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Abstract: To test the importance of the host genotype in maintaining virus genetic diversity, five 
experimental populations were constructed by mixing two Cydia pomonella granulovirus isolates, 
the Mexican isolate CpGV-M and the CpGV-R5, in ratios of 99% M + 1% R, 95% M + 5% R, 90% M + 
10% R, 50% M + 50% R, and 10% M + 90% R. CpGV-M and CpGV-R5 differ in their ability to 
replicate in codling moth larvae carrying the type I resistance. This ability is associated with a 
genetic marker located in the virus pe38 gene. Six successive cycles of replication were carried out 
with each virus population on a fully-permissive codling moth colony (CpNPP), as well as on a 
host colony (RGV) that carries the type I resistance, and thus blocks CpGV-M replication. The 
infectivity of offspring viruses was tested on both hosts. Replication on the CpNPP leads to virus 
lineages preserving the pe38 markers characteristic of both isolates, while replication on the RGV 
colony drastically reduces the frequency of the CpGV-M pe38 marker. Virus progeny obtained after 
replication on CpNPP show consistently higher pathogenicity than that of progeny viruses 
obtained by replication on RGV, independently of the host used for testing. 

Keywords: Cydia pomonella granulovirus; codling moth; biological control; genetic diversity; 
coevolution; selection pressure 

 

1. Introduction 

Codling moth, the main insect pest for apple and pear production [1], is widely distributed 
around the world. Most apple production areas suffer damages caused by this insect [2]. The 
repeated use of chemical insecticides led to the progressive development of resistance to most of 
them [3]. To sustain apple production, the necessity of alternative methods becomes evident. 

Baculoviruses are authorized as biological control agents in field conditions because they are 
specific to one or few insect species and harmless for beneficial insects [4]. 

The first Cydia pomonella granulovirus (CpGV) isolate originates from Mexico (CpGV-M) [5]. This 
isolate is one of the most widely-used GV for biological control; it is considered as the reference 
isolate, and a representative clone of this isolate has been completely sequenced [6]. In Europe, all 
commercial formulations of CpGV before 2008 were derived from it [7]. 

Since 2004, resistance to CpGV-M has been reported in orchards, first in Germany [8] and 
France [9], later in other European countries [10]. The most common resistance is now called “type I 
resistance”, and it has been located at the Z chromosome of the insect [11]. CpGV is the prototype of 
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the genus formerly called “granulovirus”, which now are named “Betabaculovirus”, one of the four 
genera of the Baculoviridae family. In their life cycle, baculoviruses alternate between two types of 
particles, the budded virus (BV), a virus particle where a nucleocapsid that contains the genome 
acquires a membrane of cellular origin when budding out of the cell, and an occluded form, where 
virus particles are protected within a proteinaceous paracrystalline structure, the occlusion body 
(OB). BVs are responsible for within-host cell infections, while OBs are responsible for infection from 
one host to another, via the external environment. In the alpha-, gamma-, and delta-baculoviruses, 
usually called nucleopolyhedroviruses (NPV), OBs can contain many independent virions, whose 
genomes might not be identical [12]. In the beta-baculoviruses, OBs usually contain a single virion, 
rarely two or more, and each virion contains a single genome. [13]. These OBs, smaller in size, are 
called granulae. The BVs of all baculoviruses contain a single nucleocapsid, thus a single genome. 

Alpha-baculoviruses (prototype species Autographa californica multiple nucleopolyhedrovirus, 
AcMNPV) are characterized by an important genetic diversity, both within a single isolate or 
between isolates. Analysis by restriction fragment length polymorphism (RFLP) allowed the 
characterization of nine genotypes from a population of Spodoptera frugiperda multiple 
nucleopolyhedrovirus SfMNPV [14]. It is indeed common to find various genotypes within a single 
larva. Twenty-four genotypic variants of a baculovirus have been isolated from a single diseased 
Panolis flammea larval cadaver [15]. Conversely, GV isolates appeared as highly homogeneous when 
analyzed by RFLP [16], and the differences between isolates were also very limited [17–19], leading 
to the conclusion that “there appears to be very little genotypic variation between virus isolates” 
[17]. 

After detection of the resistance, by screening among available CpGV isolates, it was possible to 
find some isolates able to bypass the resistance [20,21], confirming that phenotypic variability is 
present. This phenotypic variability is indeed the result of a previously-unobserved genotypic 
diversity. 

CpGV genotypic diversity has been then analyzed in more detail. All the genotypes described 
so far belong to five groups, A–E [20,22]. CpGV-M and CpGV-R5 belong respectively to Groups A 
and E. In contrast to NPVs, genetic diversity within a larva, that is, mixed infection, has only been 
described in a single isolate, I68 [23]. Analysis of the I68 isolate, originating from a single larva 
revealed the presence of two genotypes, belonging to groups C and A. 

A modification of the viral pe38 gene, whose function remains unknown, has been associated 
with the ability of a virus to replicate in a type I-resistant host, like RGV [22]. CpGV-M and CpGV-R5 
differ by a small 24-bp duplication, present in CpGV-M, but absent in CpGV-R5. In type I-resistant 
hosts, CpGV-M replication is blocked at an early stage in all cells of the larva [24]. 

Genetic diversity is an important factor for coping with the differences between the genetic 
background of host populations, and the continuously-evolving host defense capabilities [25,26]. 

Coinfection with multiple genotypes in a single cell is a general rule for AcMNPV [27]. It has 
also been demonstrated in SfMNPV [12], and it is probably true for all alpha-baculoviruses. These 
genotypes can act together to invade the host larvae [14,28,29]. In SfNPV, it has been observed that 
individual genotypes are less pathogenic to the host than a virus population that is genotypically 
diverse [14]. 

In NPVs, multiple genotypes can be occluded in the same OB [28], so one OB can thus represent 
a sample of the population diversity, and consequently, a larva that eats a single OB can be infected 
by a variety of virus genotypes. In GVs however, genotypic diversity in a single larva would rely on 
the larva eating more than one OB. In a previous study, we have investigated the ability of mixes of 
CpGV isolates to control a resistant colony. We observe that mixtures of OBs are more efficient than 
expected on the control of the hosts’ larvae, be they susceptible or resistant [30]. For that approach to 
be effective, each larva should ingest at least two CpGV OBs carrying different genotypes. The 
question arising is how genotypically diverse isolates will behave in coinfection conditions in the 
host upon successive cycles of replication. Here, we follow mixed genotype virus lineages for six 
cycles of replication on both susceptible and resistant insects and evaluate their evolution both at the 
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phenotypic (how their efficacies evolve on each host) and the genotypic levels (how virus genotypic 
markers are maintained). 

2. Materials and Methods 

2.1. Insects 

Two Cydia pomonella colonies were reared in the laboratory. The CpNPP colony was fully 
susceptible to CpGV-M. It was derived from a field population from the Loire Valley in France and 
replicated in the laboratory since the early 1990s. The RGV colony was resistant to CpGV-M. This 
resistant colony was derived from a natural resistant population (St-A) found in the region of 
Saint-Andiol (Bouches-du-Rhône, France), followed by selection for resistance to CpGV-M as 
previously described [21]. Briefly, larvae were reared on media containing 100 OB/µL of CpGV-M 
until pupation; adults that emerged were allowed to mate, the eggs collected, and the new 
generation of larvae submitted to the same process. Continuous selection for eight generations 
allowed a survival higher than 99% of individuals. The RGV colony harbored the sex-linked 
resistance now called type I resistance [11]. Both colonies were reared as previously described [31]. 

2.2. Viruses 

CpGV-M (laboratory stock 2020-s1) and CpGV-R5 (laboratory stock 2016-r16), the two virus 
isolates used in this work, have been described in previous studies [21,31]. The CpGV-M is the 
reference isolate that fully replicates on CpNPP (LC50 = 13.10 OB/µL (6.55–23.20)), but not on RGV 
((LC50 = 2.22 × 106 OB/µL (1.19 × 106–5.67 × 106). The CpGV-R5 isolate is able to overcome the 
resistance of the RGV colony (LC50 = 22.43 OB/µL (13.73–34.36)) and also replicates on CpNPP (LC50 = 
6.76 OB/µL (2.6–13.37)) [32]. 

2.3. Viral Populations 

Five experimental virus populations were constructed by mixing in various proportions OBs of 
the two isolates. The proportions of each isolate in the mixed virus populations were 99% CpGV-M + 
1% CpGV-R5, 95% CpGV-M + 5% CpGV-R5, 90% CpGV-M + 10% CpGV-R5, 50% CpGV-M + 50% 
CpGV-R5, and 10% CpGV-M + 90% CpGV-R5. Pure CpGV-M and CpGV-R5 were used as reference 
virus populations. These OBs mixtures are referred to as Passage 0 OBs (P0) [30]. 

From each virus population, two independent lineages were followed by passaging them 
during six passages on susceptible (CpNPP) or resistant (RGV) insects (PiCpNPP and PiRGV, i being the 
passage number) (Figure 1). 
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Figure 1. Schematic representation of the different mixed genotype lineages obtained by passaging 
mixed genotype virus populations on susceptible (CpNPP) and resistant (RGV) insects. The bioassays 
on CpNPP and RGV neonate larvae were performed using Passage 1 (P1), P3, and P6 viruses. P0 
(previously published) were used as a reference. OB, occlusion body. 

2.4. Successive Passages of the Different Viral Lineages 

Forty-eight 3rd–4th instar (7 days old) susceptible (CpNPP) or resistant (RGV) larvae were 
individually deposited in 24-well plates. Each well contained 1 mL formaldehyde-free diet (Stonefly 
Heliothis Diet, Ward’s Science, Rochester, NY, USA) inoculated with 50 µL of each P0 viral 
suspension at 800 OBs/µL per well, that is a concentration of 40 OBs/µL of diet. At this concentration, 
mortality higher than 90% was expected. Plates were then incubated at 25 °C (±1 °C) with a 16:8-h 
(light/dark) photoperiod and a relative humidity of 60% (±10%). Four days later, all larvae 
presenting signs of viral infection were extracted from the rearing diet, stored at 25 °C for one more 
day, then frozen (−20 °C). OBs were then extracted and purified as previously described [21]. This 
suspension constituted the first amplification (P1) of each viral lineage. This protocol was used to 
produce the following passages (P2–P6). 

2.5. Bioassays 

Bioassays were performed as previously described [21]. To summarize, 96-well plates were 
filled with about 200 µL of a formaldehyde-free artificial diet (Stonefly Heliothis Diet, Ward’s 
Science, Rochester, NY, USA). Six microliters of OB suspension at the required concentrations (from 
2–6250 OBs/µL) were deposited over the surface of each well. Non-infected control wells were 
included (6 µL of distilled water). One neonate larva was then laid on each well. The plates were 
sealed with Parafilm™ and incubated as described previously. After 7 days, plates were checked 
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and the mortality scored. These data were subjected to probit analysis [33] performed with the 
POLO + software [34]. Each test was repeated at least three times, and the results pooled when they 
appeared consistent (no statistically-significant differences between tests). An average of 566 larvae 
were used for each modality (between 344 and 1343). The experimental plan is summarized in 
Figure 1. 

2.6. Estimating the Relative Proportions of Each Genotype by PCR 

Genomic DNA was extracted from a sample of the OBs produced for each virus lineage at each 
passage. These samples were used as a matrix for PCR using the specific primers for the pe38 gene 
region previously published [30]: CpGV 19003R (5’ ccggctgcagCGAGTCGAGCACCACCATTA 3’) 
and CpGV18705F (5’ cgcgggatccACGGTGTGTCATTAGCCACC 3’); the numbers refer to the 
nucleotide positions in the NC_002816 CpGV-M sequence. These primers amplify fragments of 
differing size in the two genotypes (295 bp for CpGV-R5 and 315 bp for CpGV-M), allowing us to 
discriminate them. 

The PCR fragments were separated in a 3% agarose gel (NOVAGEL GQT, Conda S.A., Torrejon 
de Ardoz, Madrid, Spain) in TBE buffer and visualized on a UV transilluminator after ethidium 
bromide staining. No attempt at quantification of the relative frequencies of each genotype was 
done. 

3. Results 

Bioassays of the 10 virus lineages (5 different frequencies × 2 hosts) have been performed both 
on CpNPP and RGV on OBs at passages P1, P3, and P6. The bioassays of the original mixes (P0) both 
on susceptible and resistant larvae have been previously published [30]. They are used here as a 
reference. 

3.1. Lineages Obtained on Susceptible Insects 

From P0–P1CpNPP, there was a reduction of the pathogenicity in all virus populations for CpNPP 
larvae. From P1CpNPP–P6CpNPP, the general trend was a progressive increase of the pathogenicity in the 
five virus lineages, roughly reaching the efficiency of the pure genotype virus populations, CpGV-M 
or CpGV-R5, on this permissive host (Figure 2a). Within each passage, however, there was an 
important variability on the CL50s, which did not correlate with the original genotype composition. 
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Figure 2. Efficiency (LC50) of the different experimental virus populations replicated on CpNPP and 
tested on (a) CpNPP and (b) RGV. Parental CpGV-M and CpGV-R5 alone had LC50s on CpNPP and 
RGV of 13.10 OB/µL and 6.76 OB/µL, respectively. 

When testing these lineages on RGV resistant insects (Figure 2b), a similar pattern was observed. 
At P1CpNPP, the various lineages responded quite differently, and the LC50s varied between 36 and 
176 OBs/µL. This response did not correlate with the original content of CpGV-R5 at P0. At P6CpNPP, 
all virus lineages showed a similar behavior. Their pathogenicity was comparable to that of 
CpGV-R5 on this host. 

3.1. Lineages Obtained on Resistant Insects 

The results of the bioassays performed with the P1RGV–P6RGV are presented in Figure 3. When 
the virus lineages were passaged on resistant insects, thus submitted to strong selection against the 
Group A genotype, their pathogenicity did not improve regularly over cycles, independent of the 
host colony used on the bioassay (LC50 varied from 20–80 OB/µL on CpNPP and from 40–190 OB/µL 
on RGV). In addition, the efficacy on both hosts was not correlated with the original frequency of the 
parental virus genotypes: M95-R05 P6RGV showed the lowest LC50 on both RGV and CpNPP, while 
M99-R01 P6RGV had the highest LC50 on CpNPP, but not on RGV. 
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Figure 3. Efficiency (LC50) of the different experimental virus populations replicated on RGV and 
tested on (a) CpNPP and (b) RGV. Parental CpGV-M and CpGV-R5 alone had LC50s on RGV of 2.22 × 
106 OB/µL and 22.43 OB/µL, respectively. 

3.1. Genomic Composition of the Virus Populations 

The diversity in the virus populations was examined by PCR using the differences at the pe38 
gene. The analysis of virus lineages after six passages on the susceptible (P6CpNPP) and the resistant 
host (P6RGV) revealed the retaining of genetic diversity in all populations of P6CpNPP, but such 
diversity was clearly reduced or absent in P6RGV (Figure 4). 
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Figure 4. Gel electrophoresis of PCR products revealing the variability on the pe38 region of Cydia 
pomonella granulovirus populations successively produced during six generations on susceptible 
(P6CpNPP) and resistant (P6RGV) insects. CpGV-M and CpGV-R5 are presented as references. MWM A: 
Molecular weight marker GeneRuler 100-bp DNA Ladder (Fermentas, Burlington, ON, Canada). 
MWM B: 1-kb DNA Ladder (Invitrogen, Carlsbad, CA, USA). 

4. Discussion 

Resistance to selection factors (insecticides, antibiotics) often implies an evolutionary tradeoff. 
In the presence of the selection factor, resistant individuals have a selective advantage compared to 
susceptible ones. Conversely, in the absence of the selection factor, susceptible individuals are 
favored due to their higher fitness. Under this hypothesis, when both genotypes are present in a 
population, a progressive increase of susceptible genotypes should be observed in the absence of the 
selection trait [35]. Two approaches can be taken to analyze tradeoffs, measuring fitness parameters 
(i.e., fecundity, viability, developmental time, size of offspring) or analyzing the changes in the 
frequencies of experimental populations composed of a mixture of genotypes. 

Undorf-Spahn et al. [36] studied both some representative fitness parameters in the laboratory 
and the temporal evolution of insect populations. No apparent cost was observed for resistance to 
the CpGV-M by codling moth, suggesting that this resistance would persist in the orchard insect 
populations even in the absence of CpGV-M treatments. 

From the virus perspective, no major differences were observed between CpGV-M and 
CpGV-R5 in the parameters analyzed (virus production, pathogenicity to susceptible insects). The 
two virus isolates replicated in the permissive host (CpNPP) at approximately the same level, in 
terms of OB production, and showed a slight difference in their LC50s (13.10 OB/µL compared to 6.76 
OB/µL [31]). To complete this analysis, the temporal evolution of experimental populations 
constructed by mixing pure genotypes was set up. 

By mixing OBs from the two virus isolates (P0), experimental virus populations were 
constructed covering all the range of proportions for each virus isolate. These experimental virus 
populations were then allowed to evolve on the two hosts for six successive passages, constituting 10 
different lineages, five on each host. Their pathogenicity was evaluated on both hosts at P0, P1, P3, 
and P6. 

As CpGV OBs contain one genome (exceptionally more than one), we have chosen conditions in 
which each larvae would eat more than one OB, thus, increasing the probability of the presence of 
multiple genotypes in the larvae. In the four-day infection, period a L3 larva ate approximately 500 
µL of diet; at 40 OB/µL, that means in the range of 104 OBs. However, the probability of successful 
infection with a second virus might be related to the delay between the first infection and the second 
one, as has been shown for SfMNPV [37]. 

For a given number of OBs ingested, the probability of multiple genotype infection depends on 
the relative frequency of the genotypes. It is maximal for the even distribution of the genotypes (50% 
of each in our experiments with only two genotypes) and decreases when increasing the differences 
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in the relative frequencies. Accordingly, in the experimental virus population containing 99% 
CpGV-M + 1% CpGV-R5, the probability of having larvae infected by only one genotype will be 
higher than for the 50% CpGV-M + 50% CpGV-R5 population, for the same number of OBs ingested. 

We hypothesized that the permissive CpNPP host would not influence the outcome of viral 
infections, while in the resistant RGV host, the presence of CpGV-M genomes in the offspring will rely 
on the replication of at least one genome of CpGV-R5, as the LC50 for pure CpGV-M is far above the 
dose use for the test. It would be expected that if both viruses were almost equally fit in the 
permissive host, the virus lineages would maintain their genotypic diversity, while lineages 
replicating in the non-permissive host would eliminate the CpGV-M genotype. 

We have previously demonstrated [30] that the two genotypes do not act independently of the 
infected larvae. The pathogenicity of the P0 mixed populations was greater than expected under the 
independent action hypothesis. In addition, CpGV-M replicated on RGV when in co-infection with 
CpGV-R5; thus, P1RGV contained CpGV-M genomes. 

Surprisingly, there was an overall reduction in the efficacy against CpNPP between P0CpNPP and 
P1CpNPP (from an average LC50 of 15.66 OB/µL–67.52 OB/µL, respectively). This decrease was 
statistically significant for all but the M99 + 1R P1CpNPP, and this can be explained by the higher 
frequency of infections with only one genotype under this condition. 

In plant or animal selection, it is common to observe an increase in the fitness of hybrids and a 
decrease when reproducing these hybrids on successive generations. The results we obtained 
resemble this effect, if we consider the whole inoculum ingested as the selection unit. The reduction 
of the efficacy of the control at P1x could be the consequence of diversity generation via 
recombination, leading to some less adapted gene combinations that would be counter selected in 
the following passages. Recombination of NPV has been demonstrated in cell cultures [38] and in 
vivo, but co-infection of host cells by multiple GV genotypes has never been analyzed. Our results 
could partially be explained by such a mechanism, but this hypothesis implies that the resistance 
breaking is not exclusively due to the modification of the pe38 gene. Further work will be required to 
explore this point. 

In the successive passages, this decrease in efficacy was compensated; at P6CpNPP, the LC50s of all 
lineages recovered to the level of the parent viruses on CpNPP. When tested on the RGV, the host in 
which these lineages did not replicate previously, there was no such reduction in efficacy, but a 
continuous improvement. The efficacy of P6CpNPP lineages approached the level of CpGV-R5 on this 
host (LC50 for CpGV-R5 was 22.43 (13.73–34.36); LC50s for P6CpNPP ranged between 28.24 and 40.77). 
This trend was independent of the original frequency of the parent genotypes. The hypothesis of 
progressive replacement of one genotype by the second in the experimental populations could 
explain the observed behavior. Over passages, CpGV-M would be expected to reduce progressively 
and disappear. PCR analysis of the virus lineages revealed that virus lineages replicating in a 
fully-permissive host retained the markers of both genotypes, while improving their ability to 
control the resistant insects; conversely, in virus lineages submitted to strong selection, the 
CpGV-M-specific marker was absent or highly reduced, and the efficacy was not as good (Figure 4). 

It would also be expected that the PiRGV populations, submitted to a higher selective pressure for 
CpGV-R5 genotypes, would recover the efficacy of this isolate quicker than PiCpNPP. However, we 
observed that when replication was carried out on RGV insects (populations PiRGV), the LC50s did not 
reach the level of the P0RGV virus populations, neither on CpNPP nor on RGV, after six passages. 
Increasing the number of passages and reducing the multiplicity of infection would eventually lead 
to a highly-pathogenic isolate similar to CpGV-R5, following a process similar to that used to select 
this isolate. 

According to our results, allowing the virus isolates to adapt to the specific host populations 
resulted in similar levels of control, while preserving the virus genetic diversity. 

In CM populations in orchards, there was a variable proportion of resistant individuals, mixed 
with susceptible individuals. This was reflected by a two-plateau dose mortality line when 
challenged with a virus. 
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Using a single virus genotype against host populations with variable genetic background can 
result in failures of the control due to the variable susceptibility of the host to that virus genotype. 
Mixed virus populations will be able to colonize each individual of the host population. Providing 
genetic diversity is supposed to facilitate adaptation of populations to a new environment. For a 
virus, this new environment can be a host harboring a new resistance trait or the presence in the host 
of an inhibition molecule. 

In apple orchards, the success of control of the codling moth with CpGV requires massive 
release of the virus. The usual dose in the field is between 3 × 1012 and 1013 OB/Ha [39,40]. Glen and 
Payne [41] applied 9 × 1013 OB/Ha and calculated 2404 ± 1608 OBs/mm2 of leaves or fruit. 
Accordingly, the estimate concentration obtained with commercial products would be at least 271 
OB/mm2 in the orchards. Taking into account the observations on the size of the feeding holes 
excavated by neonate larvae [42] and assuming a homogeneous dispersion of the OBs, a neonate 
larvae would ingest an average of 2.76 OB after only 3.5 min of contact with the leaves or the fruit, 
raising quickly to a hundred OBs in less than 1 h. Accordingly, in field conditions, larvae likely 
ingest multiple OBs. 

A recent analysis of the commercial virus preparations developed to fight field resistance 
showed that they were genotypically diverse, contrary to the products commercialized before 2005, 
when pure CpGV-M was the active ingredient. The two products analyzed contained at least three 
genotypes each [43], among them CpGV-M and a type I resistance breaking genotype, specific for 
each product. In these conditions, larvae likely ingest more than a single genotype. However, no 
information about the outcome of infections in the field is available, due to the early death of the 
larva and the difficulty of monitoring in the field. Simulating field infection in the laboratory would 
shed light on the frequency of multiple infections in CM. 
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