1,2,*}

- ¹ Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA; gduncan2@unl.edu (G.A.D.); ddunigan2@unl.edu (D.D.D.); jvanetten1@unl.edu (J.L.V.E.)
- ² Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0833, USA
- * Correspondence: jvanetten1@unl.edu; Tel.: (+1)-402-472-3168

Supplementary Material

Table S1. Accession numbers for 41 chloroviruses grouped into three clades that have three different hosts

Chloro-	Accession	Sampling Location ¹	Chlorovirus group	
viruses	number	Samping Location	Cinorovirus group	
MA-1E	JX997173	Massachussetts, USA	NC64A	
CvsA1	JX997165	Sawara, Japan	NC64A	
CviKI	JX997162	Kyoto, Japan	NC64A	
KS1B	JX997171	Kansas, USA	NC64A	
PBCV-1	JF411744.1	North Carolina, USA	NC64A	
IL-3A	JX997169	Illinois, USA	NC64A	
MA-1D	JX997172	Massachussetts, USA	NC64A	
NE-JV-4	JX997179	Nebraska, USA	NC64A	
AN69C	JX997153	Canberra, Australia	NC64A	
NY-2B	JX997182	New York state, USA	NC64A	
IL-5-2s1	JX997170	Illinois, USA	NC64A	
NY-2A	DQ491002.1	New York state, USA	NC64A	
NYs-1	JX997183	New York state, USA	NC64A	
AR158	DQ491003.2	Buenos Aires, Argentina	NC64A	
Fr5L	JX997167	France	Pbi	
CZ-2	JX997166	Czech Republica	Pbi	
MT325	DQ491001.1	Montana, USA	Pbi	
Can18-4	JX997157	Canada	Pbi	
CVB-1	JX997160	Berlin, Germany	Pbi	
FR483	DQ890022.1	France	Pbi	
CVG-1	JX997161	Göttingen, Germany	Pbi	
CVR-1	JX997164	Rauschenberg, Germany	Pbi	
CVA-1	JX997159	Amönau, Germany	Pbi	
AP110	JX997154	Unknown	Pbi	
CVM-1	JX997163	Marburg, Germany	Pbi	
NW665.2	JX997181	Norway	Pbi	
OR0704.2.2	JX997184	Oregon, USA	Pbi	
NE-JV-1	JX997176	Nebraska, USA	Pbi	
OR0704.3	JX997185	Oregon, USA	SAG	
Can0610SP	JX997156	British Columbia, Canada	SAG	
NE-JV-2	JX997177	Nebraska, USA	SAG	
NE-JV-3	JX997178	Nebraska, USA	SAG	
ATCV-1	EF101928	Stuttgart, Germany	SAG	
WI0606	JX997187	Wisconsin, USA	SAG	
MO0605SPH	JX997175	Missouri, USA	SAG	
GM0701.1	JX997168	Guatemala	SAG	
Br0604L	JX997155	SaoPaolo, Brazil	SAG	
TN603.4.2	JX997186	Tennessee, USA	SAG	
Canal-1	JX997158	Nebraska, USA	SAG	

MN0810.1	JX997174	Minnesota, USA	SAG
NTS-1	JX997180	Nebraska, USA	SAG

¹Sampling locations obtained from Jeanniard et al. [13].

Table S2. NC64A viruses: 5' and 3' genes closest to the tRNA gene cluster.

NC64A virus	5' upstream (~1068 nt)	5' upstream (~291 nt)	tRNA cluster	3' downstream (~1299 nt)	3' downstream (~1140)	3' downstream¹ (~1191 nt)
MA-1E	390L	393R			396R	407L
CvsA1	361L	364R			368R	380L
CviKI	353L	356R			359R	370L
KS1B	310L	311R				314L
PBCV-1	A328L	A329R		A330R	·	A333L
IL-3A	368L	369R		371R	375R	386L
MA-1D	347L				355R	367L
NE-JV-4	384L	385R		388R		390L
AN69C	377L	378R		380R	384R	395L
NY-2B	465L				473R	484L
IL-5-2s1	484L				492R	503/506L
NY-2A	B458L	B460R			B465R	B480L
NYs-1	474L				483R	495L
AR158	C406L				C413R	C423L

The genes in each column are orthologs to one another; approximate nt length of each ortholog is noted in parentheses. The genes in bold font are the closest 5' and 3' genes for each of the 14 NC64A viruses. There is a common tRNA cluster location among the NC64A viruses. Red column heading and column are used to indicate the position of the tRNA clusters in the viral genomes relative to the surrounding non-tRNA genes.

¹This column is included because the KS1B gene 314L is the closest 3' gene. Orthologs of 314L are present in the other NC64A, but they are further downstream.

Table S3. SAG viruses: 5' and 3' genes closest to the tRNA gene cluster.

SAG viruses	5' upstream (~285 nt)	5' upstream (~837 nt)	tRNA cluster	3' downstream (~1041 nt)	3' downstream (~3,774 nt)
OR0704.3	307R				301L
Can0610SP	308R			309R	313L
NE-JV-2	338R	339R			341L
NE-JV-3	301R				303L
ATCV-1	Z254R				Z257L
WI0606	329R				332L
MO0605SPH	313R				316L
GM0701.1	305R			309R	312L
Br0604L	306R				308L
TN603.4.2	303R				307L
Canal-1	302R				304L
MN0810.1	337R				340L
NTS-1	345R				351L

The genes in each column are orthologs to one another; approximate nt length of each ortholog is noted in parentheses. The genes in bold font are the closest 5' and 3' genes for each of the 13 SAG viruses. There is a common tRNA cluster location among the SAG viruses. Red column heading and column are used to indicate the position of the tRNA clusters in the viral genomes relative to the surrounding non-tRNA genes.

Table S4. Pbi viruses: 5' and 3' genes closest to the tRNA gene cluster.

Pbi viruses	5' upstream	5' upstream	5' upstream	5' upstream	tRNA	3' downstream	3' downstream	3' downstream	3' downstream
Pbi viruses	(~726 nt)	(~270 nt)	(870 nt)	(267 nt)	cluster	(789 nt)	(~297 nt) ¹	(~420 nt)	(~552 nt)
Fr5L	393R	397R						401L	
CZ-2	352R	355R						358L	
MT325	M3422R						M344L		
Can18-4	414R				418R		419L	422L	
CVB-1	406R				408R		411L	413L	
FR483	N351R						N345L	n356L	
CVG-1	385R						390L	392L	
CVR-1	400R						404L	406L	
CVA-1	392R						396L	398L	
AP110A	403R					407R	411L	413L	
CVM-1	421R						425L	428L	
NW665.2	375R				378R		381L	383L	
OR0704.2.2	349R	352R	353R					356L	
NE-JV-1				683R	688R				690L

The genes in each column are orthologs to one another; approximate nt length of each ortholog is noted in parentheses. There is a common tRNA cluster location among the Pbi viruses, with the exception of NE-JV-1. Several viruses have protein-encoding genes within the tRNA cluster (blue font), which are not orthologous to one another. The HGT events that led to these gene insertions resulted in the loss of one or more tRNA genes in each case. Red column heading and column are used to indicate the position of the tRNA clusters in the viral genomes relative to the surrounding non-tRNA genes.

¹MT325 and FR483 have longer genes (525 nt) but the core of 297 is present with high identity



	D 3	D D
	Box A	Box B
	TRGYNNARNNG	RGTTCRANTCC
ATCV1:	GCTCCCATAGCTCAGTTGGTTAGAGCGCGACTTTA	GT AAGGTCGAGGTCCGTGGTTCGAATCCGCGTGGGAGCA
WI0606:	GCTCCCATAGCTCAGTTGGTTAGAGCGCGACTTTA	GT AAGGTCGAGGTCCGTGGTTCGAATCCGCGTGGGAGCA
OR0704.3:	GCTCCCATAGCTCAGTTGGTTAGAGCGCGACTTTA	GT AAGGTCGAGGTCCGTGGTTCGAATCCGCGTGGGAGCA
NTS-1:	GCTCCCATAGCTCAGTTGGTTAGAGCGCGACTTTA	GT AAGGTCGAGGTCCGTGGTTCGAATCCGCGTGGGAGCA
NE-JV-3:	GCTCCCATAGCTCAGTTGGTTAGAGCGCGACTTTA	GT AAGGTCGAGGTCCGTGGTTCGAATCCGCGTGGGAGCA
NE-JV-2:	GCTCCCATAGCTCAGTTGGTTAGAGCGCGACTTTA	GT AAGGTCGAGGTCCGTGGTTCGAATCCGCGTGGGAGCA
MO0605SH:	GCTCCCATAGCTCAGTTGGTTAGAGCGCGACTTTA	GT AAGGTCGAGGTCCGTGGTTCGAATCCGCGTGGGAGCA
Can0610SP:	GCTCCCATAGCTCAGTTGGTTAGAGCGCGACTTTA	GT AAGGTCGAGGTCCGTGGTTCGAATCCGCGTGGGAGCA
TN703.4.2:	GCTCCCATAGCTCAGATGGTTAGAGCGCGACTTTA	GT AAAGTCGAGGTCCGTGGTTCGAATCCGCGTGGGAGCA
GM0701.1:	GCTCCCATAGCTCAGATGGTTAGAGCGCGACTTTA	GT AAAGTCGAGGTCCGTGGTTCGAATCCGCGTGGGAGCA
Br0604L:	GCTCCCATAGCTCAGATGGTTGGAGCGCGACTTTA	GT AAGATCGAGGTCCGTGGTTTGAATCCGCGTGGGAGCA
MN0810.1:	GCTCCTATAGCTCAGTGGAAGAGCGCGACTTTA	GT AAGGTCGAGGCCCGTGGTTCGACCCCACGTGGGAGCA
Canal-1:	GCTCCTATAGCTCAGCGGTAGAGCGCGACTTTA	GTAAGGTCGAGGTCCATGGTTC-AACCCGTGTGGGAGCA

Figure S1. Alignment of tRNA^{Thr} genes from 13 SAG viruses. The two rectangles, known as Box A and B, are recognized by transcription factor IIIC, critical to the eventual attachment of RNA polymerase III. The eukaryotic consensus sequences reported by Diebel et al. [28] are above the rectangles. The 5' to 3' anticodon in identified in bold font. Invariant bases for Box A and B are highly conserved. The tRNA^{Thr} genes for the SAG viruses are orphaned from the tRNA clusters, but their high level of sequence identity suggests that they are transcribed by RNA polymerase III independent of their respective tRNA clusters.

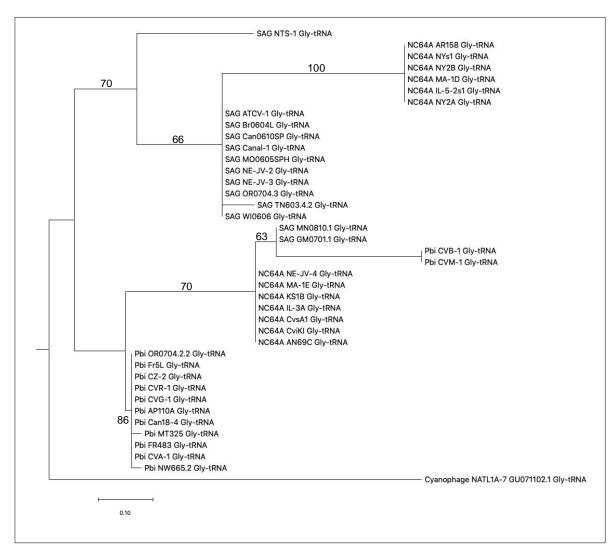


Figure S2. Phylogenetic tree of tRNA^{Tyr} genes from 35 chloroviruses representing all three clades, NC64A, Pbi and SAG. Six chloroviruses lacked the tRNA^{Tyr} gene. The tRNA^{Tyr} gene from *E. coli* phage rv5 was used as the outgroup. One subclade of NC64A viruses is more similar to SAG viruses, while the other subclade of NC64A viruses is more similar to the Pbi viruses. Bootstrap values greater than 50 are reported. The sequences were aligned with MUSCLE and the trees were constructed using the maximum.

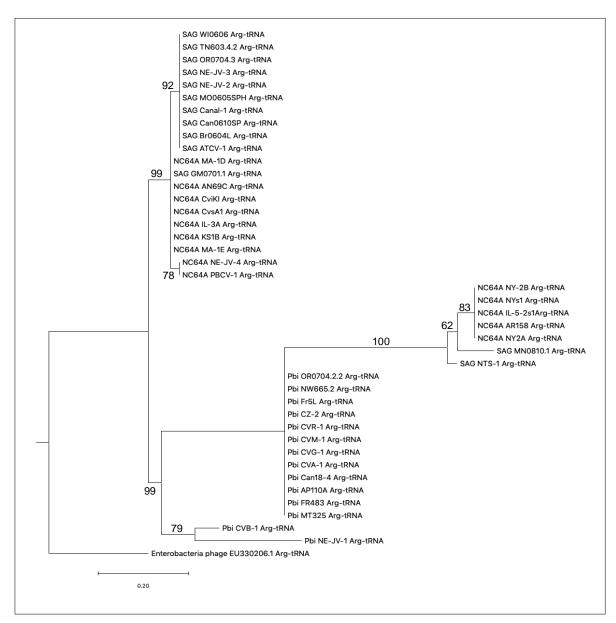


Figure S3. Phylogenetic tree of tRNA^{Gly} genes from 39 chloroviruses representing all three clades, NC64A, Pbi and SAG. Two chloroviruses lacked the tRNA^{Gly} gene. The tRNA^{Gly} gene from cyanophage NATL1A was used as the outgroup. One NC64A subclade is more similar to SAG viruses than the other subclade of NC64A viruses. Two SAG viruses and two Pbi viruses are more similar to a second subclade of NC64A than they are to viruses in their own clades. Bootstrap values greater than 50 are reported. The sequences were aligned with MUSCLE and the trees were constructed using the maximum likelihood algorithm.

Figure S4. Phylogenetic tree of tRNA^{Arg} genes from all 41 chloroviruses representing all three clades, NC64A, Pbi and SAG. The tRNA^{Arg} gene from enterobacteria phage EU330206.1 was used as the outgroup. One NC64A subclade and two SAG viruses are more similar to Pbi viruses than they are to viruses in their own clade. Bootstrap values greater than 50 are reported. The sequences were aligned with MUSCLE and the trees were constructed using the maximum likelihood algorithm.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).