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Abstract: Ranaviruses began emerging in common frogs (Rana temporaria) in the United Kingdom
in the late 1980s and early 1990s, causing severe disease and declines in the populations of these
animals. Herein, we explored the transmission dynamics of the ranavirus(es) present in common frog
populations, in the context of a simple susceptible-infected (SI) model, using parameters derived from
the literature. We explored the effects of disease-induced population decline on the dynamics of the
ranavirus. We then extended the model to consider the infection dynamics in populations exposed
to both ulcerative and hemorrhagic forms of the ranaviral disease. The preliminary investigation
indicated the important interactions between the forms. When the ulcerative form was present in
a population and the hemorrhagic form was later introduced, the hemorrhagic form of the disease
needed to be highly contagious, to persist. We highlighted the areas where further research and
experimental evidence is needed and hope that these models would act as a guide for further research
into the amphibian disease dynamics.

Keywords: transmission modelling; susceptible-infected (SI) models; emerging infection; ranavirosis;
Iridoviridae; disease dynamics

1. Introduction

Ranaviruses are double-stranded DNA viruses in the Iridoviridae family that can infect ectothermic
vertebrates [1] and are found worldwide [2]. Ranaviruses cause systemic hemorrhaging and edema in
amphibian, reptile, and fish hosts [3]. In amphibians, mortality can occur in only three days in very
susceptible host species and life history stages [4], resulting in die-offs of both adults and larvae, in
Europe [5,6], and tadpoles and metamorphs, in North America [7,8]. Ranaviruses have been shown to
alter amphibian population dynamics, with declines of the common frog (Rana temporaria) in the United
Kingdom [9] and whole amphibian communities in Spain [10]. Additionally, population simulation
models have shown that ranaviruses could potentially cause the local extinction of populations of
three, highly susceptible species of the United States anurans [11,12]. However, these models do not
include the transmission dynamics, which are not well-understood and could potentially alter host
population dynamics. Farrell et al. [13] modeled host population declines in the case of the highly
pathogenic Ambystoma tigrinum virus (ATV), but they found that extinction of host populations would
not occur even in the cases where the host population was severely reduced. These diverse conclusions
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showed that there were many different possible outcomes of ranavirus infections that influenced
disease dynamics, and they appeared to be system-specific.

Mathematical models are helpful tools for understanding transmission dynamics and the
persistence of pathogen and host populations [14,15]. Models might help determine which transmission
conditions are most likely, given the information about disease dynamics in wild populations. In the
case of the ranavirus, Brunner and Yarber [16] developed a model which suggested that ranavirus
transmission from water and scavengers are likely minimal in most circumstances. Previous attempts
have also been made to formalize the transmission dynamics at, both, the species level [17] and at
the community level [18]. Most models have been based on North American amphibian populations
or communities. The dynamics of amphibian–ranavirus systems in the UK, the ranavirus–common
frog (Rana temporaria) system, are distinctly different from those in North America and thus require
specific investigation.

Here, we developed susceptible-infection (SI) models for ranavirus infection in common frogs, in
the UK. The ranavirus–common frog system in the UK differs from the infection/disease dynamics
seen in North American anuran species, because infections in eggs or tadpoles of wild populations
are absent, for the most part [19,20], despite experimental evidence that tadpoles can be infected and
have died with signs of ranavirosis. Given this information, the route of transmission in common frogs
is most likely among adults. With the benefit of long-term data sets on the persistence of ranavirus
infections in common frogs, we know that the ranavirus can persist in adult frog populations for
many years [9] and involves at least two distinct disease syndromes (hemorrhagic and ulcerative) with
variations in the prevalence of disease, across sites and years [21]. We, therefore, developed SI models
to test the hypothesis that ranaviruses have the potential to remain in the UK common frog populations,
under various conditions, with only horizontal transmission between adults. We examined scenarios
with host population declines that included both ranavirus syndromes.

2. Basic Model Formulation

In the simplest case, we used an SI model with no recovery, based on the high mortality rate
associated with ranavirus infection. We followed the method for developing mathematical models
described by Otto and Day [22]. The population consisted of recruits (AR), susceptible individuals
(AS), and infected individuals (AI) and mortality occurred at two different rates—natural mortality
(MN) and mortality due to disease (MD). We assumed that the adult population size remained constant
(i.e., mortality was fully compensated irrespective of the cause of death), all recruits to the population
were susceptible to the ranavirus, and all individuals were equally susceptible to infection. The contact
rate (Ψ) was defined as the number of different individuals that one animal physically contacts, the
likelihood of transmission (σ) was the probability of transmission given the physical contact, and
R0 was the basic reproductive rate of the virus. We used a discrete time model, because common
frogs aggregate annually for breeding and we assumed that transmission primarily occurred from
contacts during breeding. We also assumed that mortality due to disease occurred primarily during
summer; ranavirus-associated mortality peaks between mid-July and mid-August, after breeding, has
previously been concluded [20]. (See Figure 1 for a schematic view of the important life history events
and timing.) Based on the above assumptions, we developed the following equations:

As(t + 1) = As(t) − σΨ·As(t)·AI(t) −MN(t) + AR(t) (1)

AI(t + 1) = AI(t) + σΨ·As(t)·AI(t) − [MN(t) + MD(t)] (2)

R0 = σΨ·As(t)/[MN(t) + MD(t)] (3)

To determine under what conditions the ranavirus would remain or spread in a population, we
modified Equation (3) by removing MD (t) to assume a successful introduction:

Ro = σΨ·As/MN(t) (4)
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The important interactions in this equation are between σ and Ψ, and this relationship needed to
be explored, graphically, to determine when the conditions for Ro ≥ 1 exist. If we assume a population
size of 99 (AS), with an initial introduction of one infected individual (AI) and an MN of 20% [23]
(although other estimates do exist [24]), values of σ and Ψ under which Ro ≥ 1 are illustrated in Figure 2.
To test if similar assumptions are valid at a smaller population size, we repeated the process using
alternative values for AS = 49 and MN = 10% (i.e., 5 individuals/annum) and introduced one infected
individual (total population size 50; Figure 2).
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less than ideal; however, these are the best estimates that can be made with the available data. 

Figure 1. Annual cycle of important life history events for common frogs (Rana temporaria) and
important events for ranavirus infections and diseases, for these animals. Boxes shaded in blue are
those that occur in the aquatic environment, green boxes are those that straddle the land and water,
grey boxes occur at an unknown location, and mauve boxes are life history events that are known to
happen on both the land and in the water.
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Figure 2. The interaction between σ and Ψ, under which Ro ≥ 1, when AS = 99 and an MN = 20%
(upper dashed-curve) and when the initial conditions of AS = 49 and an MN = 10% (lower curve),
where Ψ is the contact rate and σ is the likelihood of transmission for the model.

After establishing the conditions which permit ranavirus persistence, we next examined the
behavior of AS and AI under potential biologically relevant conditions. We used experimental data
from ranavirus exposures in the literature, to estimate σ (Table 1). It is important to note that the data
used to estimate σ was extremely variable; the viral titers used in the experiments range from TCID50

of 101 to 102 mL for virus obtained from crude organ homogenates to TCID50 of 104.2 to 106.2 mL, for
virus produced via tissue culture [25]. This variability made the biological relevance of our estimates
less than ideal; however, these are the best estimates that can be made with the available data.
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Table 1. Estimates for σ derived from the literature. Note: Experiments where the exposure was via
inoculation have not been included in these estimates. No distinction has been made between the types
of ranavirus-associated disease that the virus was derived from. Development of disease data, TCID50

and type of experiment information are summarized from Cunningham et al. [25]. (HS = Hemorrhagic
and US = Ulcerative forms of ranavirosis.).

Development of Disease
Disease

Prevalence Type of Experiment/Exposure Type Estimate of σ TCID50No. with
Disease

Total No.
Exposed

3 20 15% Immersion with virus from naturally
disease tissue, with and without bacteria 0.15 101/mL

9 20 45%
Immersion with virus from naturally

disease tissue homogenate to animals with
skin wounds, with and without bacteria

0.45 102/mL HS
101.5/mL US

9 10 90% Immersion in virus from culture 0.90 102/mL HS
101.5/mL US

5 5 100% Immersion in virus from virus culture to
animals with wounded skin 1 105.6 to

106.2/mL

2 5 40%
Immersion in virus from tissue homogenate
from naturally diseased animals to animals

with wounded skin
0.40 103/mL

Estimates of Ψ were unavailable, so we arbitrarily chose Ψ = 0.3→0.6 (Figure 3). We ignored sex
specific contact rates, as male–male contact rates are extremely high and polyandry is common [26].
Additionally, Teacher et al. [9] found that the median population size of common frogs was 31 for those
places where ranaviruses have emerged in the UK, so we used an ATotal of 30 (Figure 4).
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Figure 3. Predicted values of AS with varying values of Ψ while other values remained constant at:
σ = 0.3; MN = 0.2; and MD = 0.75. The starting population composition is AI = 1 and AS = 99 and time
is in years. AS is the number of susceptible individuals, Ψ is the contact rate, σ is the likelihood of
transmission, MN is the natural mortality rate, and MD is the mortality rate associated with ranavirosis.
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Figure 4. The average expectation of the ranavirus dynamics in a population of adult common frogs
(Rana temporaria) through time (years). (Ψ = 0.45; σ = 0.3; MN = 0.2; MD = 0.775; starting population
comprised of AI = 1 and AS = 29.) AI is the number of infected individuals, AS is the number of
susceptible individuals, Ψ is the contact rate, σ is the likelihood of transmission, MN is the natural
mortality rate, and MD is the mortality rate associated with ranavirosis.

Since ranaviruses have emerged recently in the UK, and common frogs and the severity of
the disease is affected by climate change, it is unlikely that the disease dynamics have reached an
equilibrium ([27,28]; Figure 4). Using an estimated σ of 0.3 (from data from Table 1), an average MD of
0.775, an average Ψ value of 0.45, and an Atotal of 30 [9] with the initial conditions of an As of 29 and an
AI of 1, we found that the interaction between AS and AI requires greater than 60 years to stabilize to
post-epidemic dynamics (Figure 5). These results suggest that, under the present conditions, ranavirus
in populations of common frogs can be sustained entirely through adult–adult transmission.
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Figure 5. Illustration of the predicted values for AS with different disease-induced mortality rates,
while other values remained constant at: Ψ = 0.45; σ = 0.3; MN = 0.2; the starting population comprised
of AI = 1 and As = 29. As is the number of susceptible individuals, Ψ is the contact rate, σ is the
likelihood of transmission, MN is the natural mortality rate and MD is the mortality rate associated
with ranavirosis.
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2.1. Factoring in Population Decline

In UK common frogs, ranavirosis has caused an 81% decline in some affected populations, over a
10 year period [9]; this appears to be a clear violation of the assumption in the model that population
size remains constant. Teacher et al. [9] found that the declines in these populations were proportional
to their size (i.e., the larger the population, the larger the decline experienced). This is possibly
consistent with the assumption that all adults are equally susceptible, when a ranavirus first invades
a population. Contrarily, larger declines in larger populations might be due to density-dependent
transmission of the virus. This scenario can also account for the differences among individuals, in their
susceptibility to the ranavirus.

However, Teacher et al. [29] report that populations of common frogs maintain allelic diversity
through the immigration of adults from nearby ponds. This immigration has two potentially important
consequences for the emergence of ranavirosis: (1) the population of adult frogs in the affected
population will remain susceptible to infection because of the homogenizing effect of immigration;
thus, the immigration of susceptible individuals might dilute the prevalence of the resistance genes,
as long as the immigrants come from susceptible populations; and (2) immigration might bolster
population numbers and reduce the observed decline. Consequently, the estimates of population
decline due to ranavirosis that were made by Teacher et al. [9] might, in fact, be underestimates.
In addition, Campbell et al. [30] have found that the population structure shifts from older adult frogs
to proportionally more juveniles, with a much smaller total population size in the affected populations.
These smaller populations have also been shown to be more susceptible to stochastic events, via
population modelling [30]. For simplicity, we assumed that declines of 81% over a 10 year period, as
seen by Teacher et al. [9], correspond to a steady annual decline of 8.1%. Under such conditions, it
takes the model approximately 65 years to stabilize, with all adults in the population suffering from
ranavirus infections (Figure 6).
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Figure 6. Illustration of the predicted dynamics of a common frog population, with the ranavirus
factoring in an annual population decline of 8.1% for adult common frogs. (Ψ = 0.45; σ = 0.3; MN = 0.2;
MD = 0.775; starting population comprised of AI = 1 and AS = 29; time is in years.) As is the number
of susceptible individuals, Ψ is the contact rate, σ is the likelihood of transmission, MN is the natural
mortality rate, and MD is the mortality rate associated with the ranavirosis.

2.2. Accounting for Different Disease Syndromes

Ranavirosis in the UK common frogs presents as two syndromes which are not mutually exclusive.
The ulcerative form of the disease is characterized by ulcers of the skin and the skeletal muscle,
and sometimes necrosis of the digits, while the hemorrhagic form of the disease is characterized by
internal hemorrhages, most commonly involving the gastrointestinal and reproductive tracts ([21];
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personal observation). Adult common frogs exposed to a tissue homogenate derived from skin ulcers
only developed the ulcerative form of the disease (with a prevalence of ~30%; See Table 2; [25]).
Conversely, adult frogs exposed to a virus isolate obtained from skin ulcers generated both ulcerative
and hemorrhagic signs of the disease, while virus isolated from a hemorrhage caused the hemorrhagic
form of the disease in exposed adults [25]. These, and other data, indicate that ranaviruses associated
with different pathologies in the UK might have different transmission rates [25]. Our estimates of
σ for both the ulcerative and hemorrhagic forms can be found in Table 2. If we take the view that
infection using viral isolates derived from the cell culture does not mimic the natural process, the
other estimates from Table 2 would be preferred, in which case, we estimated σ for the ulcerative and
hemorrhagic syndromes as 0.33 and 0.20, respectively.

Table 2. Estimates for σ derived from the literature, taking into account the different disease syndromes
and type of syndrome that the virus was obtained from. U indicates the ulcerative form of the disease;
H is the hemorrhagic form. The estimate of σ is simply the prevalence of the disease based on the
presence of the signs of disease when the experiment terminated. The average estimate of σ is simply
the mean of the estimates for each type of virus used for exposure. Development of disease data and
type of experiment information are summarized from Tables 3–5 of Cunningham et al. [25].

Development of Disease Type of Experiment/
Exposure Type Estimate of σ Average

Estimate of σNo. with U No. with H No. with U & H Total Exp.

2 0 0 5
Immersion with virus from

naturally disease tissue with
bacteria (Ulcerative)

0.4

0.36

1 0 0 5
Immersion with virus from

naturally disease tissue without
bacteria (Ulcerative)

0.2

2 0 0 5

Immersion with virus from
naturally disease tissue to animals

with skin wounds with bacteria
(Ulcerative)

0.4

0 0 0 5

Immersion with virus from
naturally disease tissue to animals
with skin wounds without bacteria

(Ulcerative)

0

2 2 0 5
Immersion in virus isolated from
naturally diseased animals from

virus culture (RUK 13, Ulcerative)
0.8

0 0 0 5
Immersion with virus from

naturally disease tissue without
bacteria (Hemorrhagic)

0

0.44

0 0 0 5
Immersion with virus from

naturally disease tissue with
bacteria (Hemorrhagic)

0

1 1 1 5

Immersion with virus from
naturally disease tissue to animals

with skin wounds with bacteria
(Hemorrhagic)

0.6

0 3 1 5

Immersion with virus from
naturally disease tissue to animals
with skin wounds without bacteria

(Hemorrhagic)

0.8

1 2 1 5

Immersion in virus isolated from
naturally diseased animals from

virus culture (RUK 11,
Hemorrhagic)

0.8

We investigated three scenarios applying different values ofσ, where the first two versions explored
the two syndromes in isolation (ulcerative form, AU, and hemorrhagic form, AH, present, respectively,
in Figure 7A,B), represented by Equations (5)–(9) for the initial frequencies and Equations (10)–(14) at
time (t). Then we developed a new series of equations for when both disease syndromes are present
and including individuals that show signs of both forms of the disease, AU+H. For simplicity, we
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assumed that all animals are equally susceptible to both forms of the disease (Figure 8) and that there
was no difference in the disease-induced mortality rate between syndromes:

AS(t) = AS(i) − [σ1Ψ·AS(i)·AU(i) + σ2Ψ·AS(i)·A(U+H)(i) + σ3Ψ·AS(i)·AH(i)] −MN(i) + AR(i) (5)

AU(t) = AU(i) + [σ1Ψ·AS(i)·AU(i)] − [σ1Ψ·AU(i)·AH(i) + σ3Ψ·AH(i)·AU(i)] − [MN(i) + MD(U)(i)] (6)

A(U+H)(t) = A(U+H)(i) + [σ2Ψ·AS(i)·A(U+H)] + [σ1Ψ·AU(i)·AH(i)] + [σ3Ψ·AH(i)·AU(i)]
− [MN(i) + MD(U+H)(i)]

(7)

AH(t) = AH(i) + [σ3β·AS(i)·AH(i)] − [σ1β·AU(i)·AH(i) + σ3β·AH(i)·AU(i)] − [MN(i) + MD(H)(i)] (8)

As(t + 1) = AS(t) − [σ1Ψ·AS(t)·AU(t) + σ2Ψ·AS(t)·A(U+H)(t) + σ3Ψ·AS(t)·AH(t)] −MN(t) + AR(t) (9)

AU(t + 1) = AU(t) + [σ1Ψ·AS(t)·AU(t)] − [σ1Ψ·AU(t)·AH(t) + σ3Ψ·AH(t)·AU(t)]
− [MN(t) + MD(U)(t)]

(10)

A(U+H)(t + 1) = A(U+H)(i) + [σ2Ψ·AS(i)·A(U+H)] + [σ1Ψ·AU(i)·AH(i)] + [σ3Ψ·AH(i)·AU(i)]
− [MN(i) + MD(U+H)(i)]

(11)

AH(t + 1) = AH(t) + [σ3Ψ·AS(t)·AH(t)] − [σ1Ψ·AU(t)·AH(t) + σ3Ψ·AH(t)·AU(t)]
− [MN(t) + MD(H)(t)]

(12)
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Figure 7. Diagrammatic representations of the transmission dynamics of the ranavirus when only the
AS or AH causing isolate of the ranavirus is present. (A) When only the ulcerative form of the ranavirus
is present within the population. (B) When only the hemorrhagic form of the disease is present in the
population. All of the variables present are the same as described above and all have a time component
associated with them. Where As is the number of susceptible individuals, Ψ is the contact rate, σ is the
likelihood of transmission, MN is the natural mortality rate, and MD is the mortality rate associated
with ranavirosis.
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Figure 8. Illustration of the complex transmission dynamics of the ranavirus, when both of the
observed disease syndromes are present in the population. Dashed lines are used to make the disease
syndrome-specific vectors of the transmission easier to follow. The box sizes are not representative of
the number of individuals in each category. The order of the boxes does not indicate when the given
disease syndrome was introduced. All parameters have time components associated with them. As is
the number of susceptible individuals, Ψ is the contact rate, σ is the likelihood of transmission, MN is
the natural mortality rate, and MD is the mortality rate associated with ranavirosis.

Ulcerative Syndrome

RoU = σ1Ψ [AS(t) + AH(t)]/MN(t)+MD(U)(t) + MD(H)(t) (13)

Hemorrhagic Syndrome

RoH = σ3Ψ [AS(t) + AU(t)]/MN(t) + MD(H)(t) + MD(U)(t) (14)

Under the assumptions that AS = 28 → 14, AH = 1 → 14, with the introduction of 1 → 5 AU,
MD(U) = MD(H) = 0.775, σ1 = 0.3, σ3 = 0.25, Ψ = 0.45, and MN = 0.2, based on the RO values, AU and AH

should not coexist over the long term. It does not matter if AU is introduced into a population with AH

or vice-versa (Figure 9). Both of these disease syndromes co-occur in nature [21] and in experimental
infections [25].

Increasing the number of AU individuals in a population requires a higher transmission rate at
each contact, for AH to become established (i.e., Ro ≥ 1). However, establishment does not guarantee
coexistence over the long term. While at first this might seem counter intuitive, it can be explained as
follows—when there are more AU individuals in the population there is a greater overall mortality
rate because MD(U) >> MN. Hence, there are actually fewer individuals to infect. Even when all
of the population (n = 29) is composed of AU individuals, AH can become established (σ3 ≈ 0.85;
see Figure 10). Although this is a high transmission rate, it is not unlikely in the situation where
animals have broken skin (see [25]; adult common frogs with broken skin are more likely to become
infected), which is characteristic of the ulcerative form of the ranaviral disease. The above analysis
demonstrates that the two disease syndromes could persist in the short term, in the same population,
by adult-to-adult transmission, albeit under conditions which have been estimated from data that are
incomplete and not necessarily biologically relevant, based on the differing Ro values.
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Figure 9. Ro values for the introduction of one AH individual into a population of AS = 28 and AU = 1
(MD(U) = MD(H) = 0.775, Ψ = 0.45, MN = 0.2). AS is the number of susceptible individuals, Ψ is the
contact rate, σ is the likelihood of transmission, MN is the natural mortality rate, and MD is the mortality
rate associated with ranavirosis.

Viruses 2019, 11, x FOR PEER REVIEW 11 of 14 

 

coexistence over the long term. While at first this might seem counter intuitive, it can be explained as 
follows—when there are more AU individuals in the population there is a greater overall mortality 
rate because MD(U) >> MN. Hence, there are actually fewer individuals to infect. Even when all of the 
population (n = 29) is composed of AU individuals, AH can become established (σ3 ≈ 0.85; see Figure 
10). Although this is a high transmission rate, it is not unlikely in the situation where animals have 
broken skin (see [25]; adult common frogs with broken skin are more likely to become infected), 
which is characteristic of the ulcerative form of the ranaviral disease. The above analysis 
demonstrates that the two disease syndromes could persist in the short term, in the same population, 
by adult-to-adult transmission, albeit under conditions which have been estimated from data that are 
incomplete and not necessarily biologically relevant, based on the differing Ro values. 

 
Figure 10. Ro values for the introduction of one AH individual to populations with differing numbers 
of AU, while the total population size remains constant at 30. The number associated with each line 
indicates the number of AU individuals present in the population. (MD(U) = 0.775, Ψ = 0.45, MN = 0.2) 
As is the number of susceptible individuals, Ψ is the contact rate, σ is the likelihood of transmission, 
MN is the natural mortality rate, and MD is the mortality rate associated with ranavirosis. 

3. Discussion 

Transmission dynamics are key to understanding host and pathogen persistence. In amphibian 
ranavirus systems, transmission can occur through direct contact, from scavenging, from virus 
particles persisting in the environment, and even between vertebrate classes, as seen in laboratory 
experiments. However, there is little understanding of the transmission routes that are most 
important in natural communities. In North America, ranavirus transmission appears to be primarily 
through direct contact with minimal transmission from water and scavenging, in most circumstances 
[16]. Our model is consistent with these results, demonstrating that the ranavirus(es) present in the 
UK common frog populations might persist in the short-term through horizontal, adult-to-adult 
transmissions alone. 

When the declines of 8.1% per annum—observed by Teacher et al. [9] in the common frog 
populations where ranavirosis have emerged—are factored into the model, it took approximately 65 
years for all adults in the population to become infected. This model did not take into account 
immigration, which has been noted by Teacher et al. [29] or the change in population structure that 
is caused by the emergence of ranavirosis, as described by Campbell et al. [30]. These additional 
factors, along with the effects of climate change [28], might change the outcomes of the models, and 
perhaps even require adjustments to the model parameters. 

Strict adult-to-adult transmission of ranaviruses appears to be relatively rare. It is likely to have 
occurred in a mass mortality event of over 1000 adult and metamorphic water frogs (Pelophylax spp.) 
in the Netherlands, caused by a strain of Common Midwife Toad Virus (CMTV) [31]. In this case, there 
were also common newts (Lissotriton vulgaris) involved in the mortality event [31], but they made up 
only approximately 1% of the animals killed, and ranavirus transmission to the newts might be best 

Figure 10. Ro values for the introduction of one AH individual to populations with differing numbers
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As is the number of susceptible individuals, Ψ is the contact rate, σ is the likelihood of transmission,
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3. Discussion

Transmission dynamics are key to understanding host and pathogen persistence. In amphibian
ranavirus systems, transmission can occur through direct contact, from scavenging, from virus particles
persisting in the environment, and even between vertebrate classes, as seen in laboratory experiments.
However, there is little understanding of the transmission routes that are most important in natural
communities. In North America, ranavirus transmission appears to be primarily through direct contact
with minimal transmission from water and scavenging, in most circumstances [16]. Our model is
consistent with these results, demonstrating that the ranavirus(es) present in the UK common frog
populations might persist in the short-term through horizontal, adult-to-adult transmissions alone.

When the declines of 8.1% per annum—observed by Teacher et al. [9] in the common frog
populations where ranavirosis have emerged—are factored into the model, it took approximately



Viruses 2019, 11, 556 11 of 13

65 years for all adults in the population to become infected. This model did not take into account
immigration, which has been noted by Teacher et al. [29] or the change in population structure that is
caused by the emergence of ranavirosis, as described by Campbell et al. [30]. These additional factors,
along with the effects of climate change [28], might change the outcomes of the models, and perhaps
even require adjustments to the model parameters.

Strict adult-to-adult transmission of ranaviruses appears to be relatively rare. It is likely to have
occurred in a mass mortality event of over 1000 adult and metamorphic water frogs (Pelophylax spp.)
in the Netherlands, caused by a strain of Common Midwife Toad Virus (CMTV) [31]. In this case, there
were also common newts (Lissotriton vulgaris) involved in the mortality event [31], but they made up
only approximately 1% of the animals killed, and ranavirus transmission to the newts might be best
attributed to pathogen spillover. In North America, reports of adult anurans infected with ranavirus
are rare (e.g., only one adult wood frog [18]); morbidity and mortality events tend to occur in the
tadpole stage. However, in the UK, adult-only mortality and morbidity events are typical, therefore,
adult-to-adult transmission must play a major role in the transmission, which is consistent with our
model results. This is an important finding since, there often is a lack of tadpoles in the ponds at the
time of the adult mortality events [20]. However, other species might act as a reservoir of hosts that
can infect common frogs [32], such as common toads, common newts (Lissotriton vulgaris) and the
introduced common midwife toad (Alytes obstetricans). Future models and studies should explore
interspecies transmission and subsequent population dynamics, especially since the presence of other
species, namely common toads (Bufo bufo), can reduce disease risk in common frogs [5,27].

Our models showed that both disease syndromes can co-exist in the short term, despite competition
between the ranavirus(es) associated with the different disease syndromes. This is not surprising if
there are multiple strains of ranavirus present in the population. Exposure to different ranaviruses
has been shown to result in enhanced viral infectivity in larval amphibians in the USA [33], and it is
possible that this same pattern is occurring in the adult UK common frogs. The susceptibility of the
host might depend on which ranavirus strain (ulcerative or hemorrhagic) is first introduced into the
population. A similar effect has been previously observed in tadpoles exposed to Frog virus 3 (FV3)
and Ambystoma tigrinum virus [33]. This might be the case in the UK, because there are at least two
different types of ranaviruses present [27]. CMTV-like and FV3-like ranaviruses have been previously
identified in the UK populations of common frogs [27]; however, no association with the distinct
disease syndromes were found in this study. In a previous study, molecular differences between two of
the isolates (RUK 11 and RUK 13) were found, both of which were responsible for different disease
syndromes. Duffus et al. [34] found that while the major capsid protein sequences for these two isolates
were similar to FV3, the partial sequence of open reading frame 57r (an eIF-2α homologue) was similar
to that found in an isolate of Chinese giant salamander virus (a common midwife toad-like virus).
These differences could be indicative of larger scale molecular differences between the RUK isolates
that result in the different ranaviral syndromes seen in common frogs in the UK.

Our models were greatly limited by a lack of robust parameter estimates. The contact rates were
unknown for common frogs and the transmission coefficients were based on experiments with small
sample sizes and unrealistic viral titres. Better parameter estimation (e.g., contact rates, individual
susceptibility to ranavirosis, and disease-induced mortality in adults) would be key to improving the
predictive values of all presented models.
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