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Abstract: Despite their ecological importance, nothing is known about the diversity and abundance of
RNA viruses in termites (Termitoidae). We used a metatranscriptomics approach to determine the RNA
virome structure of 50 diverse species of termite that differ in both phylogenetic position and colony
composition. From these samples, we identified 67 novel RNA viruses, characterized their genomes,
quantified their abundance and inferred their evolutionary history. These viruses were found within
or similar to those from the Togaviridae, Iflaviridae, Polycipiviridae, Flaviviridae, Leviviridae, Narnaviridae,
Mitoviridae, Lispivirdae, Phasmaviridae, Picobirnaviridae and Partitiviridae. However, all viruses identified
were novel and divergent, exhibiting only 20% to 45% amino acid identity to previously identified
viruses. Our analysis suggested that 17 of the viruses identified were termite-infecting, with the
remainder likely associated with the termite microbiome or diet. Unclassified sobemo-like and
bunya-like viruses dominated termite viromes, while most of the phylogenetic diversity was provided
by the picobirna- and mitovirus-like viruses. Of note was the identification of a novel flavi-like virus
most closely related to those found in marine vertebrates and invertebrates. Notably, the sampling
procedure had the strongest association with virome composition, with greater RNA virome diversity
in libraries prepared from whole termite bodies than those that only sampled heads.
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1. Introduction

Invertebrates, particularly insects, are the most diverse lineage of animals [1]. This diversity is
likely to be paralleled by the diversity of their viromes, rendering invertebrates a potentially rich
resource of novel viruses. The metatranscriptomic (i.e., total RNA sequencing) study of a variety of
invertebrate taxa has revealed that these organisms harbor an enormous diversity of RNA viruses,
currently accounting for ~36% of the complete RNA virus genomes in the RefSeq database [2]. Not only
are invertebrate RNA viruses diverse, but the viromes of individual species are often complex with
levels of abundance that are often far higher than those seen in vertebrate species [3,4]. Despite this
metagenomic revolution, the current sample of the virosphere remains fragmentary, leading to
substantial gaps in our understanding of RNA virus diversity, evolution and ecology. Evidently,
a simple first step in changing this picture is to characterize more of those RNA viruses present
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in invertebrates, which in turn will help to establish a new framework for studying virus ecology
and evolution.

One group of invertebrate organisms of particular interest are termites (Termitoidae,
order Blattodea). These hugely important animals can be divided into two groups: (i) the paraphyletic
lower termites that are wood-feeding and largely rely on gut protists (Parabasalia and
Oxymonadida) [5,6] to metabolize their diet and (ii) the monophyletic higher termites that lost
protozoa, entirely rely on gut bacteria and archaea to metabolize their diet and include species that
can feed on soil, humus, grass or wood [6,7]. There are more than 3000 currently known species
of termites, and they are found on all continents except Antarctica, although most abundantly in
warm/tropical areas [5]. Regardless of termite group, each worker in a colony harbors a complex
bacterial community [6,8]. These features, along with high host densities and group living, make it
reasonable to expect high levels of virus diversity and transmission in termite populations, and that
their RNA virome will contain a variety of plant, bacterial, fungal and protist-associated viruses
alongside those that infect termites themselves [9–11]. For example, bees are similarly social insects
with a range of associations to microorganisms, and metatranscriptomic studies have revealed that
they harbor more complex viromes than most insects [12–15].

To date, however, remarkably little is known about termite viruses, with only a small number
of DNA viruses identified: entomopoxvirus [16,17] and nuclear polyhedrosis virus [18] have been
identified in Reticulitermes flavipes and Kalotermes flavicollis, Caudovirales bacteriophage were found
infecting termite symbionts [8,19,20], and single-stranded DNA viruses from the families Circoviridae,
Microviridae, and Genomviridae have been detected in several termite species [8,21]. In marked contrast,
there has been no research into the RNA virome of termites. At the time of writing, the closest taxa
examined are cockroaches (from the same order, Blattodea), in which 4 viruses were identified in
one study [4] and 12 from another [22]. These viruses fall within the Narnaviridae, Phasmaviridae,
Xinmoviridae, Phenuiviridae, Rhabdoviridae, Orthomyxoviridae, and chuviruses, along with a single
orthomyxo-like virus and a single nairo-related virus. Members of the Parvoviridae (ssDNA) have also
been found in cockroaches [23,24].

The central aim of this study was to come to a better understanding of the diversity and abundance
of RNA viruses associated with termites. As well as documenting virus diversity, we addressed
whether the diversity of RNA viruses reflects termite phylogeny and/or host ecology. To this end,
we performed a metatranscriptomic analysis of a range of termite species that represent key points in
the termite phylogeny.

2. Materials and Methods

2.1. Termite Collection, RNA Isolation and Sequencing

Australian samples, of which there were 10, were collected from the termite species Occasitermes
sp., Coptotermes acinaciformis, Heterotermes ferox and Schedorhinotermes intermedius colonies at Manly
Vale (New South Wales, Australia) in August 2016. Similarly, samples from Cryptotermes secundus
and Mastotermes darwiniensis colonies were collected from Darwin (Northern Territory, Australia) in
May 2016. Samples comprised more than five individual termites from an individual colony and
were immediately stored at −80 ◦C. Two samples were collected for each of Occasitermes sp., H. ferox
and S. intermedius, representing two separate colonies. Members of M. darwiniensis were collected
individually and later pooled to produce two libraries: library 19, comprising worker caste termites,
and library 20 that consists of soldier caste termites.

All of these Australian termites (i.e., libraries 3–4, 11–15, 18–20) were subject to a “whole-body”
procedure in which they were homogenized using a TissueRuptor (QIAGEN, Hilden, Germany),
and RNA was extracted using the RNeasy Plus Mini Kit (QIAGEN, Hilden, Germany). RNA was
depleted of ribosomal (r) RNA using the Ribo-Zero Gold rRNA Removal Kit (Epidemiology) (Illumina,
San Diego, CA, USA) and cDNA libraries were prepared with the TruSeq Total RNA Library Prep
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kit (Illumina, San Diego, CA, USA). Libraries were sequenced on an Illumina HiSeq 2500 platform
(100 bp paired-end reads) (Illumina, San Diego, CA, USA). The Sequence Read Archive (SRA) accession
numbers for these libraries are: SRR8924822-SRR8924831.

The second set of termites comprised 44 samples, of which 10 produced libraries containing
credible RNA viruses (libraries 1, 2, 5–10, 16–17). These were collected as described in Bucek et al. [7]
from various geographic locations (Supplementary Table S1) and are designated as “head-only”
libraries. Again, termites were collected and stored at −80 ◦C until RNA extraction. Rather than
utilizing whole body tissue samples, the heads of 2–15 termites were removed and RNA extracted using
a standard phenol–chloroform procedure with TRIzol reagent (Life Technologies, Grand Island, NY,
USA). RNA samples were poly(A)+ enriched and cDNA libraries were sequenced using an Illumina
HiSeq 2500 platform (125 bp paired-end reads) (Illumina, San Diego, CA, USA). The SRA accession
numbers for these libraries are: SRR12736817, SRR9968561-SRR9968586, SRR9968593-SRR9968607,
SRR9968609, and SRR9968615 (Supplementary Table S1).

2.2. Assembly and Virus Identification

Sequenced reads were trimmed using Trimmomatic and de novo assembled using Trinity
(2.5.1) [25]. BLASTn (2.6.0) and diamond BLASTx (0.9.10) [26] searches on contigs were used to
identify contigs that hit to viruses. These putative contigs were then manually parsed to identify
viruses. Only contigs with credible, significant BLAST hits (e-value < 1 × 10−5) and without non-viral
CD-search [27] hits were retained. GeneMark.hmm PROKARYOTIC v3.26 [28] was used to predict virus
open reading frames (ORFs), the amino acid sequences of which were then extracted. To estimate virus
abundance in each library, the Expectation-Maximization (RSEM; 1.3.0) [29] tool was used to determine
the number of transcripts per million (TPM) for all contigs. Detailed descriptions of the final set of
sequences with sufficient identity to viruses that we refer to here as “viruses”, including sequenced
genome length, abundance and virus group assignment, are provided in Supplementary Table S2.
The consensus sequences of all novel viruses identified here have been submitted to GenBank and
assigned accession numbers MW052060- MW052147 and are also described in Supplementary Table S2.

2.3. Virus Abundance Measurements

The abundance level of each virus was estimated as the percentage of viral reads from the total
read count. Abundances greater than 0.01% were arbitrarily considered as representing a “high” virus
abundance, values between 0.01% and 0.001% were considered as “moderate” abundance, while those
less than 0.001% were considered as “low” abundance. To reduce the impact of false-positives due to
index-hopping, we assumed that viruses were the result of contamination from another library if the
total read count was less than 0.1% of the highest count for that virus among the other libraries. This
led to the removal of one putative Pafsystermes virus (326 reads in library 20 compared to ~180,000 in
libraries 14 and 15).

2.4. Viruses Excluded from the Analysis

A number of potential virus sequences were excluded: contaminating RNA viruses,
likely endogenous RNA viruses and all hits to DNA viruses. Contaminating RNA viruses were
bovine viral diarrhea virus 1 and human picobirnavirus. Sequences with significant BLAST hits but
lacking a complete genome in high abundance and containing indels that interrupt the ORF predictions
were considered to be endogenous and excluded. In particular, almost all samples contained several
sequences with similarity to viruses in the Mono–Chu group of RNA viruses that appeared to be
endogenous: Hubei chuvirus, Hubei chuvirus 4, Hubei oodonate virus 11, Hubei rhabdo-like virus 3,
Lampyris noctiluca chuvirus-like virus 1, Wuchan romanomermis nematode virus 3 and Hubei
orthoptera virus 5. The majority of these sequences had no significant full length (or close to full
length) hits to the National Center for Biotechnology Information (NCBI) conserved domain database
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(CDD) and/or no gene-sized ORFs. Because of the difficulty in distinguishing DNA viruses from host
genes, particularly those with double-stranded genomes, these were similarly excluded.

2.5. Phylogenetic Analysis

All viral ORFs containing sequences corresponding to the virus RNA-dependent RNA polymerase
(RdRp) were used to infer maximum likelihood phylogenetic trees based on their amino acid
sequences. For ease of analysis, prior to the sequence alignment, RdRp amino acid sequences
were placed into the following groups defined previously [4]: the Flaviviridae, Hepe–Virga,
Bunya–Arena, Mono–Chu, Luteo–Sobemo, Picorna–Calici, Narna–Levi and Partiti–Picobirna groups.
Multiple sequence alignments were constructed using MAFFT (v7.402) [30] with 1000 iterative
refinements. Alignments were then trimmed using TrimAL (v1.4.1) [31] to remove poorly aligned
sequence positions. Two phylogenetic trees were then estimated for each group of viruses: (i) An initial
phylogeny to place the termite viruses in their overall context was inferred encompassing the entire
virus group as described above, and (ii) a second more specific tree was made for all clades of termite
viruses and their closest relatives. Viruses with replicase sequences sharing >95% amino acid similarity
were considered to be members of the same species.

Phylogenetic trees were estimated using the maximum likelihood method available in PhyML [32]
employing the Le-Gascuel (LG) model of amino acid substitution, Subtree-Pruning-Regrafting (SPR)
tree topology searching, with Shimodaira–Hasegawa (SH)-like approximate likelihood ratio test
(aLRT) branch supports used to assess node robustness. The R packages “Analyses of Phylogenetics
and Evolution” (APE; v5.3) [33], ggtree (v1.16.6) [34] and phytools (v0.6.99) [35] were used for tree
manipulation and final figure production.

2.6. Statistical Analysis of Abundance and Diversity

The R packages Vegan (v2.5-6) [36] and Phyloseq (1.30.0) [37] were used to calculate alpha- and
beta-diversity statistics for these viromes. The multcomp (v1.4-13) [38] package was used for statistical
tests, and ggplot2 (v3.3.0) [39] was used for data visualization. Analysis of variance (using a Chi-square
test) of generalized linear models was used to check for significant relationships between termite
taxonomy, sampling procedure, termite diet and source country and a variety of ecological measures
(total virus abundance and virome diversity and richness).

2.7. Statistical Analysis of Abundance and Diversity

Virus names were chosen to provide meaningful information on the host sample in each case,
while simultaneously being both succinct and distinctive as recommended by the International
Committee on Taxonomy of Viruses (ICTV). Accordingly, all virus names were constructed with a
unique, random prefix combined with the “-systermes” suffix—“-sys-”, from Greek, meaning “with”,
and “-termes”, from Latin, meaning “woodworm” and the root of the word termite. We therefore use
“-systermes” to convey that the named virus was obtained from within termites and/or the community
of organisms associated with termites.

3. Results

3.1. Identification and Annotation of RNA Viruses

We collated samples from 50 species of termite, each of which contained 2 to 25 individual termites.
From these samples, we constructed 54 RNA sequencing libraries, with most species represented by a
single library (Supplementary Table S1). Libraries produced via the head-only procedure enabled a
better association of viruses with the termite host, although they generated fewer data. Across both
procedures, the 54 samples yielded an average of 42 million and 34 million sequencing paired-reads,
which we reconstructed into an average of 497,862 and 166,012 contigs, for the whole-body and
head-only libraries, respectively.
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3.2. RNA Virus Diversity in Termites

Overall, we identified 67 novel viruses (i.e., novel sequences with virus identity) from 20 sequencing
libraries (Figure 1, Table 1 and full details in Supplementary Table S2), which could be placed into
9 phylogenetic groups (Figure 2). As many viruses had close relatives to taxonomically unassigned
viruses determined by Shi et al. [4], we used similar groupings of virus families to aid identification.
In total, 33 positive-sense single-stranded (ss) RNA virus genomes were identified and assigned
to six groups based on phylogenetic analysis: the Hepe–Virga, Luteo–Sobemo, Picorna–Calici,
Narna–Levi and Flaviviridae groups [4]. Similarly, four negative-sense ssRNA virus genomes were
recovered and assigned to the Mono–Chu and Bunya–Arena groups, while 30 double-stranded
(ds) RNA viruses were identified and assigned to the Partiti–Picobirna group. Within these major
phylogenetic groups, the 67 viruses identified here were assigned to 21 clades that enabled a more
specific classification and interpretation (Figures 3–7).
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contaminating RNA viruses, endogenous viruses, retroviruses and any hits to DNA viruses (see 
Methods). Overall, an average of 68% of contigs per sample was unidentified (no significant BLAST 
hit), and 27.4% hit host sequences (i.e., from the phylum Arthropoda), 1.3% hit bacterial sequences 
and 0.024% of all contigs had a significant hit to a virus genome. After predicting open reading 
frames (ORFs) for contigs determined to represent true virus genomes, CD-search hits were used for 
annotation, and the predicted replicase genes were incorporated into phylogenetic trees to 
determine their identity. 

Figure 1. Bar graph depicting the number of reads in each sequencing library, below the x-axis, and the
percentage of these reads that map to viruses described in this study, above the x-axis. Each library is
labeled by name and termite species sampled. Bars are colored by sampling procedure. Sequenced
contigs were annotated using BLAST (BLASTx and BLASTn) and conserved domain-based searches
(CD-search) to identify putative viral contigs, excluding those matching commonly contaminating
RNA viruses, endogenous viruses, retroviruses and any hits to DNA viruses (see Methods). Overall,
an average of 68% of contigs per sample was unidentified (no significant BLAST hit), and 27.4% hit
host sequences (i.e., from the phylum Arthropoda), 1.3% hit bacterial sequences and 0.024% of all
contigs had a significant hit to a virus genome. After predicting open reading frames (ORFs) for
contigs determined to represent true virus genomes, CD-search hits were used for annotation, and the
predicted replicase genes were incorporated into phylogenetic trees to determine their identity.
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Table 1. Description of the termite samples used to produce the RNA sequencing libraries generated here.

Termite Species Termite Family Country Diet Procedure Library SRA Accession

Basidentitermes
aurivillii Termitidae Kenya Soil Head-only 1 SRX6715944

Amitermes sp. Termitidae Australia Wood Head-only 2 SRX6715975
Occasitermes sp.1 Termitidae Australia Wood Whole-body 3 1 SRR8924823
Occasitermes sp.1 Termitidae Australia Wood Whole-body 4 1 SRR8924822
Constrictotermes

cavifrons Termitidae French
Guiana Lichen Head-only 5 SRX6715954

Cephalotermes
rectangularis Termitidae Cameroon Wood Head-only 6 SRX6715969

Labiotermes labralis Termitidae French
Guiana Soil Head-only 7 SRX6715938

Cornitermes pugnax Termitidae French
Guiana Wood Head-only 8 SRX6715963

Embiratermes
neotenicus Termitidae French

Guiana Soil Head-only 9 SRX6715941

Microcerotermes sp Termitidae French
Guiana Wood Head-only 10 SRX6715964

Coptotermes
acinaciformis Rhinotermitidae Australia Wood Whole-body 11 SRR8924826

Heterotermes ferox Rhinotermitidae Australia Wood Whole-body 12 1 SRR8924824
Heterotermes ferox Rhinotermitidae Australia Wood Whole-body 13 1 SRR8924825
Schedorhinotermes

intermedius Rhinotermitidae Australia Wood Whole-body 14 1 SRR8924829

Schedorhinotermes
intermedius Rhinotermitidae Australia Wood Whole-body 15 1 SRR8924828

Termitogeton planus Rhinotermitidae West Papua,
Indonesia Wood Head-only 16 SRX6715976

Epicalotermes kempae Kalotermitidae Kenya Wood Head-only 17 SRX6715943
Cryptotermes secundus Kalotermitidae Australia Wood Whole-body 18 SRR8924827

Mastotermes
darwiniensis Mastotermitidae Australia Wood Whole-body 19 2 SRR8924831

Mastotermes
darwiniensis Mastotermitidae Australia Wood Whole-body 20 2 SRR8924830

1 Libraries sampled from two separate colonies of the same species, 2 Library 19 = worker caste termites sampled,
Library 20 = soldier caste termites sampled.

We also attempted to infer host–virus relationships (i.e., which of the viruses identified likely infect
termites themselves as opposed to elements of their diet and other microorganisms), although these are
necessarily tentative. Host assignments were informed by virus abundances and the host associations
of related viruses and the procedure used to produce each sequencing library. We assume that viruses
at a high abundance are more likely to be infecting the termite host, particularly when these viruses are
closely related to arthropod-associated viruses (Figure 8) and found in head-only samples (where the
gut, containing possible symbiont hosts, is excluded). We now discuss each of the major groups of
viruses in turn.

3.3. Positive-Sense ssRNA Viruses

3.3.1. Hepe–Virga Viruses

Two novel viruses were identified within the Hepe–Virga group (Figures 2 and 3). Of these,
the newly defined “Mohsystermes virus” is grouped with members of the Idaeovirus genus, a sparsely
sampled group of plant-infecting viruses, and found at a moderate abundance of 0.0087% of the total
reads in the H. ferox library 12 (Figures 3A and 9). Mohsystermes virus is considered to have a close
to complete genome, as it has a similar total genome size (9888 nt) to its relatives Brown algae RNA
virus 1 (BAV1), Plasmopara viticola associated virga-like virus 1 (PVV) and Raspberry bushy dwarf
virus. Similar to BAV1 and PVV, Mohsystermes virus is lacking a significant hit to a methyl-transferase
(Supplementary Figure S1). As Mohsystermes virus has a phylogenetic background with an association
with plant hosts and is found at a moderate abundance, we infer the host for this virus to be a
constituent of the termite diet.
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Figure 2. Overall phylogenetic trees representing each of the nine groups of RNA viruses (Table 2).
Phylogenies were inferred using the gene encoding the RdRp, with the virus taxa (usually genera)
identified in this study shown in red. Taxonomic groups of interest are labeled on the trees for reference.
The sequence alignments used to infer the individual phylogenies are described in Supplementary
Table S3. All trees are unrooted with branch length scaled to the number of amino acid substitutions
per site.

Tohsystermes virus is the second virus identified in this group and has a far greater certainty
with respect to both its host association and genome completeness. This virus has a 10,376 nt genome
with predicted domains similar to its closest relative, the Myriapod-associated Hubei virga-like virus
8, which has a 10,433 nt genome and 33.8% amino acid identity with Tohsystermes virus (Figure 3B,
Supplementary Figure S1). As Tohsystermes virus falls within the insect-infecting Negev-like virus
group that contains insect-associated viruses, has a very high abundance (0.54%) and was obtained from
the head-only Constrictotermes cavifrons library, we suggest that it is likely a truly termite-infecting virus.

3.3.2. Luteo–Sobemo Viruses

The Luteo–Sobemo group comprises the plant-infecting Luteoviridae and Sobemoviridae families,
although the majority of viruses in this group are formally unassigned (Figure 2). Indeed, it is striking
that the five Luteo–Sobemo viruses identified in this study—Pafsystermes virus, Kofsystermes virus,
Mafsystermes virus, Nufsystermes virus and Wifsystermes virus—form a clade that is markedly
divergent from either family: These viruses were placed with a set of unassigned arthropod-associated
viruses found by Shi et al. [4] (Figure 3C).

Almost all sobemo-like virus genomes identified are close to complete with a 2500 nt to 3000 nt
segment, containing a RdRp domain (CDD: cl02808) and a smaller second segment, with a viral
coat domain (CDD: cl29941) (Supplementary Figure S2). Notably, the ORF structure predicted for
Wifystermes virus requires the use of a variant genetic code in which UGA is translated as tryptophan.
This alternative codon is used in the yeast and mitochondrial genetic codes, both of which can be used
to predict ORFs in the other four sobemo-like viruses.
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Figure 3. Phylogenetic trees of the viruses newly discovered here and their relatives in the Hepe–
Virga and Luteo–Sobemo groups. Newly identified viruses are labeled with black text in the format 
“<Library # | Virus name>”, while related viruses are colored by their host association and are 
labeled in the format “<Replicase protein accession> | <Virus name>”. Black dots at tree nodes 
indicate high branch support (aLRT > 90). 

Figure 3. Phylogenetic trees of the viruses newly discovered here and their relatives in the Hepe–Virga
and Luteo–Sobemo groups. Newly identified viruses are labeled with black text in the format “<Library
#|Virus name>”, while related viruses are colored by their host association and are labeled in the format
“<Replicase protein accession>|<Virus name>”. Black dots at tree nodes indicate high branch support
(aLRT > 90).
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Figure 4. Phylogenetic trees of the viruses newly discovered here and their relatives in the Picorna–
Calici group. Newly identified viruses are labeled with black text in the format “<Library # | Virus 
name>”, while related viruses are colored by their host association and are labeled in the format 
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Figure 4. Phylogenetic trees of the viruses newly discovered here and their relatives in the Picorna–Calici
group. Newly identified viruses are labeled with black text in the format “<Library #|Virus name>”,
while related viruses are colored by their host association and are labeled in the format “<Replicase
protein accession>|<Virus name>”. Black dots at tree nodes indicate high branch support (aLRT > 90).
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Figure 5. Phylogenetic trees of the viruses newly discovered here and their relatives in the 
Flaviviridae and the Narna–Levi group. Newly identified viruses are labeled with black text in the 
format “<Library # | Virus name>”, while related viruses are colored by their host association and 
are labeled in the format “<Replicase protein accession> | <Virus name>”. Black dots at tree nodes 
indicate high branch support (aLRT > 90). 

Figure 5. Phylogenetic trees of the viruses newly discovered here and their relatives in the Flaviviridae
and the Narna–Levi group. Newly identified viruses are labeled with black text in the format
“<Library #|Virus name>”, while related viruses are colored by their host association and are labeled
in the format “<Replicase protein accession>|<Virus name>”. Black dots at tree nodes indicate high
branch support (aLRT > 90).
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Figure 6. Phylogenetic trees of the viruses newly discovered here and their relatives in the Mono–
Chu and Bunya–Arena groups. Newly identified viruses are labeled with black text in the format 
“<Library # | Virus name>”, while related viruses are colored by their host association and are 
labeled in the format “<Replicase protein accession> | <Virus name>”. Black dots at tree nodes 
indicate high branch support (aLRT > 90). 

Figure 6. Phylogenetic trees of the viruses newly discovered here and their relatives in the Mono–Chu
and Bunya–Arena groups. Newly identified viruses are labeled with black text in the format
“<Library #|Virus name>”, while related viruses are colored by their host association and are labeled
in the format “<Replicase protein accession>|<Virus name>”. Black dots at tree nodes indicate high
branch support (aLRT > 90).
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Figure 7. Phylogenetic trees of the viruses newly discovered here and their relatives in the Partiti–
Picobirna group. Newly identified viruses are labeled with black text in the format “<Library # | 
Virus name>”, while related viruses are colored by their host association and are labeled in the 
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Figure 7. Phylogenetic trees of the viruses newly discovered here and their relatives in the
Partiti–Picobirna group. Newly identified viruses are labeled with black text in the format
“<Library #|Virus name>”, while related viruses are colored by their host association and are labeled
in the format “<Replicase protein accession>|<Virus name>”. Black dots at tree nodes indicate high
branch support (aLRT > 90).
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Figure 8. Abundance scatterplot for the novel viruses identified here. Each virus is represented by a
single point, with the color indicating the taxonomic group the virus belongs to and the shape indicating
the host organism of the closest virus relative (arthropod hosts are shown as triangles). The y-axis
depicts the log abundance of the viruses, while the x-axis shows the translated amino acid percentage
identity for each virus from their closest relatives. The gray circle indicates a cluster of viruses in
relatively high abundance (generalized linear model, df = 81, p = 2 × 10−16) and closest relatives that
commonly have arthropod associations (Pearson’s Chi-sq, df = 81, p = 4.6 × 10−6).
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Figure 9. Heatmap showing number of virus genomes and their relative abundance in each library.
Virus clades are shown on the x-axis by decreasing total abundance, libraries are given on the right
y-axis ordered by the phylogenetic relationships of the termites in each library. The abundance, as a
percentage of the total reads, of each genome is presented as a heat map while the number of genomes
found for each group is labeled for each cell. The schematic phylogenetic tree on the left is adapted
from Bucek et al. [7] and represents phylogenetic relationships between termites associated with
each library. Tip nodes on this tree are colored by procedure used to collect termites and process
them to libraries: Blue nodes represent the “whole-body” procedure, while pink nodes represent the
“head-only” procedure.
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The five novel viruses identified here often dominate the viromes in which they are detected,
with abundance levels greater than 0.003% and as high as 0.94% (Figure 9). Interestingly, Nufsystermes
virus and Pafsystermes virus were each detected in the paired libraries from M. darwiniensis and
S. intermedius, respectively. Given the very high abundance of these viruses and their phylogenetic
relationship to arthropod-associated viruses (Figure 2), we suggest that the novel viruses in this group
infect the termite hosts themselves and specifically may be mitochondria-infecting based on their
variant genetic code.

3.3.3. Picorna–Calici Viruses

The Picorna–Calici group consists of the large and diverse Picornaviridae and the
vertebrate-infecting Caliciviridae, as well as a wide range of other classified and unclassified viruses.
We identified seven novel viruses (Moksystermes virus, Hiksystermes virus, Jaksystermes virus,
Nuksystermes virus, Laksystermes virus and Feksystermes virus) that fall within the Picorna–Calici
group, although these viruses occupied a range of phylogenetic positions and included some of the
most divergent ones found in this study (Figures 1 and 8). More precisely, the viruses identified here fall
within the insect-associated Iflaviridae (Figure 4A) and Polycipiviridae families within the Picorna–Calici
group (Figure 4B), as well as in clades of unassigned viruses (Figure 4C,D). Strikingly, all viruses are
found in high abundance (0.017% to 0.45%) (Figure 9), and the majority of the viruses related to the
Picorna–Caliciviruses found are associated with arthropods. Hence, we suggest that all of these viruses
are termite-infecting.

The majority of the Picorna–Calici group identified here are close to complete based on the length
of their genomes in comparison to their documented relatives, although they often lack significant hits
to known protein domains (Supplementary Figure S3). Jaksystermes virus is ~6000 nt longer than its
closest relative, the flea-associated Stamford virus [40]. In addition, Jaksystermes virus contains an
unusual hit to HAM1, CDD: cd00515. Nuksystermes virus and Laksystermes virus genomes have a
structure which is consistent with that of the Polycipiviridae, with a cluster of four ORFs separated from
the replicase ORF [41].

3.3.4. Flaviviridae

The Flaviviridae are notable in that they infect both invertebrates and vertebrates. Some flaviviruses,
such as those from the genus Flavivirus, are commonly pathogenic to vertebrates and transmitted among
them by arthropod vectors (Figure 2). We identified a single novel member of the Flaviviridae—denoted
Waxsystermes virus—that is found in high abundance (0.13%) in a head-only library, and which
possesses the genome structure common to members of the genus Flavivirus (Supplementary Figure S4).
Interestingly, Waxsystermes virus falls within a flavi-like virus clade that contains two marine
vertebrate-associated viruses: Eastern red scorpionfish flavivirus (51.2% amino acid identity) and
Wenzhou shark flavivirus (38.1% amino acid identity) (Figure 5A). The true host for Waxsystermes
virus is therefore difficult to determine, and this part of the phylogeny is characterized by a complex
mix of invertebrate and vertebrate-associated viruses. While Waxsystermes virus clearly does not
infect a marine vertebrate, its high abundance and adherence to the flavivirus genome structure points
toward an insect host. We therefore cautiously suggest that Waxsystermes virus is termite-infecting.

3.3.5. Narna–Levi Viruses

The Narna–Levi viruses were the most ubiquitous group of viruses detected in our libraries,
with 19 novel viruses identified (Figure 9). The majority of the novel Narna–Levi viruses were
placed within and sister to members of the genus Mitovirus that typically infects the mitochondria of
fungi and of some plants [42,43] (Figure 5B). All possess small, simplistic, single-segment genomes
(Supplementary Figure S5) and were detected in low to moderate abundances ranging from 0.00029%
to 0.022%. The exception to this is Wunsystermes virus, present in high abundance (0.37%) in an
Occasitermes library. In addition, Wunsystermes virus, as well as Kinsystermes virus, seemingly utilize
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UGA codons as tryptophan encoding for their predicted ORFs. Such a codon assignment is commonly
seen in fungal viruses [42], although it is occasionally seen in plant-infecting mitoviruses [43] and is
used in the invertebrate mitochondrial genetic code. Given the strong association of viruses within
this group with fungi, the seven novel Narna–Levi viruses that fall within the Mitovirus genus are
likely fungus-associated.

In contrast, the further eight novel viruses that fall basal to this clade—Mansystermes virus,
Monsystermes virus, Ansystermes virus, Jansystermes virus, Mensystermes virus, Ransystermes virus,
Konsystermes virus and Punsystermes virus—are related to arthropod and vertebrate-associated
relatives. This, coupled with their low abundances in whole-body libraries, means that we can make
no clear inference to their host.

Of the remaining four viruses identified in this group, three fell within the Leviviridae (Figure 5D):
Fonsystermes virus, Vansystermes virus and Ensystermes virus. These viruses have genomes
structurally similar to those seen in leviviruses, ranging from 3346 nt to 4931 nt (Supplementary Figure
S5). All were present in low abundances (0.00057% to 0.0023%) in whole-body libraries and fell within
a well-known bacteria-infecting family in the phylogenetic analysis, suggesting that they most likely
associated with bacteria.

Finally, Cunsystermes virus has the largest genome of this group at 6454 nt and was detected in a
clade basal to the genus Narnavirus (Figures 2 and 5C), although its host is unclear. While Cunsystermes
virus is present in high abundance in the whole-body M. darwiniensis libraries (0.10% and 0.17%), it is
also phylogenetically divergent (sharing only 30% amino acid identity with its closest relative, Wilkie
narna-like virus 2) and is placed within an under-sampled clade with mixed host associations. We are
therefore unable to make a safe inference for the host of Cunsystermes virus.

3.4. Negative-Sense ssRNA Viruses

3.4.1. Mono–Chu Viruses

Sequences with similarity to the Mono–Chu viruses were relatively commonplace in the termite
libraries, but all but one appeared to be endogenous: These sequences had disjointed ORFs and
incomplete genomes. Jimsystermes virus is the only Mono–Chu group virus detected that has a credible
genome structure indicative of an exogenous virus, with a mononega-like RdRp (CDD: pfam00946),
capsid (CDD: pfam14318) and methyl-transferase (CDD: cl27811) domains detected in its largest
ORF (Supplementary Figure S6). This virus is detected in both Occasitermes sp. libraries 3 and 4 in
high abundances of 0.2% and 0.13% and falls within the Lispiviridae with the other insect-associated
viruses (Figure 6A) [44]. Isopteran arli-related virus, from Coptotermes sp. [22], is the closest relative
to Jimsystermes virus with an amino acid identity of 61.3%. Given the clear insect association of the
Lispiviridae and the high abundance of Jimsystermes virus, we suggest that this virus is insect-infecting.

3.4.2. Bunya–Arena Viruses

The Bunyavirales and the Arenaviridae, which together comprise the Bunya–Arena group,
are associated with both invertebrates and vertebrates. The three novel viruses we detected from this
group—denoted Degsystermes virus, Ogsystermes virus and Magsystermes virus—sit phylogenetically
with viruses that have a clear association with arthropods, including mosquitoes, fleas, glow-worms and
butterflies (Figure 2, Figure 6B,C). Structurally, all three viruses are similar, with genomes that encode
a single, large ORF that contains a Bunyavirales RdRp domain (CDD: cl01709). Notably, these viruses
have some of the highest abundances detected in this study, ranging from 0.24% to 0.82% (Figure 9).
While only single, ~6000 nt segments were detected for most of these novel viruses, a possible second
1974 nt segment in a similar abundance to Degsystermes virus was detected in H. ferox library 14
(Supplementary Figure S7). A second such segment has been observed in the genomes of the related
Hubei insect virus 1 and Hubei bunya-like virus 13.
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According to our phylogenetic analysis, Ogsystermes virus and Degsystermes viruses fall in
a clade of unassigned bunya-like viruses (Figure 6B), while Magsystermes virus groups within the
Phasmaviridae, basal to the newly defined Orthophasmavirus genus [44] (Figure 6C). Notably, these novel
phasmaviruses are highly divergent, with less than 28% amino acid identity to their closest relatives
(Figure 8). Due to their relatively high abundance as the dominant components of the viromes in
which they are detected, as well as their clustering with other invertebrate viruses in the phylogenetic
analysis, we suggest that these are termite-infecting viruses.

3.5. Double-Stranded RNA Viruses

Partiti–Picobirna Viruses

By far the most numerous and commonly detected group of viruses identified were members
of the Partiti–Picobirna group that comprises members of the Partitiviridae and Picobirnaviridae
(Figure 2)—non-enveloped dsRNA viruses with ~4000 nt genomes. The Partitiviridae are known to
infect plants, fungi and protozoa and are transmitted intracellularly. The Picobirnaviridae, however,
are more complex. While they are often associated with vertebrate fecal metagenomes [45], there is
evidence that they may be infecting bacterial symbionts of vertebrate hosts [46]. We identified
30 novel virus genomes for this group, spanning nine libraries and placed phylogenetically into
six clades (Figure 7 and Table 2). No second segment was detected for any virus identified in
this group, and genomes detected were typically ~1900 nt and only encoded an RdRp domain
(Supplementary Figure S8). Importantly, while these viruses were detected in the lowest abundances
seen in this study (0.0001% to 0.008%), several were typically detected per each library and only within
the whole-body libraries (Figure 9).

Table 2. Descriptions of each clade of novel viruses found in the termites sampled here.

Clade Figure Group Novel
Viruses

Host
Prediction

Mean
Abundance

Mean %
Identity

Idaeovirus-like Figure 5A Hepe–Virga 1 Plant 0.0087 30.6
Negev-like Figure 5B Hepe–Virga 1 Termite 0.57 33.8

Sobemo-like Figure 5C Luteo–Sobemo 5 Termite 0.29 38.9
Iflaviridae Figure 6B Picorna–Calici 2 Termite 0.20 31.0

Polycipiviridae Figure 6C Picorna–Calici 2 Termite 0.065 38.8
Nora-like Figure 6D Picorna–Calici 1 Termite 0.45 29.9
Kelp fly

virus related Figure 6E Picorna–Calici 1 Termite 0.029 24.5

Flaviviridae Figure 7A Flaviviridae 1 Termite 0.13 38.1

Mitovirus(-like) Figure 7B Narna–Levi 15 Symbiont/No
inference 0.025 34.1

Narna-like Figure 7C Narna–Levi 1 No inference 0.14 30.0
Leviviridae Figure 7D Narna–Levi 3 Bacteria 0.0015 33.9
Lispi-like Figure 8A Mono–Chu 1 Termite 0.17 36.1

Bunya-like Figure 8B Bunya–Arena 2 Termite 0.73 39.0
Phasmavirus Figure 8C Bunya–Arena 1 Termite 0.0035 25.1
Picobirnaviridae Figure 9A Partiti–Picobirna 3 Symbiont 0.0011 46.2
Picobirna-like

A Figure 9B Partiti–Picobirna 20 Symbiont 0.00097 32.0

Picobirna-like
B Figure 9C Partiti–Picobirna 1 Symbiont 0.0036 27.6

Amalga-like Figure 9D Partiti–Picobirna 2 Symbiont 0.0030 28.3
Partiti-like A Figure 9E Partiti–Picobirna 1 Symbiont 0.0035 54.2
Partiti-like B Figure 9F Partiti–Picobirna 3 Symbiont 0.00041 53.7

The majority of the viruses in this group were found within and sister to the Picobirnaviridae
(Figure 2), falling with related viruses sampled from primate feces (Figure 7A–C) [45,46]. The remaining
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seven partiti-like viruses fell into three groups: two viruses fell basal to members of the genus
Amalgavirus (Figure 7D), two viruses grouped with unassigned arthropod-associated viruses [4]
(Figure 7E), while three viruses grouped with the fecal-associated Lysoka partiti-like viruses (Figure 7F).
With their low abundance, previous association with feces and representation in whole-body libraries,
we suggest that these novel viruses infect termite gut symbionts.

3.6. Correlates of RNA Virome Diversity and Abundance

Due to the small sample size and the confounding country and procedure variables
(i.e., all whole-body samples were collected in Australia), we could not determine if there was
a relationship between virome structure and diet or country. Visual inspection revealed no obvious
association between termite phylogeny and virus composition and abundance, aside from members
of the same species sharing similar viromes (Figure 9). Notably, however, the sampling procedure
(i.e., whole-body or head-only with poly(A)+ enrichment) used to produce each library had a significant
impact on virome composition, with virome abundance (R2 = 0.33, p = 0.00865), richness (R2 = 0.61,
p = 4.27 × 10−5) and diversity (R2 = 0.44, p = 0.00144) differing significantly by sampling procedure
(Figure 1). Libraries prepared from whole-body samples also had a greater number of reads mapping
to RNA viruses: 0.6% of total reads mapping to RNA viruses in whole-body libraries compared to
0.1% in head-only libraries.

4. Discussion

We present the first survey of the RNA virome of termites, demonstrating that these important
organisms harbor a diverse array of RNA viruses. Overall, 50 species of termites were collected,
spanning the range of the Termitoidae, yielding 20 sequencing libraries with viruses. From these data,
our metatranscriptomic analysis identified 67 novel viruses related to a diverse range of RNA viruses,
including the Togaviridae, Iflaviridae, Polycipiviridae, Flaviviridae, Leviviridae, Narnaviridae, Mitoviridae,
Lispivirdae, Phasmaviridae, Picobirnaviridae and Partitiviridae (Figure 1 and Supplementary Table S2).

Although our sampling focused on termites, the novel RNA viruses identified likely infect a range
of organisms—either the termite itself, one of its symbionts, or an ingested organism. We sought to make
inferences for the hosts of all viruses discovered in this study, based on the level of virus abundance
and phylogenetic positions of each virus in relation to those previously described (Figure 8 and Table 2).
Although these inferences necessarily range in certainty, we suggest that the Sobemo-like, Negev-like,
Picorna–Calici group, Flaviviridae, Lispiviridae and Bunya–Arena group viruses identified in this study
most likely directly infect termites. Indeed, these viruses both are found in a high abundance and have
relatives that are associated with arthropods [3,4,40,47–51].

The mitovirus-like viruses, Picobirnaviridae and picobirna-like novel viruses were the least
abundant viruses identified, although more phylogenetically diverse. Based on their low abundance
and phylogenetic context, as well as their tendency to appear in whole-body libraries, we suggest these
groups most likely infect termite gut symbionts. This, in turn, provides a biological explanation for
their diversity, as we would expect viruses infecting a gut microbiome to be more diverse than those
infecting the termite host itself. However, the Picobirnaviridae are complex as they have been detected
in an array of vertebrate fecal material [45,46,52], whole-body invertebrate samples [4] and soil [53].
Indeed, their ubiquity in metatranscriptomic studies may mean that they are in fact often associated
with bacterial hosts. Clearly, more work is needed to determine the most likely hosts for these viruses.

An important element of this study was the high level of divergence of the viruses identified:
All viruses discussed are novel, and the majority exhibit only 20% to 45% amino acid identity to their
closest relatives, and this is independent of their sampling procedure or likely host. An interesting
example of this is the divergent flavi-like Waxsystermes virus. This virus is highly abundant and
has a genome structure typical of members of the arthropod infecting/vectored genus Flavivirus.
It is therefore possible that Waxsystermes virus is indeed termite-infecting, although it is impossible
to exclude that it is associated with a symbiont or parasite of the termite, and it is striking that
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Waxsystermes is most closely related to recently discovered marine-vertebrate associated viruses [54].
As such, establishing the true host of Waxsystermes virus has more broad-ranging implications for our
understanding of flavivirus evolution as a whole.

The sampling of termites used in this project was not only designed to identify novel RNA
viruses but to enable us to provisionally explore any relationship between these viruses and the
ecology and phylogenetic background of the termites sampled. In particular, four species of termite
were sampled twice, with samples representing two separate colonies per species (or the soldier and
worker caste in the case of the M. darwiniensis samples) (Table 1). Sample replicates from the same
species revealed similar viruses across all these paired samples, and it is important to note that these
were the only cases in which the same virus was detected in multiple libraries. Further, this sharing
of virome components was strongest in the paired soldier/worker libraries from M. darwiniensis:
Two Partiti–Picobirna viruses, three Narna–Levi and the Luteo-Sobemo Nufsystermes virus were
detected in both M. darwiniensis libraries 19 and 20. However, colonies sampled were collected from
within the same regions, and this cross-infection of colonies may be due to geographic proximity rather
than these viruses being species-specific, although the relatedness of viruses discovered from different
continents may imply otherwise.

Across the samples as a whole, we detected no association between RNA virus composition
or abundance and the background termite phylogeny, indicating that virome compositions lack
strong heritability and can change markedly on evolutionary time scales. However, it was also
notable that termite-associated representatives of a number of virus groups—Sobemo-like, Iflaviviridae,
Mitovirus-like, Bunya–Arena, Picobirnaviridae and Picobirna-like viruses—clustered together on the
relevant phylogenies, despite usually being collected at different locations. It may be that some
virus lineages display specificity for either termites or their symbionts, as observed for a number of
bacterial lineages found in termites [55]. Additional sampling of other insect and animal viromes and
comparisons with those found in termites are required to assess this possibility. Strikingly, we saw a
significant effect of sampling and sequencing procedure on virome characteristics: Many of our initial
head-only samples yielded no virus genomes at all, and of the libraries where RNA virus genomes
were identified, those from whole termite bodies had greater virus abundances and richer, more diverse
RNA viromes than the head-only samples. Hence, these results show that tissue type may play a more
important role in shaping virus compositions, although such a difference may also reflect the use of
poly(A)+ enriched sequencing libraries in the head-only samples.

The invertebrate RNA virosphere is clearly immense. This is reflected in our identification of
67 novel, divergent viruses from the first screen of the termite RNA virome. Our work also provides
insights into the types of viruses that inhabit the termite and its associated symbiont community.
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