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Abstract: Porcine circovirus type 2 (PCV2) is the etiological agent of porcine circovirus diseases and
porcine circovirus-associated diseases (PCVDs/PCVADs). However, the pathogenesis of PCV2
is not fully understood. We previously found that 3-hydroxy-3-methylglutaryl coenzyme A
reductase (HMGCR) is negatively associated with PCV2 infection in vitro and in vivo. HMGCR
inhibits the early stages of PCV2 infection, while PCV2 infection induces the phosphorylation of
HMGCR to inactivate the protein. In this study, we investigated the possibility that adenosine
5′-monophosphate (AMP)-activated protein kinase (AMPK), and protein phosphatase 2 (PP2A)
participate in HMGCR-mediated inhibition of PCV2 infection and the interaction of porcine HMGCR
with PCV2 proteins. The results showed that AMPK activity fluctuated in cells during the early stage
of PCV2 infection, while PP2A had little effect on PCV2 infection and HMGCR activity. Furthermore,
PCV2 infection may enhance or maintain the level of phosphorylated HMGCR by directly interacting
with the protein in PK-15 cells. These findings may provide a better understanding of PCV2
pathogenesis, and HMGCR may be a novel PCV2 antiviral target.

Keywords: porcine circovirus type 2 (PCV2); 3-hydroxy-3-methylglutaryl coenzyme A reductase
(HMGCR); adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK); protein
phosphatase 2 (PP2A); interaction

1. Introduction

Porcine circovirus type 2 (PCV2) is the etiological agent of porcine circovirus diseases and porcine
circovirus-associated diseases (PCVDs/PCVADs), which are present in every major swine-producing
country in the world [1–3]. However, the pathogenesis of PCV2 is not fully understood. PCV2 belongs
to the genus Circovirus and family Circoviridae, the members of which are the smallest nonenveloped,
single-stranded, circular DNA viruses [3,4]. Due to its small genomic size (1.7 kb) and highly limited
coding capacity, the life cycle of PCV2 relies predominantly on host cell factors [1]. Therefore, finding
and identifying host proteins related to PCV2 infection is a promising strategy for elucidating PCV2
pathogenesis and controlling the viral infection.

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is the rate-controlling
enzyme of the mevalonate pathway, which produces cholesterol and other isoprenoids [5]. Recently,
several groups have reported that HMGCR plays important roles in virus infection [6–8]. During
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infection, viruses modulate HMGCR activity to enhance the infection. It was found that multiple
Kaposi’s sarcoma-associated herpesvirus (KSHV) viral miRNAs target HMGCR to suppress cholesterol
in infected cells during latency, which could potentially be beneficial for viral infection [9]. Dengue virus
(DENV) upregulates HMGCR activity by impairing adenosine 5’-monophosphate-activated protein
kinase (AMPK) phosphorylation [8]. We previously found that HMGCR is negatively associated with
PCV2 infection in vitro and in vivo [10–12], as HMGCR inhibits the early stages of PCV2 infection [11],
while PCV2 infection induces the phosphorylation of HMGCR to inactivate the protein [12]. However,
the mechanism through which HMGCR regulates PCV2 infection has not been elucidated.

It has been reported that HMGCR is regulated by two upstream molecules, AMPK and phosphatase
protein phosphatase 2 (PP2A) [8,13]. AMPK inactivates HMGCR via phosphorylation of threonine 172
and serine 872 of HMGCR, while PP2A activates HMGCR directly through its dephosphorylation [8,13].
In this study, we extend our previous findings to examine whether HMGCR regulates PCV2 infection
through its upstream molecules or interacts directly with PCV2.

2. Materials and Methods

2.1. Virus and Cells

Cells were prepared according to the protocol described by Yang et al. [12]. Briefly, PCV-free
PK-15 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, New York, NY,
USA) supplemented with 5% fetal bovine serum (FBS, Gibco) and incubated at 37 ◦C in a 5% CO2

atmosphere. Cells were counted using hemocytometer and suspended to the desired dilution.
PCV2 strain CC1 (GenBank accession no. JQ955679) [14] was used in this study. Briefly, PCV-free

PK-15 cells at 50% confluence were infected with 10-fold serially diluted PCV2 and cultured in 96-well
plates at 37 ◦C in a 5% CO2 atmosphere. Each dilution was replicated eight times. The TCID50 values
were calculated according to the method described by Yang et al. [12].

2.2. Drugs and Antibodies

Lovastatin was purchased from Cayman Chemical (Ann Arbor, MI, USA). Dimethyl sulfoxide
(DMSO), FTY720 (PP2A activator), anti-Flag® antibody produced in rabbit, anti-HA antibody
produced in rabbit, monoclonal mouse anti-HA antibody and protease inhibitor cocktail were
purchased from Sigma (Laramie, WY, USA). Compound C (dorsomorphin, an AMPK inhibitor),
metformin (AMPK activator) and the anti-PP2A alpha+beta antibody were all purchased from Abcam
(Cambridge, MA, USA). The Anti-PRKAA1+PRKAA2 antibody (phospho-Thr183/Thr172 AMPK),
anti-HMG-CoA reductase/HMGCR antibody (C-terminus, FITC), and the anti-PRKAA1+PRKAA2
antibody (AMPK, Internal) were purchased from LifeSpan BioSciences (Seattle, WA, USA).
The phospho-PP2A alpha+beta (Tyr307) antibody was purchased from EterLife (London, UK).
The HMGCR (phospho-Ser872) antibody was purchased from Biorbyt (Cambridge, MA, USA).
The mouse β-actin antibody was purchased from Proteintech (Wuhan, China). The PCV2 capsid
antibody was purchased from GeneTex (Irvine, CA, USA). The Cy3-labeled goat anti-mouse IgG (H+L),
FITC-labeled goat anti-rabbit IgG (H+L), 4′,6-diamidino-2-phenylindole (DAPI), HRP-conjugated
goat anti-rabbit IgG (H+L), HRP-conjugated goat anti-mouse IgG (H+L), BeyoECL Plus Western blot
detection system and okadaic acid (PP2A inhibitor) were purchased from Beyotime (Shanghai, China).
Mouse anti-HMGCR antibody (C-1, sc-271595) and protein A/G PLUS-agarose beads were purchased
from Santa Cruz Biotechnology (Dallas County, TX, USA). Polyclonal rabbit anti-Myc antibody and
mouse monoclonal anti-Flag antibody were purchased from Abbkine, Inc. (San Diego, CA, USA). Goat
anti-mouse IgG (H+L) was purchased from Jackson ImmunoResearch Inc., (West Grove, PA, USA).
Monoclonal mouse Myc-tag antibody was purchased from Proteintech Group, Inc. (Rosemont, IL, USA).
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2.3. Plasmid Construction

PCV2 DNA was extracted from virus-infected PK-15 cells with the TIANamp Virus DNA/RNA
kit (Tiangen, Beijing, China) according to the manufacturer’s protocol. Primers were designed and
synthesized according to the Cap gene and Rep gene sequences of PCV2 strain CC1 (GenBank accession
no. JQ955679). PCV2 Cap and Rep genes were amplified using the primer pairs Cap-F/Cap-R and
Rep-F/Rep-R, respectively. The primers used in this study are described in Table 1. The PCR products
were subcloned into Lenti-CAG-WPRE (Hongli biotechnology, Shanghai, China) using an In-Fusion®

HD Cloning kit (Takara Bio USA, Inc., Chicago, IL, USA) to generate recombinant expression plasmids
pHA-Rep and pMyc-Cap, respectively.

Table 1. Primers used in this study.

Primer Oligonucleotide Sequences (5′–3′) Cloning Site Size (bp)

Rep-F acgcgtatgtacccatacgacgtaccagattacgctcccagcaaaaagaatggaagaag Mlu I
Age I 945

Rep-R cgaccggttcagtaatttatttcatatggaaattcag

Cap-F acgcgtatggagcagaagctgatctcagaggaggacctgacgtatccaaggaggcgtta Mlu I
Age I 708

Cap-R cgaccggtttaagggttaagtggggggtctt

HMGCR-F ggatccatgttgtcaagactcttccgaatgc BamH I
EcoR I

2674
HMGCR-R gaattctcaagctgccttcttagtgcaag

Note: Restriction sites are underlined.

To amplify porcine HMGCR, the primers were designed based on the cDNA sequence of the porcine
HMGCR gene (GenBank accession no. DQ432054) using vector NTI 10 (Invitrogen). HMGCR was
amplified with primers HMGCR-F/HMGCR-R using pEF-HMG2 [12] as a template. The HMGCR gene
was cloned into pCDNA3.1(+) by BamHI and EcoRI to generate the expression plasmid pFlag-HMGCR.
The plasmids were verified by double enzyme digestion and DNA sequencing conducted by Tiangen
Biotech (Beijing, China).

2.4. Virus Infection and Treatment

PK-15 cells (106 cells/well) were seeded in 6-well plates for 12 h to reach a confluence of 70–80%.
Cells were treated with DMSO, lovastatin, the PP2A activator FTY720, the PP2A inhibitor okadaic acid,
the AMPK inhibitor compound C, or the AMPK activator metformin at the indicated concentrations
for 1 h. Then, cells were infected with PCV2 strain CC1 at a multiplicity of infection (MOI) of 10 and
cultured in fresh medium containing the respective drugs. The proteins and genomic DNA were
measured at each indicated time point using western blotting and real-time PCR.

2.5. Real-Time PCR

SYBR Green quantitative real-time PCR was performed according to the protocol described by
Liu et al. [15]. Briefly, viral genomic DNA was extracted from infected cells using the TIANamp
Virus DNA/RNA kit (Tiangen) according to the manufacturer’s protocol. PCR products amplified
via the primers PCV2-2A (5′-CACCTTCGGATATACTGTCAA-3′) and PCV2-2B (5′-TACATGGTT
ACACGGATATTGTA-3′) [16] were subcloned into pGM-T (Tiangen, China) to generate a standard
plasmid pT-PCV2. SYBR Green quantitative real-time PCR was performed with the primer pair
PCV2-z1 (5′-TGTAGTATTCAAAGGGCACAGAGC-3′) and PCV2-z2 (5′-CGGATATACTATCAAG
CGAACCAC-3′) [17] using the BIO-RAD IQTM5 Multicolor Real-Time PCR Detection System and the
Luna® Universal qPCR Master Mix (New England Biolabs, USA). The viral genome copy number
was calculated by comparison to the standard curve generated by pT-PCV2 dilution. The experiments
were repeated at least three times.
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2.6. MTS Assay

Cell viability was evaluated according to the protocol described by Yang et al. [12]. Briefly, PK-15
cells were plated in 96-well plates at a density of 5 × 103 cells per well for 24 h. Then, cells were
treated with DMSO, the PP2A activator FTY720, the PP2A inhibitor okadaic acid, the AMPK inhibitor
compound C, or the AMPK activator metformin at different concentrations for 12 h. Thereafter, the MTS
assay was performed using the Cell Counting Kit-8 (Beyotime, Jiangsu, China), and the OD450 values
were measured using an ELx800 microplate reader (Bio-TEK) 1 h later. The experiments were repeated
at least three times.

2.7. Confocal Fluorescence Microscopy

PK-15 cells on coverslips were infected with 200 µL of PCV2 at a MOI of 10 for 1 h [11]. Then,
the cells were washed with PBS three times and maintained in fresh medium supplemented with 5%
FBS. At 48 h postinfection (hpi), the cells were fixed with 80% cold acetone for 1 h at −20 ◦C. Thereafter,
the cells were washed with PBS three times and incubated with mouse anti-HMGCR antibody for
1 h at 37 ◦C. After washing with PBS three times, the cells were incubated with the Cy3-labeled goat
anti-mouse IgG (H+L, 1:100) secondary antibody for 1 h at 37 ◦C. Subsequently, the cells were washed
with PBS three times and incubated with rabbit anti-Cap antibody (1:100) [18] or rabbit anti-Rep
antibody (1:100) [19] previously prepared in our lab for 1 h at 37 ◦C, followed by incubation with the
FITC-labeled goat anti-rabbit IgG (H+L, 1:1000) secondary antibody for 1 h at 37 ◦C. Finally, the cells
were stained with DAPI (1:1000) for 10 min, washed with PBS three times, and the samples were
examined under a Zeiss LSM700 confocal microscope (×100).

2.8. Coimmunoprecipitation (Co-IP)

PK-15 cells were seeded in a 6-well plate at a density of 1 × 106 cells per well. On the following day,
cells were cotransfected with 5 µg of pFlag-HMGCR, pHA-Rep or pMyc-Cap plasmids using Fugene
HD Transfection Reagent (Roche) according to the manufacturer’s instructions. Lenti-CAG-WPRE
and pCDNA3.1(+) vectors were used as negative controls. Whole-cell extracts were collected 24 h
after transfection and washed twice with cold PBS, followed by incubation with RIPA lysis buffer
(1000 µL/well) consisting of 50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1% NP-40, 0.5% sodium
deoxycholate, 0.1% sodium dodecyl sulfate (SDS) and complete protease inhibitor cocktail (Roche) for
20 min on ice. After centrifugation for 10 min at 13,000 rpm at 4 ◦C, supernatants of the whole-cell
extracts were collected and divided into two parts. One part was used for coimmunoprecipitation, and
the other part was used for immunoblotting analysis.

For coimmunoprecipitation, the supernatants of the whole-cell extracts were incubated with 2 µL
of anti-Flag® antibody produced in rabbit, anti-HA antibody produced in rabbit, or polyclonal rabbit
anti-Myc antibody at 4 ◦C overnight on a rocking platform. Thereafter, the supernatants were incubated
with 30 µL of protein A/G PLUS-agarose beads for 2 h on a rocking platform, centrifuged at 5000 rpm
at 4 ◦C for 1 min, and then the beads were washed with 500 µL of RIPA lysis buffer three times. Bound
proteins were eluted by boiling the beads for 5 min with 2× sample buffer (50 mM Tris-HCl [pH 6.8], 2%
SDS, 10% glycerol, and 0.1% bromophenol blue and 1% β-mercaptoethanol). Samples were analyzed by
western blot using a monoclonal mouse anti-HA antibody (1:1000), a monoclonal mouse Myc-tag antibody
(1:1000) or a mouse monoclonal anti-Flag antibody (1:1000) as the primary antibody. Membranes were then
incubated with a goat anti-mouse IgG (H+L) (1:5000) as the secondary antibody and developed using the
BeyoECL Plus Western blot detection system according to the manufacturer’s instructions. The whole-cell
lysates (input samples) were loaded as input controls for the western blot.

2.9. Western Blot (WB)

Total cells were lysed in lysis buffer (25 mM Tris-HCl, pH 7.6, 150 mM NaCl, 1% Triton X-100,
1% sodium deoxycholate, 0.1% SDS, 5% glycerol) with protease inhibitor cocktail added. Whole-cell
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lysates were separated by SDS-PAGE, electro-transferred to PVDF membranes (Millipore, USA),
blocked for 1.5–2 h with 5% skim milk in TBS-T buffer (20 mM Tris-HCl [pH 7.4], 150 mM NaCl,
and 0.1% Tween-20), and then incubated with anti-PRKAA1+PRKAA2 (phospho-Thr183/Thr172
AMPK, 1:1000), anti-PRKAA1+PRKAA2 (1:1000, AMPK, internal), anti-phospho-PP2A alpha+beta
(Tyr307, 1:1000), anti-PP2A alpha+beta (1:1000), anti-HMGCR (phospho-Ser872, 1:1000), anti-HMG-CoA
reductase/HMGCR (1:1000), anti-PCV2 capsid (1:500), or mouse anti-β-actin (1:2000) as the primary
antibodies at room temperature for 2 h or at 4 ◦C overnight. Subsequently, the PVDF membranes were
washed with 5% skim milk in TBS-T buffer three times, followed by blotting with HRP-conjugated goat
anti-rabbit IgG (H+L, 1:2000) or HRP-conjugated goat anti-mouse IgG (H+L, 1:2000) as the secondary
antibody for 1 h, and detected using the BeyoECL Plus Western blot detection system according to the
manufacturer’s instructions.

2.10. Statistical Analysis

Statistical significance was analyzed using one-way or two-way analysis of variance (ANOVA)
with GraphPad Prism software version 5 (GraphPad Software, San Diego, CA, USA), followed by
Bonferroni multiple comparison test. The results are expressed as the mean ± standard deviation (SD)
of three independent experiments.

3. Results

3.1. PCV2 Infection Increases Phosphorylation of PP2A, AMPK and HMGCR

PK-15 cells were infected with PCV2 for 0, 1, 3, 6, 12, 24, and 36 h, and analyzed by western blot
and real time PCR. The results showed that phosphorylation of HMGCR increased in a time-dependent
manner (Figure 1A). Phosphorylated PP2A and AMPK increased at 1 hpi, but decreased slightly at 3, 6, 12,
24 and 36 hpi, with similar results shown for Cap protein and the genomic copy number of PCV2 (Figure 1).
HMGCR is inactivated by AMPK via phosphorylation of threonine 172 and serine 872 of HMGCR, while
the phosphatase PP2A activates HMGCR directly through its dephosphorylation [8,11–13]. These results
indicate that PCV2 infection not only increases the phosphorylation of HMGCR, but also increases the
phosphorylation of PP2A and AMPK. Therefore, PCV2 infection enhances AMPK and PP2A activity, but
inhibits HMGCR activity, which is consistent with our previous results [11,12]. Therefore, the relationships
of PP2A, AMPK and HMGCR during PCV2 infection need to be further evaluated.
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with PCV2 and examined using western blot and real-time PCR at the indicated time points.
The experiments were repeated at least three times. All data are the means ± standard error (SD)
of three independent experiments. *, p < 0.05, **, p < 0.01, ***, p < 0.001, and ****, p < 0.0001. (A)
Western blot analysis and densitometric quantification of the indicated proteins. The graph (lower
panel) represents the relative quantification (arbitrary unit) of each protein normalized to β-actin. The
bar represents the mean of three independent experiments. (B) Real-time PCR of PCV2.

3.2. Inhibition of HMGCR by Lovastatin Has No Effect on the Activities of AMPK and PP2A during
PCV2 Infection

Statins, including lovastatin and atorvastatin, are common inhibitors of HMGCR [10,12].
Previously, we confirmed that 20 µM lovastatin or 0.5% DMSO had no cytopathic effects on PK-15
cells [11,12]. To evaluate the levels of AMPK and PP2A, cells were cultured in DMEM containing
20 µM lovastatin or 0.5% DMSO, followed by PCV2 infection. No significant difference in the level
phosphorylated PP2A was observed in both lovastatin- and DMSO-treated cells during PCV2 infection
(Figure 2). In addition, the levels of phosphorylated AMPK increased at 1 and 8 hpi, but decreased
to normal levels in both lovastatin- and DMSO-treated cells during PCV2 infection at 2, 4, 6 and
10 hpi (Figure 2), suggesting that AMPK activity fluctuated during the early stage of PCV2 infection.
Moreover, these results also suggest that inhibition of HMGCR by lovastatin has no effect on the
activity of AMPK and PP2A during PCV2 infection.
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Figure 2. Inhibition of HMGCR by lovastatin has no effect on the activity of AMPK and PP2A during
PCV2 infection. Cells were treated with lovastatin (20 µM) or 0.5% DMSO and infected with PCV2,
then analyzed by western blot at the indicated time points. The experiments were repeated at least
three times.

3.3. PP2A Has Little Effect on PCV2 Infection and HMGCR Activity

To evaluate the cytopathic effect of FTY720 (PP2A activator) or okadaic acid (PP2A inhibitor), cells
were cultured in DMEM containing different concentrations of FTY720 or okadaic acid and examined
using the Cell Counting Kit-8 according to the manufacturer’s instructions. The results showed that
cell viability was significantly decreased in DMEM containing 10 µM and 20 µM FTY720, as well as
DMEM containing 50 nM okadaic acid (Figure 3A). Therefore, 5 µM FTY720 and 10 nM okadaic acid
was used in the following study.

Cells were incubated with FTY720 or okadaic acid, followed by PCV2 infection. As shown in
Figure 3B, the copy number of PCV2 was significantly decreased in FTY720-treated cells compared
with that of DMSO-treated cells at 1 hpi, while the level of PCV2 Cap protein was increased at 1 hpi and
significantly decreased later (Figure 3C). When PP2A was inhibited with okadaic acid, no significant
difference in the copy number and Cap protein of PCV2 was observed between the okadaic acid-treated
cells and DMSO-treated cells (Figure 3B,C). These results indicate that activated PP2A can inhibit PCV2
infection, which mainly targets the transcriptional or translational level of the viral infection.

Moreover, it has been reported that AMPK activity can be inhibited by activated PP2A [20–22]. Thus,
the levels of AMPK phosphorylation were also examined in FTY720-, okadaic acid- or DMSO-treated
cells during PCV2 infection. The results showed that the AMPK activities increased at 1 and 10
hpi and decreased at the other times, which is consistent with the results shown in Figures 1 and 2,
suggesting that PP2A has no effect on AMPK activity during PCV2 infection (Figure 3B,C). These results
further confirm that AMPK activity fluctuated during the early stage of PCV2 infection. Furthermore,
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as shown in Figure 3C, the levels of phosphorylated HMGCR changed in a manner similar to that of
phosphorylated AMPK, suggesting that HMGCR is regulated by AMPK during PCV2 infection.
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3.4. HMGCR Activity Is Mainly Regulated by AMPK during PCV2 Infection

To select a suitable concentration of compound C (AMPK inhibitor) or metformin (AMPK activator),
cells were cultured in DMEM containing different concentrations of compound C or metformin and
examined using the Cell Counting Kit-8. The results showed that cell viability was significantly
decreased in DMEM containing 10 µM compound C and 20 mM metformin (Figure 4A). Therefore,
5 µM compound C and 10 mM metformin were used in the following study.
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with compound C (AMPK inhibitor) or metformin (AMPK activator) and infected with PCV2, and
analyzed by western blot at the indicated time points. The results are expressed as the mean ± SD
of three independent experiments. The experiments were repeated at least three times. *, p < 0.05,
***, p < 0.001, and ****, p < 0.0001. (A) Cytopathic effects of drugs. (B) Western blot.
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When cells treated with compound C or metformin were infected with PCV2, the levels of
phosphorylated AMPK increased at 1–2 hpi and 6–8 hpi, but decreased at 4 and 10 hpi (Figure 4B),
further confirming that AMPK activity fluctuated during the early stage of PCV2 infection. Furthermore,
the level of phosphorylated HMGCR increased in compound C-treated cells and decreased in the
metformin-treated cells in a time-dependent manner during PCV2 infection (Figure 4B). These results
suggest that HMGCR activity is mainly regulated by AMPK, while PCV2 infection may enhance or
maintain the level of phosphorylated HMGCR. Thus, whether HMGCR directly interacts with PCV2
needs to be evaluated.

3.5. Construction of Recombinant Expression Plasmids

PCV2 Cap and Rep genes were amplified and subcloned into Lenti-CAG-WPRE to generate
the recombinant expression plasmids pHA-Rep (Figure 5A) and pMyc-Cap (Figure 5B), respectively.
HMGCR was amplified and cloned into pCDNA3.1(+) by BamH I and EcoR I to generate the expression
plasmid pFlag-HMGCR (Figure 5C). The plasmids were verified by PCR (Figure 5D,E) or enzyme
digestion (Figure 5F) and DNA sequencing (data not shown).
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Figure 5. Construction scheme of the plasmids used in this study. The Cap and Rep genes of PCV2
were cloned into Lenti-CAG-WPRE by MluI and AgeI to generate recombinant expression plasmids
pHA-Rep (A,D) and pMyc-Cap (B,E), respectively and were further verified by PCR. The porcine
HMGCR gene was cloned into pCDNA3.1(+) by BamH I and EcoR I to generate the expression plasmid
pFlag-HMGCR (C) and confirmed by double digestion with BamH I and EcoR I (F).

3.6. HMGCR Interacts with the Cap Protein of PCV2

The Cap protein of PCV2 contains the main antigenic determinant of the virus, and the protein
also plays an important role in the initiation of PCV2 DNA replication [3,23]. To examine whether
the negative effect of HMGCR on the replication of PCV2 is associated with the viral Cap protein,
we investigated the interaction and colocalization of HMGCR with the Cap protein during PCV2
infection using an immunofluorescence assay. We observed that there was a significant colocalization
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of HMGCR and the viral Cap protein (Figure 6A). The majority of the HMGCR protein accumulated
together with the Cap protein in the cytoplasm and around the nucleus of the virus-infected cells.

To further investigate the interaction between PCV2 Cap and HMGCR, an immunoprecipitation
experiment was conducted. The results showed that the Myc-labeled protein coimmunoprecipitated
with the anti-Flag® antibody produced in rabbit (Figure 6B, left panel), and the Flag-fused protein was
detected in immunoprecipitates obtained with the polyclonal rabbit anti-Myc antibody (Myc-Cap) at
24 h posttransfection (Figure 6B, right panel), indicating that the Myc-labeled protein interacts with the
Flag-fused protein. Since HMGCR was fused to a Flag tag and the viral Cap protein was labeled with
a Myc tag in the present study, these results demonstrated that HMGCR interacts with Cap protein
during PCV2 infection.
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3.7. HMGCR Interacts with the Rep Protein of PCV2

The Rep protein of PCV2 is a viral DNA replication-associated protein that is highly conserved
and encoded by the ORF1 gene of the virus [3]. It has been reported that the Rep protein not
only interacts with cellular filament protein and transcriptional regulator c-Myc, but also interacts
with Cap protein [24]. Therefore, we analyzed the subcellular localization of HMGCR and the Rep
protein. HMGCR was stained using a mouse anti-HMGCR antibody followed by incubation with a
Cy3-labeled goat anti-mouse IgG (H+L) secondary antibody, while the Rep protein was stained using
a rabbit anti-Rep antibody and a FITC-labeled goat anti-rabbit IgG. Confocal microscopy revealed that
the porcine HMGCR and the viral Rep protein displayed high degrees of colocalization within the
cytoplasm and perinuclear region of the virus-infected cells (Figure 7A).

To further investigate the interaction between PCV2 Rep and HMGCR, an immunoprecipitation
experiment was performed. The results showed that the anti-Flag® antibody produced in rabbit
immunoprecipitated not only the Flag-tagged protein, but also the HA-tagged protein after 24 h of
transfection (Figure 7B, left panel) and vice versa (Figure 7B, right panel), indicating that the HA-labeled
protein can interact with the Flag-tagged protein. Since HMGCR was fused to a Flag tag and the viral
Rep protein was labeled with an HA tag in the present study, these results demonstrate that HMGCR
interacts with the Rep protein in the cytoplasm during PCV2 infection, suggesting a role for HMGCR
in PCV2 replication.
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4. Discussion

We previously found that HMGCR is negatively associated with PCV2 infection in vitro and
in vivo [10–12]. HMGCR inhibits the early stages of PCV2 infection [11], while PCV2 infection induces
the phosphorylation of HMGCR to inactivate the protein [12]. In this study, we also found that PCV2
infection enhanced the activity of AMPK and PP2A, two upstream molecules involved in HMGCR
phosphorylation (Figure 1). To evaluate whether AMPK and PP2A participate in HMGCR inhibition
during PCV2 infection, PK-15 cells were treated with drugs targeting AMPK or PP2A, and infected
with PCV2. The results showed that AMPK activity fluctuated in cells during the early stage of PCV2
infection and this fluctuation had no relationship with the activator/inhibitor treatments (Figures 2–4).
Furthermore, PP2A had little effect on PCV2 infection and HMGCR activity (Figure 3), and HMGCR
activity was mainly regulated by AMPK, while PCV2 infection may enhance or maintain the level of
phosphorylated HMGCR (Figure 4). Therefore, we hypothesized that HMGCR may interact with PCV2.

Subsequently, we investigated the interaction and colocalization of porcine HMGCR with Cap
and Rep proteins of PCV2 using immunofluorescence and coimmunoprecipitation assays. We found
that the PCV2 Cap/Rep proteins and HMGCR were significantly colocalized at 48 hpi, which indicates
that HMGCR affects PCV2 infection via interactions with the viral proteins. It has been reported
that PCV2 is closely associated with mitochondria [25], and the viral Cap protein recruits the host
dynein/microtubule machinery to travel through the cytoplasm towards the nuclear membrane [26].
Other groups found that PCV2 Cap proteins are expressed in the cytoplasm, transported to the nucleus
by a nuclear localization signal (NLS) in the flexible arginine-rich motif (ARM) domain of Cap (which
is recognized by host receptors of the importin family and other cofactors), and then exported to the
cytoplasm through the phosphorylation of the NLS [26,27]. As expected, the majority of the HMGCR
protein accumulated together with the viral Cap or Rep proteins in the cytoplasm of the virus-infected
cells. These results suggest that the interactions between the viral proteins and host proteins occur
mainly in the cytoplasm, which was also confirmed by coimmunoprecipitation assays (Figures 6 and 7).

HMGCR is a transmembrane enzyme containing eight transmembrane domains that localize
to both the membrane of the endoplasmic reticulum (ER) and peroxisomes [5,28]. The N-terminal
domain of HMGCR is composed of 339 amino acids and is integrated into membranes by virtue of
eight membrane-spanning segments, while the 548-amino acid C-terminal reductase domain projects
into the cytosol and exerts all of the enzymatic activity [29]. Interestingly, significant colocalization of
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the Cap protein and HMGCR was observed in the perinuclear region of the virus-infected cells. It has
been reported that filamentous vimentin protein has a restrictive effect on the replication of PCV2
in PK-15 cells by colocalizing with the viral Cap protein around the nucleus and forming a special
structure [30]. Ravi and colleagues found that HMGCR mediates changes in F-actin structure [6].
Therefore, one possible reason for this result is that HMGCR may interact with filament proteins or
actin or microtubules during PCV2 infection, which enables HMGCR to localize around the nucleus.
Furthermore, since the mouse anti-HMGCR antibody (C-1, sc-271595) used in this study was raised
against amino acids 589-888 mapping to the C-terminus of HMGCR, we hypothesized that another
possible reason for this finding was that interactions between HMGCR and the viral protein(s) resulted
in HMGCR accumulating around the nucleus. However, the mechanism needs to be further elucidated.
Moreover, truncated mutation constructs of HMGCR, Rep and Cap proteins were constructed, and
studies on the interactions between different domains of HMGCR and the viral proteins are currently
ongoing in our lab.

5. Conclusions

In conclusion, this study investigated the possibility that AMPK and PP2A participate in
HMGCR-inhibited PCV2 infection, as well as the interactions between porcine HMGCR and PCV2
proteins. The results showed that AMPK activity fluctuates in cells during the early stage of PCV2
infection, while PP2A has little effect on PCV2 infection and HMGCR activity. Furthermore, PCV2
infection may enhance or maintain the level of phosphorylated HMGCR by directly interacting with
the protein in PK-15 cells. These findings may provide a better understanding of PCV2 pathogenesis,
and HMGCR may be a novel PCV2 antiviral target.
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