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Abstract: The hepatitis E virus (HEV) is transmitted via the faecal–oral route in developing countries
(genotypes 1 and 2) or through contaminated food and blood products worldwide (genotypes 3
and 4). In Europe, HEV subtypes 3c, 3e and 3f are predominant. HEV is the leading cause of acute
hepatitis globally and immunocompromised patients are particularly at risk. Because of a lack of cell
culture systems efficiently propagating wild-type viruses, research on HEV is mostly based on cell
culture-adapted isolates carrying uncommon insertions in the hypervariable region (HVR). While
optimizing the cell culture system using the cell culture-adapted HEV strain 47832c, we isolated
three wild-type strains derived from clinical specimens representing the predominant spectrum of
HEV in Europe. The novel isolates 14-16753 (3c), 14-22707 (3e) and 15-22016 (3f-like) replicate to
high viral loads of 108, 109 and 106.5 HEV RNA copies/mL at 14 days post-inoculation, respectively.
In addition, they could be kept as persistently infected cell cultures with constant high viral loads
(~109 copies/mL) for more than a year. In contrast to the latest isolates 47832c, LBPR-0379 and
Kernow-C1, the new isolates do not carry genome insertions in the HVR. Optimization of HEV cell
culture identified amphotericin B, distinct salts and fetal calf serum (FCS) as important medium
supplements. Overconfluent cell layers increased infectivity and virus production. PLC/PRF/5,
HuH-7-Lunet BLR, A549 and HepG2/C3A supported replication with different efficiencies. The novel
strains and optimized cell culture system may be useful for studies on the HEV life cycle, inactivation,
specific drug and vaccine development.
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1. Introduction

The hepatitis E virus (HEV) is a small, (+) single-stranded RNA virus belonging to the family
Hepeviridae, genus Orthohepevirus, which is comprised of four species. Orthohepevirus B is found in
chickens and Orthohepevirus D in bats [1]. Orthohepevirus C mainly circulates in rats but has zoonotic
potential [2]. HEV of Orthohepevirus A is currently classified into seven genotypes (gt) [1,3] of which
1–4 [1] and 7 [4] infect humans. Genotypes 1 and 2 are restricted to humans and are transmitted via the
faecal–oral route in developing countries. Genotypes 3 and 4 are also found in pig, wild boar and deer
(amongst others) and are transmitted through contaminated food and blood products worldwide [5].
Genotype 7 is linked to consumption of contaminated camelid meat and milk [4]. Moreover, a putative
genotype 8 was discovered which infects Bactrian camels [6]. The 7.2 kb long genome comprises
three major open reading frames (ORF). ORF1 encodes the non-structural polyprotein and ORF2 for
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the capsid protein [7]. Of note, ORF2 is translated into different forms of capsid protein and only a
minority is associated with viral particles whereas the free form is abundantly secreted [8,9]. ORF3 is
important for viral release and encodes an ion channel [10]. An additional ORF4 is solely expressed by
HEV gt 1 and controls the activity of the RNA dependent RNA polymerase [11].

The virus is spread worldwide whereas the most common subtypes in Europe are 3c, 3e and 3f [12].
The life cycle of the virus is not fully understood nor is the receptor described yet which is partly due
to the fact that the virus cannot easily be cultivated [13]. The first successful approach generating high
viral loads was the isolation of a subtype 3b strain in A549 and PLC/PRF/5 [14]. This success could
be repeated with a subtype 4c strain [15] and was then confirmed by isolating 17 strains out of 23
HEV-positive sera [16]. Moreover, this cell culture system was also found to be suitable for isolating
swine and wild boar HEV strains [17].

However, this approach could not be reproduced by several other workgroups [18–20] and since
then, only four more strains could be isolated which replicated to high viral loads. Remarkably, three
of these strains (47832c, LBPR-0379 and Kernow-C1) were isolated from patients with chronic hepatitis
E and have insertions in the hypervariable region (HVR) of ORF1 [21–23]. These are associated with a
growth advantage in vitro and are not commonly found in wild-type HEV. The insertions are thought
to be acquired by recombination events either in the patient or in a previous host [21,23]. The fourth
strain was derived from an experimentally infected pig and exclusively replicated in three-dimensional
PLC/PRF/5 cell cultures generated in a rotating wall vessel [19]. Another approach is to use full-length
infectious clones to transfect cells to generate infectious HEV [13]. This led to the development of
several infectious HEV strains like G3-HEV83-2-27 [24], which was successfully used in research on
the HEV life cycle [25].

Therefore, the currently available HEV cell culture systems are either not fully reproducible,
require high maintenance effort, involve sophisticated equipment, rely on transfection or use cell
culture-adapted strains carrying unusual genome insertions. It is debated whether these strains reflect
the behavior of wild-type HEV [26]. The lack of a reproducible cell culture system susceptible to
wild-type HEV also hampers the approach to generate a classic inactive or attenuated vaccine [27],
to develop and test specific drugs or to identify strategies for efficient HEV inactivation [28].

This work aimed to improve and facilitate the HEV cell culture by (i) investigating if the high
maintenance effort of daily medium refreshment can be reduced; (ii) analyzing the influence of cell
confluence on susceptibility to HEV; (iii) testing several medium supplements; (iv) comparing the
cell lines most permissive to HEV and the cell clone HuH-7-Lunet BLR which is highly permissive
for hepatitis C virus RNA replication [29]; and (v) investigating the long-term stability of HEV
producing cells. The optimized cell culture system was successfully used for virus isolation from
human clinical specimens containing currently circulating HEV subtypes. Finally, the novel strains
were further characterized.

2. Materials and Methods

2.1. Cell Culture

Lung carcinoma cell line A549 (ATCC CCL-185), liver carcinoma cell lines PLC/PRF/5 (ATCC
CRL-8024) and HepG2/C3A (ATCC CRL-10741, all from LGC Standards, Wesel, Germany) as well as
cell clones A549/D3 [30] and HuH-7-Lunet BLR (kindly provided by Prof. Dr. Ralf Bartenschlager,
University of Heidelberg, Germany) [29] were maintained in BMEM (see Section 2.1.1 for detailed
medium compositions) at 37 ◦C and 5% CO2.

2.1.1. Cell Culture Media Composition

Cell culture reagents were purchased from PAN Biotech (Aidenbach, Germany), specific salts
from Sigma-Aldrich (St. Louis, MO, USA).
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• BMEM: Eagle minimum essential medium (MEM) supplemented with 10% heat-inactivated fetal
calf serum (FCS), 2 mM l-glutamine, 1% non-essential amino acids (NEAA), 100 U/mL penicillin
G and 100 µg/mL streptomycin.

• MECK: BMEM additionally supplemented with 2.5 µg/mL amphotericin B, 10 mM CaCl2 and
10 mM K2SO4

• MEMM: BMEM additionally supplemented with 2.5 µg/mL amphotericin B and 30 mM MgCl2
• BMEM_G: Eagle MEM supplemented with 10% heat-inactivated FCS, 2 mM L-glutamine, 1%

NEAA and 100 µg/mL gentamycin
• MEMM_G: BMEM_G additionally supplemented with 10 mM MgCl2

2.2. Viruses and Inocula

HEV-positive samples were surplus material from our diagnostic laboratory stored at −80 ◦C.
Successfully from serum isolated HEV strains 14-16753 (2.8 × 106 HEV RNA copies/mL, genotype
(gt) 3c), 14-22707 (1.6 × 106 c/mL gt 3e) and 15-22016 (4.0 × 108 c/mL, gt 3f-like) were derived from a
59 year old male, a 65 year old female and a 63 year old male subject, respectively. HEV from plasma
(77-year old male) positive for strain 13-14672 (4.3 × 103 c/mL, gt 3 subtype not assignable) and from
faeces (72-year-old male) positive for strain 14-16078 (1.1 × 104 c/mL, gt 3e) could not be isolated in
cell culture. No further information about the subjects regarding serology, immunosuppression or
phase of HEV infection is available. HEV gt 3c strain 47832c positive culture supernatant served as
positive control. The positive control was always freshly prepared together with subject specimens.
Samples were diluted with PBS without Ca2+ and Mg2+ containing 0.2% BSA (Sigma-Aldrich) (w/v)
(PBS(−)/BSA0.2%) which always served as a negative control. The faecal specimen was processed as a
10% faecal suspension in PBS(−)/BSA0.2%. Diluted specimens were thoroughly vortexed, centrifuged
at 8000× g for 10 min and the supernatant sterile-filtrated using a 0.2 µm polyethersulfone (PES)
membrane (Sarstedt, Nümbrecht, Germany). No further pretreatment was applied.

2.3. Virus Isolation and Passaging

Unless stated differently in the results section, isolation was carried out in T12.5 flasks as follows:
BMEM cultured cells were seeded at a concentration of 105 viable cells/cm2 in T12.5 flasks 14 days
prior to inoculation and cultured at 37 ◦C and 5% CO2. Medium was switched from BMEM to MEMM
and completely refreshed every 3–4 days. After 14 days, supernatant was replaced with 250 µL of
inoculum and cells were incubated for 75 min at room temperature. Afterwards, 2.5 mL of MEMM
were added and cells were incubated at 34.5 ◦C and 5% CO2. At 24 h later, supernatant was completely
refreshed with MEMM and from then on every 3–4 days.

2.4. HEV RNA Quantification

RNA was isolated on an EZ1® Advanced XL workstation using the EZ1 Virus Mini Kit v2.0
(Qiagen, Hilden, Germany). Eluted nucleic acid was tested by RT-qPCR according to Wenzel et al. [31].
HEV RNA was quantified as genome copies per mL (c/mL).

2.5. Detection of ORF2 Antigen

The commercially available HEV Ag ELISA Plus kit (Wantai, Beijing, China) was used for detecting
ORF2 antigen. The ELISA was performed according to the manufacturer’s protocol.

2.6. Immunofluorescence Microscopy

Inoculated cell layers were detached after different time points, seeded in a 96-well µ-plate
(Ibidi, Martinsried, Germany) and grown to ~80% confluency at 37 ◦C and 5% CO2 within two days.
Afterwards, cells were washed with 0.05% Tween-20 (Sigma-Aldrich) (v/v) in PBS with Ca2+ and
Mg2+ (PBS(+), Lonza, Basel, Switzerland) (PBS(+)/Tween-200.05%) and fixed with 2% formaldehyde
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(Merck, Darmstadt, Germany) (v/v) in PBS(+). After another washing step, cells were permeabilized
with 0.1% Triton X-100 (Sigma-Aldrich) (v/v) in PBS(+) followed by blocking with 2% BSA (w/v) in
PBS(+)/Tween-200.05%. The blocking solution was then replaced by an anti-hepatitis E ORF2 antibody
(clone 2E2) [32] (Merck) diluted in PBS(+) containing 1% BSA (w/v) (PBS(+)/BSA1%) to a concentration
of 5 µg/mL and incubated for one hour at room temperature. After washing, cells were incubated
with an anti-mouse IgG1-FITC antibody (sc-2078, Santa Cruz Biotechnology, Dallas, TX, USA) diluted
in PBS(+)/BSA1% to a concentration of 2 µg/mL and incubated in the dark for one hour at room
temperature. After washing, nuclei were stained by SlowFade® Diamond Antifade Mountant with
DAPI (Thermo Fisher Scientific, Waltham, MA, USA). Fluorescent images were taken with a Keyence
BZ-9000 microscope.

2.7. Whole Genome Sequencing

Isolated RNA of strain 14-16753, 14-22707 and 15-22016 was reverse transcribed by MuLV (Applied
Biosystems, Waltham, MA, USA) and amplified by a first round PCR in different overlapping parts
(Tables S1–S3). The cDNA synthesis of the 5′-end was carried out with the SuperScript™ III First-Strand
Synthesis System kit (Thermo Fisher Scientific). Primers used for cDNA synthesis of the 5′- and
3′-end followed by a first round PCR are based on the BD SMART™ RACE cDNA Amplification kit
protocol (Table S4). All other primers are either based on Johne et al. [23] or were designed using
Primer3 (http://primer3.ut.ee/) [33] and GEMI v1.5.1 [34]. PCR products were further amplified by
a nested PCR. These products were separated on agarose gels and all amplification products were
extracted using the QIAquick Gel Extraction kit (Qiagen). Purified amplicons were then sequenced on
an ABI 3130xl automated sequencer. Electropherograms were inspected and sequences assembled with
CodonCode Aligner v4.2.7 (www.codoncode.com, CodonCode Corporation, Centerville, MA, USA).
All PCR reactions were performed with a Veriti™ 60-well Thermal Cycler (Thermo Fisher Scientific).
Consensus sequences were deposited in the GenBank under accession numbers MK089849 (14-16753,
gt 3c), MK089848 (14-22707, gt 3e) and MK089847 (15-22016, gt 3f-like).

2.8. Phylogenetic Analysis

Obtained whole genome sequences were genotyped by using the current HEV subtype reference
set proposed by Smith et al. [3]. Multiple sequence alignments (msa) were carried out by using
MUSCLE v3.8.31 [35]. Msa-files were further processed with RAxML v8.2.10 [36] and the best matching
phylogenetic tree was calculated based on the maximum likelihood principle with a bootstrap of 1000
replicates. The tree was rooted using moose HEV [37] as an outgroup and visualized by FigTree v1.4.3
(http://tree.bio.ed.ac.uk/software/figtree/).

3. Results

3.1. Effect of Medium Refreshment on Cells Infected With HEV Strain 47832c and Isolation of HEV Gt 3c
Strain 14-16753

Supernatant of A549 persistently infected with genotype (gt) 3c strain 47832c was examined after
different time points. A maximum of HEV RNA accumulated after 64 h whereas HEV ORF2 antigen
(Ag) concentrations kept on rising even if medium was not refreshed until 168 h (Figure 1a). These
data indicate that there is no need for daily medium refreshment to reach high viral loads.

To analyse the effect of medium exchange frequency, supernatants were either half or completely
refreshed in different intervals. After five weeks, higher HEV RNA concentrations were generated
when medium was refreshed completely and more frequently (Figure 1b). However, refreshing
medium once or twice a week still resulted in high HEV RNA concentrations.

The impact of medium refreshment on de novo infection of cell lines was also investigated by
inoculating A549 and PLC/PRF/5 with isolate 47832c (A549 supernatant containing 2.1 × 107 c/mL).
In addition, HEV-positive material of three different subjects were inoculated: a faecal suspension

http://primer3.ut.ee/
www.codoncode.com
http://tree.bio.ed.ac.uk/software/figtree/
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14-16078 (1.1 × 104 c/mL, gt 3e), serum 14-16753 (2.8 × 106 c/mL, gt 3c) and plasma 13-14672
(4.3 × 103 c/mL, gt 3 subtype not assignable). For strain 47832c, no difference was detected between
medium refreshment once, twice or five times a week. An exception was weekly refreshment of
A549 resulting in lower HEV ORF2 Ag concentrations (Figure 1c,d). Cells inoculated with human
specimens showed low antigen concentrations. However some elevated values were detected for the
serum sample and A549 inoculated with the faecal suspensions and refreshed five times a week. After
7 weeks HEV RNA was only detectable in the supernatant of A549 and PLC/PRF/5 inoculated with
serum (long-term cultivation shown in Figure 6a,b). This experiment represented the first successful
isolation of the novel HEV gt 3c strain labelled 14-16753.

Viruses 2019, 11, 483 5 of 20 

 

refreshment once, twice or five times a week. An exception was weekly refreshment of A549 resulting 
in lower HEV ORF2 Ag concentrations (Figure 1c&d). Cells inoculated with human specimens 
showed low antigen concentrations. However some elevated values were detected for the serum 
sample and A549 inoculated with the faecal suspensions and refreshed five times a week. After 7 
weeks HEV RNA was only detectable in the supernatant of A549 and PLC/PRF/5 inoculated with 
serum (long-term cultivation shown in Figure 6a&b). This experiment represented the first successful 
isolation of the novel HEV gt 3c strain labelled 14-16753. 

Taken together, complete medium refreshment once a week is appropriate for HEV-positive 
PLC/PRF/5 cells but not for A549. Therefore, complete medium refreshment twice a week was 
applied in the following experiments. 

 

Figure 1. Effect of medium refreshment of cells persistently or de novo infected with HEV. (a) 
Supernatant of A549 persistently infected with HEV strain 47832c was refreshed either half or 
completely after lengthening time points and tested for HEV RNA and ORF2 antigen (Ag). (b) 
Supernatant of A549 persistently infected with HEV strain 47832c was either changed half or 
completely once, twice or five times a week and tested weekly for HEV RNA. (c) A549 and (d) 
PLC/PRF/5 were inoculated in technical duplicates with isolate 47832c as well as with HEV-positive 
materials from three different patients, namely a faecal suspension 14-16078, serum 14-16753 and 
plasma 13-14672. After inoculation, medium was changed completely once, twice or five times a week 
and supernatants were tested for HEV ORF2 Ag 24 days post-inoculation (dpi). SCR, signal-to-cut-off 
ratio. 

3.2. Overconfluently Grown Cells Seeded >1 Week Prior to Inoculation are More Permissive for Infection 

(a) (b)

(c)

Hours af ter last medium refreshment

0 816 32 64 96 168

HE
V

 R
NA

 (c
/m

L)
, L

og

4.0

4.5

5.0

5.5

6.0

6.5

HE
V

 O
RF

2 
A

g 
(S

CR
), 

Lo
g

-1.0

-0.5

0.0

0.5

1.0

>1.5

PLC/PRF/5

Isolate 47832c

Faeces 14-16078

Serum 14-16753

Plasma 13-14672

-1.5

-1.0

-0.5

0.0

0.5

1.0
A549

Isolate 47832c

Faeces 14-16078

Serum 14-16753

Plasma 13-14672

HE
V

 O
RF

2 
A

g 
(S

CR
), 

Lo
g

-1.5

-1.0

-0.5

0.0

0.5

1.0

Weeks post modif ied medium refreshment

0 1 2 3 4 5

HE
V

 R
NA

 (c
/m

L)
, L

og
5.5

6.0

6.5

7.0

7.5

(d)

RNA
RNA

ORF2 Ag
ORF2 Ag

Medium  refreshment
Complete

Half

5× 2× 1× / w eekMedium  refreshment
Complete

Half

Complete medium  refreshment

5× / w eek
2× / w eek
1× / w eek

Negative control

Figure 1. Effect of medium refreshment of cells persistently or de novo infected with HEV.
(a) Supernatant of A549 persistently infected with HEV strain 47832c was refreshed either half
or completely after lengthening time points and tested for HEV RNA and ORF2 antigen (Ag).
(b) Supernatant of A549 persistently infected with HEV strain 47832c was either changed half or
completely once, twice or five times a week and tested weekly for HEV RNA. (c) A549 and (d) PLC/PRF/5
were inoculated in technical duplicates with isolate 47832c as well as with HEV-positive materials from
three different patients, namely a faecal suspension 14-16078, serum 14-16753 and plasma 13-14672.
After inoculation, medium was changed completely once, twice or five times a week and supernatants
were tested for HEV ORF2 Ag 24 days post-inoculation (dpi). SCR, signal-to-cut-off ratio.

Taken together, complete medium refreshment once a week is appropriate for HEV-positive
PLC/PRF/5 cells but not for A549. Therefore, complete medium refreshment twice a week was applied
in the following experiments.

3.2. Overconfluently Grown Cells Seeded >1 Week Prior to Inoculation are More Permissive for Infection

Since an HEV strain derived from an experimentally infected pig exclusively replicated in
three-dimensional cultures of PLC/PRF/5 [19], the effect of cell confluence on susceptibility to HEV was
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investigated. A549 and PLC/PRF/5 were seeded at different concentrations and time points prior to
inoculation with strain 47832c (A549 supernatant containing 2.6 × 108 c/mL). At 0 days prior to cell
seeding, 2.5 mL of defined cell suspensions were transferred to T12.5 flasks and 250 µl of inoculum
was immediately added before cells could adhere. Supernatants were tested for HEV RNA after
14 and 28 days post inoculation (dpi). Detection of HEV RNA at 28 dpi represented a successful
infection. All A549 cultures were successfully infected with HEV (Figure 2a). Cells seeded at least
7-10 days (depending on cell concentration) prior to virus inoculation generated higher viral loads
in shorter periods. This trend was clearly more pronounced in PLC/PRF/5 (Figure 2b), which could
only be reproducibly infected when seeding cells at the default split ratio of 1:4 at least 14 days before
inoculation. This lead time can be shortened to 10 and 7 days by seeding 1 × 106 to 9 × 106 viable
cells, respectively. The fact, that viral load at 28 dpi does not exceed the inoculum’s load (except for
PLC/PRF/5 seeded 35 days prior to inoculation) may be due to the slow replicating nature of HEV.
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Figure 2. Density and time point of cell seeding prior to inoculation affect the success of infection and
consequent viral load. (a) A549 and (b) PLC/PRF/5 were seeded at different concentrations and time
points prior to inoculation. Cells were inoculated in duplicates with isolate 47832c. Supernatants were
tested for HEV RNA at day 14 and 28 post-inoculation. Dpi, days post inoculation; n.d., not detected.

Generally, we observed a tendency to more reliable infection and higher viral loads when more
cells are seeded earlier prior to inoculation, generating more susceptible three-dimensional cell layers.
Therefore and to standardize the approach, cell seeding was set to 1 × 105 viable cells per cm2 at 14
days prior to inoculation.
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3.3. Distinct Medium Supplements Enhance HEV Replication and Optimized Media Promote De Novo
Isolation of HEV Gt 3e Strain 14-22707

The concentration of supplemented FCS is usually reduced in medium used for virus culturing.
Therefore, A549 persistently infected with isolate 47832c were maintained in BMEM_G containing
different concentrations of heat-inactivated FCS. The supernatant was completely refreshed and tested
for HEV ORF2 Ag after different periods. Incubating HEV-positive cells with higher concentrations of
FCS resulted in higher HEV ORF2 Ag production (Figure 3a).Viruses 2019, 11, 483 8 of 20 
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3.4. First Isolation of HEV Gt 3f-like Strain 15-22016 Confirms PLC/PRF/5 as the Most Suitable Cell Line 
for Culturing HEV 

Figure 3. Distinct medium supplements and the combinations thereof increase viral loads and optimized
media promote infection. (a) A549 persistently infected with HEV strain 47832c were maintained with
medium supplemented with different concentrations of heat-inactivated fetal calf serum (FCS). After 64,
96 and 168 h supernatants were refreshed and tested for ORF2 antigen (Ag). (b) A549 and PLC/PRF/5
maintained with differently supplemented media were inoculated with isolate 47832c positive A549
supernatant and subsequent supernatants were tested for HEV RNA at 14 days post inoculation (dpi)
and for ORF2 Ag at 28 dpi. Results are shown as the mean fold change of technical duplicates. (c) A549,
PLC/PRF/5, HepG2/C3A and HuH-7-Lunet BLR were maintained in optimized media MECK (10 mM
CaCl2, 10 mM K2SO4, amphotericin B) and MEMM (30 mM MgCl2 and amphotericin B) as well as in
basic culture medium BMEM. Cells were inoculated with PLC/PRF/5 supernatant containing either
isolate 47832c (marked as 3c_ins) or 14-16753 (marked as 3c) or with serum 14-22707 positive for HEV
gt 3e (marked as 3e). After 49 dpi supernatants were tested for HEV RNA. Results are shown as the
mean of technical triplicates. N.d., not detected; NEAA, non-essential amino acids.

Previous HEV isolation trials used medium supplements amphotericin B and 30 mM MgCl2 [14]
or non-essential amino acids (NEAA) [23] and different antibiotics. In addition, a serial dilution
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experiment revealed supplementation of 10 mM CaCl2, KCl, K2SO4, MgCl2, MgSO4 or Na2SO4 to
enrich HEV ORF2 Ag concentrations in the supernatant whereas KH2PO4, NaCl and Na2HPO4

decreased antigen concentrations (data not shown). Therefore, A549 and PLC/PRF/5 maintained in
differently supplemented BMEM_G were inoculated with isolate 47832c-containing A549 supernatant
(2.6 × 108 c/mL). Subsequent supernatants were tested for HEV RNA after 14 dpi and ORF2 Ag after
28 dpi. Medium supplements enhancing HEV replication most distinctly are shown in Figure 3b.
Surprisingly, supplementing 2.5 µg/mL amphotericin B resulted in the highest increase of HEV RNA
and ORF2 Ag, at least in PLC/PRF/5 supernatant. Supplementation of salts revealed K2SO4 combined
with CaCl2 to enhance HEV replication most pronouncedly. However, cell viability decreased by ~50%
in presence of supplemented CaCl2. Viral loads were also increased in PLC/PRF/5 but not in A549 by
supplementing NEAA. Adding 100 U/mL penicillin G and 100 µg/mL streptomycin resulted in slightly
higher HEV RNA and ORF2 Ag levels compared to 100 µg/mL gentamycin (data not shown).

Based on these results, A549, PLC/PRF/5, HepG2/C3A and HuH-7-Lunet BLR either maintained
with BMEM, MECK (BMEM supplemented with 2.5 µg/mL amphotericin B, 10 mM CaCl2 and
10 mM K2SO4) or MEMM (adapted from Tanaka et al. [14]; BMEM supplemented with 2.5 µg/mL
amphotericin B and 30 mM MgCl2) were inoculated with PLC/PRF/5 supernatant containing isolate
47832c (5.7 × 106 c/mL), isolate 14-16753 (8.3 × 106 c/mL) or with an HEV gt 3e-positive serum
(1.6 × 106 c/mL). At 49 dpi, higher viral loads were always found in the supernatant of cells cultivated
with MECK or MEMM compared to BMEM (Figure 3c). HEV gt 3e was successfully isolated from
serum in PLC/PRF/5 and A549 irrespective of the medium. In contrast, HEV gt 3e could only be
isolated in HuH-7-Lunet BLR maintained in optimized medium and HepG2/C3A was not susceptible
to HEV gt 3e at all. The novel isolate was labelled 14-22707 (long-term cultivation shown in Figure 6c).
MEMM showed better results than MECK in three out of four cell lines and was therefore selected as
the culture medium of choice.

3.4. First Isolation of HEV Gt 3f-like Strain 15-22016 Confirms PLC/PRF/5 as the Most Suitable Cell Line for
Culturing HEV

Many different cell lines have already been tested for their capability of supporting the replication
of HEV in vitro. A549, its subclone A549/D3, PLC/PRF/5 and HepG2/C3A were found to be the
most susceptible cell lines to HEV [14,21,22,30]. However, these cell lines were never systematically
compared with different HEV strains. In addition, the cell clone HuH-7-Lunet BLR might also be a
potential candidate for HEV since it is highly permissive to hepatitis C virus replication [29].

Therefore, these cells were inoculated with PLC/PRF/5 supernatant containing isolate 47832c
(8.0 × 107 c/mL) or 14-16753 (4.2 × 108 c/mL). Figure 4 shows that isolate 47832c replicated fastest in
A549/D3 and reached maximum viral loads at 14 dpi (tenfold higher as in A549). However, at 29 dpi
PLC/PRF/5 produced comparable amounts of HEV. In contrast, isolate 14-16753 always replicated
faster and to higher viral loads in PLC/PRF/5.

This trend was confirmed by inoculating PLC/PRF/5 supernatant containing isolate 47832c
(1.3 × 108 c/mL), 14-16753 (6.0 × 108 c/mL), 14-22707 (4.0 × 108 c/mL) or serum containing gt 3f-like
HEV (1.1 × 108 c/mL) onto A549, PLC/PRF/5, HepG2/C3A and HuH-7-Lunet BLR. Again, PLC/PRF/5
generated the highest viral loads in >80% of all time points and strains. Compared to other cell lines the
median HEV RNA concentration in PLC/PRF/5 supernatant was approximately 10-, 100- and 4000-fold
increased at 14, 28 and 49 dpi, respectively. Two exceptions were observed with isolate 14-16753 which
replicated better in Huh-7-Lunet BLR at 14 and 49 dpi. The novel HEV gt 3f-like strain 15-22016 was
successfully isolated in PLC/PRF/5, Huh-7-Lunet BLR and HepG2/C3A but not in A549 (long-term
cultivation shown in Figure 6d).

Therefore, PLC/PRF/5 as a three-dimensional cell layer is the most suitable host for isolating and
maintaining HEV in vitro. The newly introduced cell clone HuH-7-Lunet BLR also clearly supports
the replication of HEV and generates higher viral loads than A549 and HepG2/C3A.
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Figure 4. Effect of cell lines on de novo infection with different HEV strains. A549, its subclone A549/D3,
PLC/PRF/5, HepG2/C3A and HuH-7-Lunet BLR were inoculated with either (a) isolate 47832c or (b)
isolate 14-16753. Supernatants were tested for HEV RNA at 1, 4, 7, 14 and 29 days post inoculation
(dpi). Results are shown as the mean of technical triplicates. (c) A549, PLC/PRF/5, HepG2/C3A and
HuH-7-Lunet BLR were inoculated with isolate 47832c, 14-16753 or 14-22707 as well as with serum
15-22016 positive for HEV gt 3f-like. After 1, 14, 28 and 49 dpi supernatants were tested for HEV RNA.
N.d., not detected.

3.5. Titration and Growth of Newly Isolated HEV Strains Reveals Different Replication Kinetics

PLC/PRF/5 were inoculated with serial tenfold dilutions of first-passage isolate 14-16753 (gt 3c),
14-22707 (gt 3e) and 15-22016 (gt 3f-like). Isolate 14-22707 replicated fastest and increased its viral
load tenfold within 4.8 days (Figure 5b). Isolate 14-16753 increased its viral load tenfold in 6.3 days
and isolate 15-22016 in 8.5 days (Figure 5a,c). These values are based on a linear regression with the
logarithm of HEV RNA concentrations from 4–21 dpi. Isolate 14-22707-positive cells showed a brighter
fluorescence compared to isolates 14-16753 and 15-22016 after immunofluorescence staining. Isolate
15-22016 resulted in relatively weak signals. This could be due to the application of a monoclonal
anti-ORF2 antibody (clone 2E2 [32]).

The 50% tissue culture infective dose (TCID50) was determined in a subsequent titration experiment.
PLC/PRF/5 were inoculated in triplicates in T12.5 flasks with tenfold serial diluted viral stocks.
Supernatants were tested for HEV RNA at 13 dpi. T12.5 flasks with detectable HEV RNA were defined
as “infected” and T12.5 with no detectable HEV RNA as “uninfected”. TCID50 was calculated using
the Reed and Muench method resulting in 1.3 × 103 TCID50/mL for isolate 47832c (viral load of stock
was 2.4 × 108 c/mL) and 14-16753 (1.6 × 108 c/mL). For isolate 14-22707 (8.7 × 108 c/mL) and 15-22016
(1.1 × 108 c/mL) the TCID50 was 2.2 × 103 TCID50/mL.
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Figure 5. Titration and replication kinetics of novel isolates. PLC/PRF/5 were inoculated with serial
tenfold dilutions of first passage isolates (a) 14-16753, (b) 14-22707 and (c) 15-22016. After 1, 4, 7, 10 14
and 21 days post inoculation (dpi) supernatants were tested for HEV RNA (left panels) and cells were
indirectly stained for HEV capsid antigen by immunofluorescence assay (IFA; right panels). Dashed
lines represent the respective TCID50 values determined in a separate experiment. N.d., not detected,
undil., undiluted.

3.6. Long-Term Cultivation of Persistently Infected Cells Leads to Virtually Unlimited Production of HEV

The novel isolated HEV strains together with isolate 47832c were followed up for a period of
30 weeks to more than 2 years, whereby no cytopathic effect was ever observed. The highest viral
loads detected were 7.4 × 108 c/mL (208 dpi) and 1.5 × 109 c/mL (476 dpi) for isolation and first passage
of strain 14-16753, respectively (Figure 6a,b). The maximum of isolate 14-22707 and 15-22016 was
detected at 134 dpi with 4.4 × 109 c/mL and at 274 dpi with 5.5 × 109 c/mL, respectively (Figure 6c,d).
Remarkably, cells could be maintained for more than a year in one single T12.5 flask by solely refreshing
the medium completely every 3-4 days. Over the whole period, infectious HEV was secreted into the
medium resulting in high viral loads. All isolates were successfully passaged. Moreover, HEV positive
cells were successfully expanded, frozen, thawed and re-cultured again and continued to produce
infectious HEV. Surprisingly, the viral load of the first passage of isolate 14-16753 constantly decreased
when cells were split regularly (Figure 6b). In contrast, this was not observed with isolate 14-22707
(Figure 6c) and will be investigated further in future experiments.
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Figure 6. Long-term cultivation of cells persistently infected with HEV. (a) A549 and PLC/PRF/5 cells
were inoculated with isolate 47832c and strain 14-16753-positive serum. After 123 dpi, cells were
expanded, frozen and transferred to liquid nitrogen. Frozen cells were re-cultured and further followed
up. (b) PLC/PRF/5 cells were inoculated with isolate 14-16753-positive PLC/PRF/5 supernatant. After
51 weeks, the effect of regular splitting on HEV load was investigated. (c) A549, PLC/PRF/5 and
HuH-7-Lunet BLR cells were inoculated with strain 14-22707-positive serum and followed up for
1.5 years. (d) A549, PLC/PRF/5, HepC2/C3A and HuH-7-Lunet BLR cells were inoculated with serum
positive for strain 15-22016 and followed up for one year. Culture supernatants were tested for HEV
RNA. Vertical dotted lines mark passaging of cells. N.d., not detected; p.i., post inoculation.

3.7. Characterization of Whole Genome Sequences of Novel Isolates Revealed No Insertion in ORF1

Viral RNA isolated from supernatant (strain 14-16753 and 14-22707: PLC/PRF/5 at 200 dpi and 189 dpi,
respectively; strain 15-22016: HuH-7-Lunet BLR at 126 dpi) was reverse transcribed to cDNA followed
by amplification of overlapping PCR fragments and Sanger sequencing. Sequences were compared to
all hitherto cell culture-isolated and whole genome-sequenced strains (47832_serum, 47832c_p2 [23],
LBPR-0379_serum [22], Kernow-C1_faeces, Kernow-C1_p6 [21], HE-JF5_serum [38], HE-JF5/15F_p6 [15],
JE03-1760F_faeces [39] and JE03-1760F_p0 [14]). Newly isolated strains clearly clustered with subtypes
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3c, 3e and 3f reference strains (Figure 7). Unlike the recently isolated strains 47832c, LBPR-0379 and
Kernow-C1, the new isolates do not harbour insertions in the HVR of ORF1 which was shown to be
associated with a growth advantage in vitro [40]. This is the first time that HEV isolates of the 3efg-clade
could be propagated in cell culture and replicated to high viral loads of >109 c/mL.Viruses 2019, 11, 483 15 of 20 
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Figure 7. Phylogenetic relationship of HEV strains isolated in cell culture together with reference
strains. The tree is based on complete genome sequences and was rooted by using moose HEV as an
outgroup. Sequences of the HEV genotype reference strains as proposed by Smith et al. [3] were aligned
together with the new isolates as well as with all HEV strains isolated in cell culture with available
whole genome sequences as of April 2019. Branches with a bootstrap value of >60% were labelled.
Reference sequences are denoted by subtype, GenBank accession number and strain name. Strains
isolated in cell culture are marked with black circles and denoted with strain name and source material
or number of passages (p). Novel isolates are shown in bold. Bold vertical lines denote subclades
3abchij and 3efg of genotype 3.
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3.8. Optimized Method for Successful HEV Isolation from Serum

According to the results of the study, an optimized protocol for HEV isolation from serum in cell
culture should include: Seeding PLC/PRF/5 in T12.5 flasks at a concentration of 105 viable cells per cm2.
Maintaining the cells in MEMM at 37 ◦C and 5% CO2 for two weeks and refreshment of medium every
3–4 days. If necessary, diluting HEV positive serum to an adequate volume with PBS without Ca2+

and Mg2+ containing 0.2% BSA (w/v). Vortexing, centrifuging at 8000× g for 10 min and sterile-filtering
using a 0.2 µm PES membrane. No further pretreatment is needed. Afterwards, the inoculum should
at least contain 105 HEV RNA copies/mL. The three-dimensional cell layer was then inoculated with
250 µL per T12.5 for 75 min at room temperature. 2.5 mL MEMM was then added and incubated at
34.5 ◦C and 5% CO2. The medium was completely refreshed 24 h later and every 3–4 days afterwards.

4. Discussion

Several approaches to HEV cell culture have already been described. However, these approaches
could either not fully be reproduced [18–20], could only isolate strains carrying an uncommon insertion
in ORF1 [21–23] or need a sophisticated setup to generate three-dimensional cultures [19]. This work
aimed to improve the published approaches to HEV cell culture, make it an easy-care system which
can be continuously maintained for virtually unlimited periods of time and isolate novel wild-type
HEV strains.

Optimization experiments led to the isolation of three novel strains labelled 14-16753 (genotype
(gt) 3c), 14-22707 (gt 3e) and 15-22016 (gt 3f-like). These isolates replicate to high viral loads of >109 c/mL
and differ in replication kinetics. Moreover, this is the first time that whole genome sequences of
two stably cell culture propagated isolates of clade 3efg were determined. In addition, the three new
isolates represent the predominant subtypes 3c, 3e and 3f currently circulating in Europe.

Our results show that (i) maintenance effort can be decreased substantially by reducing medium
refreshment from daily to twice a week, (ii) overconfluent (three-dimensional) cell layers grown
in flasks are more susceptible to HEV compared to usual monolayers, (iii) medium supplements,
especially amphotericin B, MgCl2, CaCl2 and K2SO4 increase HEV replication in vitro, (iv) PLC/PRF/5
as a three-dimensional cell layer is the most permissive cell line to HEV and HuH-7-Lunet BLR also
substantially supports HEV replication, (v) HEV-producing cells can be kept in culture for >1 year
with only medium refreshment every 3–4 days and still generate very high viral loads of ~109 c/mL.

Surprisingly, the susceptibility of overconfluently grown cells to HEV infection depends on the
cell line. For instance, A549 can be seeded at virtually any time at almost any concentration and still
support HEV replication. However, higher viral loads are achieved faster with mature A549 cell layers.
This effect is more pronounced in PLC/PRF/5 which must be seeded ≥14 days prior to inoculation at
their default split ratio to guarantee HEV infection. The lead time of 14 days can be reduced to as low
as 0 if the concentration of seeded cells is increased. For a reliable infection, however, 7 days of cell
growing are still needed to generate a susceptible overconfluent cell layer forming three-dimensional
structures. This stands in line with Berto et al. who observed that solely differentiated PLC/PRF/5
grown as three-dimensional cultures support HEV replication but not common monolayers [19]. Cell
differentiation and closer contacts between cells in the three-dimensional cell layers may result in a
higher susceptibility to HEV. In addition, autophagy processes may be considered since overconfluent
cell layers consisting of much more cells compared to monolayers, were maintained in the same amount
of medium and may therefore run low on nutrients.

Medium supplements are also important for HEV isolation and maintenance. In 1999, Huang
et al. reported that 30 mM MgCl2 supplemented to the maintenance medium increased HEV loads
and preserved infectivity [41]. We found that not only MgCl2 but also 10 mM CaCl2, KCl, K2SO4,
MgSO4 and Na2SO4 benefit to HEV replication whereas KH2PO4, NaCl and Na2HPO4 adversely
affect the replication. The FCS concentration also influences the potential of HEV replication in vitro.
Commonly, 2% FCS are added to a virus maintaining medium. However, for HEV, we found that 10%
FCS was more appropriate. The medium supplement with the highest impact on viral loads was found
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to be amphotericin B. Noteworthy, amphotericin B also promotes influenza virus replication in cell
culture [42]. The authors hypothesized that the antimycotic drug contributes to the acidification of
internal cell compartments which in turn promote fast pH decrease within endosomes and therefore
virus infectivity. Since HEV enters liver cells via clathrin-mediated endocytosis [43] and HEV infectivity
depends on acidification of endosomes [44] these facts would be in line with the observed influence of
amphotericin B on HEV replication in vitro.

HEV was described to replicate in several cell lines and A549, PLC/PRF/5 and HepG2/C3A were the
most promising ones [14,21]. Therefore, these cell lines were investigated for HEV replication competence
together with cell clones A549/D3 (supports HEV strain 47832c replication more efficiently [30])
and HuH-7-Lunet BLR (highly permissive for hepatitis C virus replication [29]). Until 14 dpi it is
strain-dependent which cell line generates the highest viral loads. But as of week four post inoculation
PLC/PRF/5 always generate the highest viral loads independent of isolation or passaging of a strain.
High viral loads were also generated with HuH-7-Lunet BLR which were generally higher compared to
A549 and HepG2/C3A.

The latest propagated HEV strains 47832 [23], LBPR-0379 [22] and Kernow-C1 [21] were isolated from
chronically infected patients and harbour an insertion in the ORF1 either acquired by recombination [21,22]
or derived from its own ORF1 [23]. HEV genomes of Kernow-C1 harbouring an insertion in ORF1 were
classified as a minor species [21] and became the predominant species in cell culture [22]. Moreover, the
insertion confers a growth advantage in vitro [40]. Our isolates do not harbour insertions in ORF1. This
indicates that our optimized cell culture system is not only permissive to adapted minor species but also
to wild-type dominant species.

Our isolates have been kept in culture continuously for 1 to >2.5 years and persistently infected cells
still produced viral loads of ~109 c/mL. Presumably, HEV-positive cells can be continuously maintained
for a virtually unlimited period of time. This is an important aspect since immunocompromised
patients chronically infected with HEV rely on an effective antiviral treatment. However, only
off-label drugs such as ribavirin and sofosbuvir are currently available. While treatment with ribavirin
leads to a sustained virologic response in three-quarters of patients [45] there are already numerous
ribavirin-associated mutations described [46] which lead to treatment failure [47]. Sofosbuvir was
shown to inhibit HEV Kernow-C1 replication in vitro and the combination with ribavirin even resulted
in an additive effect [48]. However, there is not enough clinical data yet to estimate the effectivity
in vivo due to few contradictory reports [49–51]. Recent reports suggest silvestrol as a drug candidate
to treat HEV [52,53]. Our long-term HEV producing cell culture model may step in here and serve as a
more lifelike setting to test drug candidates in vitro.

There are several uncertainties and possible limitations. First, HEV replicates very slowly to
adequate viral concentrations after 1–10 weeks. This may hinder fast application of down-stream
processes. Second, due to the absence of a cytopathic effect, replication has to be specifically confirmed
by consecutive PCR testing or viral antigen detection. Third, it needs to be examined, if HEV of
genotypes other than gt 3 can be propagated with comparable efficiency in the optimized cell culture
system. Fourth, our cell culture system is based on a continuous cell line that may not reflect cells
in vivo. Fifth, the question arises if and how the genome of the isolated strains changes after long-term
cultivation or repeated passaging. Finally, our cell culture system does not include animal-derived
cells which may be more useful for studying zoonotic aspects of HEV.

In summary, we isolated three novel HEV strains of the predominant subtypes in Europe stably
replicating to high viral loads while optimizing and simplifying the cell culture system. This system
may be useful for studies on the HEV life cycle, inactivation, drug and vaccine development.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/6/483/s1,
Table S1: Sequenced genome segments of subtype 3c strain 14-16753, Table S2: Sequenced genome segments of
subtype 3e strain 14-22707, Table S3: Sequenced genome segments of subtype 3f-like strain 15-22016, Table S4:
Primers used for whole genome sequencing.
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