
 

Viruses 2019, 11, 456; doi:10.3390/v11050456 www.mdpi.com/journal/viruses 

Review 

Genetic Variability and Evolution of Hepatitis E 
Virus 
Putu Prathiwi Primadharsini 1, Shigeo Nagashima 1, Hiroaki Okamoto 1,* 

1 Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 
Tochigi 329-0498, Japan; d1631@jichi.ac.jp (P.P.P); shigeon@jichi.ac.jp (S.N.) 

* Correspondence: hokamoto@jichi.ac.jp; Tel.: +81-285-58-7404 

Received: 26 April 2019; Accepted: 16 May 2019; Published: 18 May 2019 

Abstract: Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus. HEV can cause 
both acute and chronic hepatitis, with the latter usually occurring in immunocompromised patients. 
Modes of transmission range from the classic fecal–oral route or zoonotic route, to relatively recently 
recognized but increasingly common routes, such as via the transfusion of blood products or organ 
transplantation. Extrahepatic manifestations, such as neurological, kidney and hematological 
abnormalities, have been documented in some limited cases, typically in patients with immune 
suppression. HEV has demonstrated extensive genomic diversity and a variety of HEV strains have 
been identified worldwide from human populations as well as growing numbers of animal species. 
The genetic variability and constant evolution of HEV contribute to its physiopathogenesis and 
adaptation to new hosts. This review describes the recent classification of the Hepeviridae family, 
global genotype distribution, clinical significance of HEV genotype and genomic variability and 
evolution of HEV. 
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1. Introduction 

Hepatitis E virus (HEV) is the leading cause of enterically transmitted viral hepatitis worldwide. 
The infection is generally self-limiting; however, infection in immunocompromised patients can 
cause chronic hepatitis. Fatal cases of acute fulminant hepatitis have been reported in pregnant 
women, people with underlying liver disease and elderly people [1–4]. Besides causing typical 
hepatitis, the infection can also cause extrahepatic manifestations, such as neurological abnormalities, 
and kidney failure [5]. Over the past several decades, HEV strains have been isolated increasingly 
frequently not only from humans but also from a broad range of animal species. 

HEV infection is distributed globally in both developing and industrialized countries. There are 
around 20 million cases worldwide, with approximately 3.3 million symptomatic cases annually. The 
World Health Organization (WHO) estimated that HEV infection caused approximately 44,000 
deaths in 2015 (3.3% of mortalities due to viral hepatitis) [6]. The fatality rate in young adults reached 
0.5%–3% [3]. HEV infection has a poor prognosis among pregnant woman, especially in the third 
trimester, where the fatality rate can reach up to 30% [7–9]. The route of transmission is highly 
variable but is dominated by fecal–oral and zoonotic routes, such as through the ingestion of raw or 
undercooked meat, viscera or dairy products of infected animals and close contact with animals 
(people engaged in high-risk occupations, including veterinarians, workers at slaughterhouses, 
animal farmers and workers at markets vending animal products) [10,11]. Other modes of 
transmission that have been recognized with increasing frequency in industrialized countries include 
blood transfusion and organ transplantation [12–16]. The virus can also be vertically transmitted from 
infected mothers to their fetuses, resulting in premature birth and stillbirth [9]. 
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HEV infection has been recognized as a self-limiting acute infection transmitted through the 
fecal–oral route. However, chronic cases can occur in immunocompromised patients, such as those 
receiving organ transplants, patients with hematological malignancy and human immunodeficiency 
virus (HIV)-infected patients [16–18]. The clinical manifestations can range from typical acute 
hepatitis to extrahepatic manifestations. Extrahepatic manifestations caused by HEV infection 
include: (i) neurological abnormalities, which typically present as Guillain–Barre syndrome, 
neuralgic amyotrophy, encephalitis and myelitis with common characteristics of a monophasic 
disease course, subacute onset and rapid progression [2,19]; (ii) kidney injury due to 
membranoproliferative glomerulonephritis with or without cryoglobulinemia and membranous 
glomerulonephritis; and (iii) hematological disorders, such as hemolytic anemia due to glucose 
phosphate dehydrogenase deficiency and thrombocytopenia [5,20]. Less-often-reported extrahepatic 
manifestations associated with HEV infection include acute pancreatitis and autoimmune diseases, 
such as myocarditis and thyroiditis [5,20]. 

2. Taxonomy 

Since the discovery of HEV in 1983 [21] and the first report of HEV genomic sequence eight years 
later [22], the strains classified to the Hepeviridae family have been widely identified not only in 
humans but also in a great number of animal species. With the dramatic increase in the number of 
HEV strains identified within the past decade, many strains remain unclassified at present, 
underscoring the marked genomic variability among HEV strains. The recent consensus has divided 
this family into two genera: genus Orthohepevirus, which includes HEV strains from mammals and 
birds [23]; and genus Piscihepevirus, which consists solely of the species Piscihepevirus A and its single 
member, cutthroat trout HEV. Genus Orthohepevirus is divided into the four species Orthohepevirus A, 
Orthohepevirus B, Orthohepevirus C and Orthohepevirus D [23], which have distinct host ranges (Table 
1). Of note, however, many HEV strains—including those isolated from rodents, three shrew species, 
moose and little egret—remain unassigned, as depicted in Figure 1. 
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Figure 1. Phylogenetic tree for members of the Hepeviridae family. The maximum-likelihood tree was 
created using MEGA 7 [24] based on amino acid sequences of the entire ORF2 region from members 
of the Hepeviridae family. Each reference sequence is shown with the genotype (if available) followed 
by the accession number, species (animal/human) and the country where it was isolated. Unassigned 
HEV strains are highlighted with closed circles. The bootstrap values (>70%) for the nodes are 
indicated as percentage data obtained from 1000 resampling analyses. The scale bar indicates the 
number of nucleotide substitutions per site. 
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Table 1. Classification of hepeviruses. 

Family Genus Species Genotype Host 

Hepeviridae 
Orthohepevirus 

Orthohepevirus A 

1 human 
2 human 

3 
human, pig, wild boar, deer, 
mongoose, rabbit, goat a, horse b, 
bottlenose dolphin c, sheep d 

4 
human, pig, wild boar, cattle e, cow f, 
sheep g, goat h, yak i 

5 wild boar 
6 wild boar 

7 dromedary camel 

8 Bactrian camel 
Orthohepevirus B  chicken 

Orthohepevirus C 
C1 

rat, greater bandicoot rat j, Asian 
musk shrew k 

C2 ferret, mink l 
Orthohepevirus D  bat 

Piscihepevirus Piscihepevirus A  cutthroat trout 
a Di Martino et al. [25]; b Saad et al. [26]; Zhang et al. [27]; Geng et al. [28]; Garcia-Bocanegra et al. [29]; 
c Montalvo Villalba et al. [30]; d Sarchese et al. [31]; e Hu and Ma [32]; f Vitral et al. [33]; Huang et al. 
[34]; g Wu et al. [35]; h Li et al. [36]; i Xu et al. [37]; j Li, W. et al. [38]; k Guan et al. [39]; l Krog et al. [40]. 

2.1. Orthohepevirus A 

Species Orthohepevirus A has been assigned to eight genotypes (HEV-1 to HEV-8) [23]. The latest 
addition to this species is HEV-8, which was isolated from Bactrian camels [41]. Species 
Orthohepevirus A has been isolated from mammals―mostly humans, but also pigs and wild boars. 
This species has also been isolated from a wide range of animals, including deer [42,43], mongooses 
[44,45], rabbits [46–48], dromedary camels [49], yaks [37], sheep [31,35], goats [25,36], horses [26–29], 
cattle [32], cows [33,34] and bottlenose dolphins [30] (Table 1). 

Although HEV-3 and HEV-4 have been detected in many animal species that were thought to 
be new animal reservoirs for HEV infection, most can probably be considered: (i) spillover infections 
related to contact with pigs—the primary reservoir of HEV infection—from the mixed raising of 
domestic livestock [50]; (ii) spillover hosts rather than a true reservoir, due to the low seroprevalence 
despite the presence of HEV RNA, as was recently reported in equines in Spain [29] and probably in 
yaks [37]; or (iii) spillover infection related to the low positivity of HEV RNA despite its high 
seroprevalence, as was reported in sheep [35]. The reported HEV-3 detected in bottlenose dolphins 
was also attributed to an environmental contamination with food or wastewater as a source of HEV 
exposure and infection [30]. Spillover infection may also be responsible for the detection of HEV-4 in 
dairy milk from cows with high positive rates in Yunnan province in China [34], which has garnered 
quite a bit of interest. However, this finding is in contrast with those of recent studies in Hebei 
province of China [51], Germany [52] and Belgium [53]. Those studies found no evidence of HEV 
prevalence or HEV RNA in milk samples or dairy specimens from cows, suggesting that there is no 
zoonotic transmission risk through dairy milk from cows to humans. 

Despite the serological evidence supporting the existence of an HEV-related agent, extensive 
attempts to genetically identify HEV-related sequences in cattle from different regions in the USA 
using broad-spectrum reverse transcription polymerase chain reaction (RT-PCR) assays and MiSeq 
deep sequencing technology have failed. This suggests the limited ability of this modality for 
interpreting HEV serological data reported in large numbers of animal species, including cattle. That 
same study also mentioned that the seroconversion in cattle is caused by antigenic cross-reaction with 
a related but as yet unknown agent [54]. HEV detected in potential new animal reservoir may also 
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merely be genetically divergent strains of currently recognized HEV strains, as has been reported for 
goat HEV. Some reports have described the detection of HEV-3 or HEV-4 in goats [25,36]; however, 
others have suggested that the HEV detected in goats is likely genetically very divergent from the 
known HEV strains [55]. In the study of Sanford et al. [55], the authors documented serological 
evidence of HEV infection in the goat population in the USA, but failed to experimentally transmit 
human or swine HEV to goats; in addition, they were unable to genetically identify HEV from goats 
using universal degenerate HEV primers based on the sequences of known HEV strains, suggesting 
that the HEV strain infecting goats is genetically unique [55]. To establish the role of potential new 
animal reservoirs in HEV transmission and zoonotic disease, the virus should be definitively and 
reproducibly identified from the animals in question. Therefore, HEV serological data should be 
carefully interpreted. 

Among the four major genotypes of HEV that are capable of infecting humans and belong to 
species Orthohepevirus A (HEV-1 to HEV-4), HEV-1 and HEV-2 are restricted to humans and 
associated with outbreaks in developing countries where the virus is transmitted through the fecal–
oral route, while HEV-3 and HEV-4 are zoonotic with an expanded host range and are the main cause 
of sporadic and autochthonous cases of hepatitis E in developed countries. Zoonotic cases caused by 
HEV-3 and HEV-4 strains are mostly associated with strains from pigs and wild boars. However, 
several reports have noted that HEV-3 strains from other animals are also responsible for causing 
human infection. The variant of HEV-3 found in rabbits has been isolated from humans in France 
[56], while HEV-3 from deer was found to cause infection in two families in Japan [42,43]. HEV-5 and 
HEV-6 have only been isolated from wild boars in Japan [57,58]. HEV-7 was isolated from dromedary 
camels [49,59], with one report of chronic human infection from the regular consumption of milk and 
meat of dromedary camels [60], and HEV-8 was isolated from Bactrian camels [41]. HEV-5 and HEV-
8 were experimentally transmitted to cynomolgus macaques [61–63], demonstrating the possibility 
of zoonotic infection of HEV-5 and HEV-8. 

Within the eight genotypes of species Orthohepevirus A, the nomenclature of HEV subtypes is 
inconsistent, making the comparison of different studies on subtyping difficult. Recently, Smith et al. 
[64] proposed reference sequences for HEV subtypes within HEV-1 to HEV-7, including six subtypes 
(1a–1f) within HEV-1, two (2a and 2b) within HEV-2, 11 (3a–3j and 3ra) within HEV-3 and nine (4a–
4i) within HEV-4. However, there are still huge numbers of unassigned subtypes, as shown in Figure 
2a (unassigned subtypes marked with closed circles). Several research groups have proposed new 
subtype assignments according to the proposed criteria [64]. The most recent subtype assigned to the 
HEV-1 is subtype 1f [64]. Our lab recently proposed a new subtype, 1g (Figure 2a), consisting of HEV 
strains recovered from sporadic cases of imported (from Pakistan and India) and autochthonous 
acute hepatitis E in Japan [65]. 

HEV-3 strains are known to be highly divergent [66], and most unassigned subtypes belong to 
this genotype, as shown in Figure 2a. Miura et al. [67] proposed the new subtype 3k for four 
unassigned complete genomic sequences in Japan that were phylogenetically distinct from 
previously assigned complete genomic sequences, not related to any of the reported subtypes and 
epidemiologically unrelated (consisting of AB369689, AB740232 and LC176492 in Figure 2a). Another 
new subtype 3l was proposed in two different reports. The first was from Switzerland for HEV from 
a kidney transplant recipient [68], and the second was reported in swine strains from two farms in 
Northern Italy [69]. The HEV-3l strains reported by Wang et al. [68] differ from those reported by De 
Sabato et al. [69] by 13.3%–14.4% over the entire genome, suggesting that they should be segregated 
into two distinct subtypes, according to the criteria proposed by Smith et al. [64]. An official 
assignment needs to be made by the International Committee on Taxonomy of Viruses (ICTV) to 
avoid confusion. In addition to these two newly proposed subtypes, there are still many unassigned 
strains within HEV-3 that can be defined as new subtypes 3m to 3s in HEVNet 
(https://www.rivm.nl/en/hevnet) as indicated in Figure 2a. 

2.2. Orthohepevirus B 
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Isolates of Orthohepevirus B are restricted to birds, primarily chickens. This species is 
provisionally divided into four genotypes with different geographical distributions: genotype 1 is 
found in Australia, genotypes 2 and 3 in the USA and Europe and genotype 4 in Hungary [70–73]. 
However, the region-dependent genotype distribution does not apply for the avian HEV strains 
identified in China, Korea and Taiwan [74–76] (Figure 2b). This figure shows that the avian HEV 
strains from Korea are part of genotypes 1 and 2 of Orthohepevirus B, which was previously thought 
to only include avian strains from Australia and the USA; in contrast, the Chinese and Taiwanese 
avian strains are part of genotypes 3 and 4, respectively, which were previously thought to only 
include avian strains from Hungary. The members of Orthohepevirus B are associated with big liver 
and spleen disease and hepatitis-splenomegaly syndrome [77]. 
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Figure 2. Phylogenetic trees for member of the Orthohepevirus genus. Maximum-likelihood trees were 
created using MEGA 7 [24] based on entire genomic sequences from members of the Orthohepevirus 
A species (a), Orthohepevirus B species (b) and Orthohepevirus C species (c). Each reference sequence is 
shown with genotype/subtype (if available) followed by accession number and the country where it 
was isolated. (a) Subtypes 3la, 3lb, 3kc and 1gd have been proposed by Wang et al. [68], De Sabato et 
al. [69], Miura et al. [67] and Nishizawa et al. [65], respectively, and those provisionally proposed by 
HEVNet (https://www.rivm.nl/en/hevnet) are indicated in brackets. (b) Provisional genotypes 1–4 for 
avian HEV strains are abbreviated as Gt1, Gt2, Gt3 and Gt4, respectively. (c) Genotypes C3 and C4 
proposed by Wang et al. [78] are indicated in brackets. Reference HEV sequences from moose 
(KF951328) (a), little egret (KX589065) (b) and human (HEV-1) (M73218) (c) were used as an outgroup. 
Unassigned HEV strains are highlighted with closed circles. The bootstrap values (>70%) for the nodes 
are indicated as percentage data obtained from 1000 resampling analyses. The scale bar indicates the 
number of nucleotide substitutions per site. 



Viruses 2019, 11, 456 9 of 27 

 

2.3. Orthohepevirus C 

Orthohepevirus C is divided into HEV-C1, which has been isolated in several countries, including 
Germany, Australia, Belgium, Denmark, France, Italy, Spain, Switzerland, USA, Vietnam, Indonesia, 
China and Hong Kong (Rattus spp., greater bandicoot rat, Asian musk shrew) [38,39,79–87], and HEV-
C2 (ferret [88,89], mink [40]). 

Although not assigned by the ICTV, recent reports from China and Brazil have described 12 
novel rodent HEV strains representing at least nine clades of rodent HEVs in the Orthohepevirus C 
species [78,90,91] (Figure 2c, unassigned strains marked with closed circles), including putative HEV-
C3 and HEV-C4 (Chevrier’s field mouse and Pere David’s vole) proposed by Wang et al. [78]. These 
12 newly identified rodent HEV strains share only 49.5%–65.4% nucleotide sequence identity over 
the entire genome with the prototype C1 rat HEV strain (GU345042), reinforcing the marked genomic 
variability among HEV strains. The kestrel-derived HEV strain was reported to form the same clade 
with the newly identified rodent HEV strains (Figure 2c), possibly due to its diet (e.g., voles, shrews 
and mice) [92]; however, this kestrel-derived HEV strain remains unclassified by the ICTV [23]. 

The zoonotic potential of HEV-C was previously suggested, as enzyme-linked immunosorbent 
assays (ELISAs) with virus-like protein indicated possible subclinical infection with HEV-C among 
forestry workers in Germany [93] and febrile inpatients in Vietnam [94]. Recently, HEV-C was 
demonstrated to cause infection in both an immunocompromised patient [95] and an 
immunocompetent patient [96]. 

2.4. Orthohepevirus D 

Orthohepevirus D currently includes an isolate from a bat in Germany [97]. Although another bat 
HEV strain has been identified in China [98], it shares only 58% nucleotide sequence identity with 
the prototype bat HEV strain over the entire genome (Figure 1). Whether or not the Chinese bat HEV 
strain should be classified into the Orthohepevirus D species has not yet been determined by the ICTV. 
There is no evidence of transmission of bat HEV to humans. 

2.5. Other Unassigned Related Hepeviruses 

Several other related viruses are yet to be classified, including those from moose [99,100], fox 
[101], little egret [102], tree shrew (GenBank accession number KR905549) (Figure 1), sparrow [103] 
and agile frog [104]. 

3. HEV Genome 

HEV is a single-stranded positive-sense RNA virus with a genomic length ranging from 6.6 to 
7.2 kb (Figure 3). The genome contains a short 5’-untranslated region (5’-UTR) capped at the 5’-end, 
three open reading frames (ORFs) and a short 3’-UTR terminated by poly(A) tract [22,105]. ORF1 
encodes the nonstructural proteins involved in viral replication [106]. ORF1 consists of seven 
functional domains, including methyltransferase domain (MeT), Y domain, papain-like cysteine 
protease (PCP), hypervariable region (HVR, or polyproline region), X domain (Macro domain), 
helicase domain and RNA-dependent RNA polymerase (RdRp). There have been conflicting reports 
regarding whether ORF1 products function as a single polyprotein or they need to be further 
processed into smaller units by viral or cellular proteases following translation [107,108]. ORF2 
encodes the capsid protein [109], which plays a crucial role during virion assembly and viral 
attachment to the host cell and is the major target for neutralizing antibodies [110,111]. ORF3 is a 
small protein required for virion morphogenesis and virion egress [112–114]. Recently, ion channel 
activity and palmitoylation at cysteine residues, which are critical for the release of infectious 
particles, have been reported for the ORF3 protein [115,116]. ORF2 and ORF3 are translated from a 
single subgenomic RNA strand [117,118]. Members of the same genus all share similar genome 
organization. ORF3 overlaps with the 5’-end of ORF2 in Orthohepevirus, while in Piscihepevirus, the 
overlap is more central [119]. HEV is a quasi-enveloped virus in which the HEV particles in feces and 
bile are not enveloped, while those in the culture supernatant and circulating blood are covered by a 
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cellular membrane and ORF3 protein [120–123]. ORF4 was identified in the coding sequence of ORF1 
exclusively in HEV-1 and is said to play a role in increasing the RdRp activity [124]. ORF4 was also 
identified in rat HEV [79]; however, our recent study showed that putative ORF4 is not necessary for 
the active in vitro and in vivo replication of rat HEV [125]. 

4. Distribution and Clinical Significance of HEV Genotype within Orthohepevirus A 

HEV infection is distributed around the world. HEV has been isolated in many countries in Asia, 
Europe, America, Africa and Oceania. HEV-1 is found in Asia and Africa, HEV-2 is found in Mexico 
and Africa, HEV-3 is found worldwide and HEV-4 is found mainly in Asia, including China, Hong 
Kong, India, Indonesia, Japan, Korea, Mongolia, Taiwan and Vietnam [126]. HEV-1 is also linked to 
imported infections in several European countries (i.e., Spain, Finland and France) [127] and 
industrialized Asian countries like Japan [65] that are isolated from patients with a history of 
traveling to endemic countries. HEV-1 and HEV-2 infections mostly affect developing countries. The 
infections by the two genotypes are responsible for the outbreaks in developing countries where the 
viruses are transmitted through drinking water supplies contaminated with human feces (e.g., after 
heavy rainfall or flood). The outbreaks were reported in refugee camps, military camps and internally 
displaced persons camps with dense populations and poor sanitation [2–4,7,9]. Since within the past 
decades HEV infection has been increasingly identified in developed countries, where the prevalent 
strains are HEV-3 and HEV-4, this section will focus mainly on these two genotypes. In Japan, 
subtypes 3b, 3a and 3e within HEV-3 and subtypes 4c and 4i within HEV-4 are predominant and 
indigenized, since they have been recovered from both hepatitis E patients and animals including 
domestic pigs and/or wild boars [128–139]. Although the global circulation of HEV-3 subtypes 
suggests that there are no clear regional demarcations, with subtypes no longer limited to their 
regions of origin [140], subtype 3b is indigenous to Japan, and no 3b strains have thus far been 
identified in other countries. Subtype 3l (see Figure 2a) is also reported to be indigenous to 
Switzerland [68]. 

Pigs are the primary reservoir of HEV. HEV has been isolated in pigs worldwide, but the 
infection is subclinical in this species [141]. A report from the Netherlands studying HEV 
transmission by contact-exposure in pig farms estimated that the basic reproduction rate (R0, number 
of individuals infected by an index case with an infectious disease) of HEV in a pig population is 8.8 
(R0 > 1 means that the infection will spread through a naïve population), indicating that HEV is highly 
infectious in pigs. Once a pig in a herd becomes infected, it is extremely likely that all other animals 
in the herd will become infected as well [142]. The distribution of the subtypes can also be influenced 
by the import of animal products or live animals for breeding purposes, because they carry the risk 
of inflow and indigenization of foreign HEV strains [143,144]. 

Countries like China and Mongolia experienced a shift in the prevalent genotypes. In China, 
HEV-1 was previously the dominant circulating genotype; in recent years, however, HEV-1 has 
become less common, and HEV-4 is now the most prevalent genotype found in humans [145]. In 
Mongolia, the prevalent genotype has shifted from HEV-4 to HEV-1 [146]. In Japan, besides HEV-3, 
HEV-4, HEV-5 and HEV-6 isolated from humans, pigs, wild boars and deer, our recent study 
revealed the infection of HEV-1 in patients with no history of overseas travel that were subsequently 
regarded as autochthonous hepatitis [65]. In Southeast Asia, an increasing number of HEV strains 
have been isolated in the past few years. In Thailand, Cambodia and Singapore, HEV-3 was reported 
as the prevalent genotype in human populations, swine populations and blood products for 
transfusion [147–152]. HEV-4 was also isolated in Cambodia and Malaysia [153,154]. 

In European countries, HEV-3 is the prevalent genotype. However, HEV-4 has been increasingly 
frequently isolated in several European countries both from human and swine populations. The 
emerging autochthonous HEV-4 in Europe was probably transmitted by at least two distinct sources 
[155]. The first HEV-4 report came from a single autochthonous case in Germany (HEV-4f) [156] and 
swine in Belgium HEV-4b [157] in surveillance activities. France has the most HEV-4 cases reported 
in Europe. It was first isolated from a leukemia patient described as an autochthonous case [158], 
followed by two cases with HEV-4b linked to a history of figatelli consumption (pork liver sausage 
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that is traditionally consumed uncooked) [159]. Several HEV-4b strains (including one case in a 
kidney transplant patient) were then isolated along with the imported Chinese HEV-4 strain 
[155,160,161]. An outbreak in Italy affecting five people living in the same area with no history of 
traveling to endemic areas was identified as HEV-4d, a strain that is close to Chinese swine isolates 
[162]. Denmark reported three HEV-4 cases—one that was close to the Italian outbreak strain, and 
two others that were close to the French figatelli cases and the Belgium swine strain [163]. HEV-4b 
was also isolated from a patient in Russia and thought to have been imported from France [164], and 
HEV-4 was isolated in the United Kingdom from an immunocompromised male patient (severe 
rheumatoid arthritis on treatment) with liver failure (jaundice and progressive encephalopathy) 
returning from India. The strain was close to the Indian HEV-4 isolated in swine [165]. A decade after 
the first report of HEV-4 in Europe, HEV-4b has been proven the most prevalent subtype among 
HEV-4 infections reported from Europe. 

HEV-1 is known to be related to the development of fulminant hepatitis in pregnant women in 
Asia and Africa [9,166]. However, several reports have described the rare involvement of HEV-3 in 
pregnant women from areas such as Germany and France (HEV-3c), southeastern France (HEV-3f) 
and Japan (HEV-3b) [167–170]. 

In industrialized countries, HEV genotypes in hepatitis patients are generally the same as those 
in swine populations, suggesting zoonotic transmission by food or close contact with animals. In 
contrast, in developing countries, infection can be epidemic or sporadic, and the strains found in 
humans tend to differ from those isolated from pigs [171]. 

Animal strains of HEV are being isolated increasingly frequently worldwide. Several new strains 
were only able to be discovered in restricted locations due to limited screening (e.g., common kestrel, 
red-footed falcon and little egret in Hungary) [92,102]. Expansion of screening areas and animal 
species might uncover even more new animal strains. 

Despite their similar modes of transmission and ability to cause chronic hepatitis in 
immunosuppressed patients, several reports have demonstrated differences in the clinical features 
and pathogenesis of HEV-3 and HEV-4. Several studies from Japan have shown that HEV-4 patients 
had a significantly higher peak alanine aminotransferase (ALT) level and significantly higher 
proportion of prothrombin time (PT) ≤60% than HEV-3 patients, and that fulminant hepatitis events 
were significantly more frequent in HEV-4 patients than in HEV-3 patients, suggesting that the HEV 
genotype is an important risk factor associated with the disease severity [136,172,173]. These findings 
in Japan were also observed by a study in France. The authors found that patients infected with HEV-
4 showed significantly higher ALT levels and more frequent jaundice events than those with HEV-3 
infection [160]. The first isolation of HEV-4 in swine in Belgium was followed by experimental 
infection in swine to test the infectivity of the HEV-4 isolate [157]. The ALT and aspartate amino 
transferase (AST) levels in pigs experimentally infected with HEV-4 isolate were higher than those 
observed in pigs experimentally infected with HEV-3. This observation suggests that HEV-4 may 
cause more severe liver damage than HEV-3 [157]. 

Reports on HEV-4 infection in immunocompromised patients (cancer patients and transplant 
recipients) demonstrated that six out of seven cases progressed to persistent infection. In three cases, 
infection did not respond to ribavirin or relapsed despite the administration of ribavirin [174–178]. 
Combined data from two studies in the same center showed that 89% of the HEV-4-infected 
transplant recipients developed persistent infection. In the same studies, six patients received a 
reduced dose of immunosuppression, but with no effect on their viral load [176,179]. This observation 
differed from what was demonstrated in chronic HEV-3 cases where infection was cleared 
spontaneously in 34%, while the infection cleared in 21% after the reduction of immunosuppression 
[180]. An analysis of the RdRp sequence in serial specimens (including the baseline) of 
immunosuppressed patients with chronic HEV-4 infection who responded poorly to ribavirin 
treatment showed that the K1383N mutant found after nine months of ribavirin treatment remained 
at 15 and 18 months of ribavirin treatment, a finding similar to that reported in HEV-3 [176]. In 
contrast with this finding, an in vitro experiment showed that this mutation leads to increased 
susceptibility to ribavirin and reduced viral fitness of HEV-3 [181]. In HEV-3, aa 1634 (the RdRp 
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region of ORF1) is glycine [181], while it was lysine in HEV-4 that was conserved during ribavirin 
treatment [176]. In ribavirin-resistant HEV-3 mutants, this amino acid frequently exhibited a glycine-
to-arginine mutation [181]. The findings of mutational impact in the outcomes of patients treated 
with ribavirin warrant further studies. 

Both HEV-3 and HEV-4 infections in immunocompromised patients have been linked to 
accelerated cirrhosis; however, a small number of reports have shown earlier progression to cirrhosis 
in those with HEV-4 infection than in those with HEV-3 infection [175,179,182]. A report of two 
patients with chronic HEV-3 infection demonstrated the development of liver cirrhosis within less 
than three years [182], while other small reports showed that two liver graft recipients experienced 
the rapid development of cirrhosis in a matter of months (less than one year) after being diagnosed 
with HEV-4 infection, both of whom died due to complication of esophageal variceal bleeding 
[175,179]. A comparative study of HEV-3- and HEV-4-infected patients in terms of accelerated liver 
cirrhosis compared with the non-HEV-infected liver cirrhosis patients is necessary to further confirm 
this finding. Although a recent systematic review and pooled analysis on acute liver failure (ALF) 
caused by HEV-3 and HEV-4 suggested that there were no major differences between patients 
infected with HEV-3 versus HEV-4 [183], the observed differences in the clinical features, 
pathogenesis and prognosis of HEV-3 and HEV-4 infection merit a further analysis. 

5. Genomic Variability and Evolution 

HEV strains have demonstrated extensive genomic diversity among them. Although HEV 
strains are highly diverse and heterogeneous, only one serotype of HEV exists. This is probably 
related to the high degree of conservation of the amino acid sequence of the capsid protein among 
distinct genotypes, correlating with the little antigenic diversity [66]. HEV genotypes have diverse 
reservoirs, distinct distribution and varied transmission pattern. This variability contributes to the 
pathophysiology, transmission patterns, severity of the infection, and probably to therapeutic 
response as well [184,185]. 

5.1. Nucleotide Mutations during Consecutive Passages in Cell Culture (Clinical Sample-Derived versus 
cDNA Clone-Derived) 

Cell culture-derived adaptive mutations can greatly improve the in vitro replication capacity of 
the virus, as has been demonstrated by studies in our lab using the HEV-3 JE03-1760F strain. 
Adaptation to growth in cell culture reduces the interval between inoculation of cultures and 
maximizes the viral yield. Mutations can occur frequently over the entire HEV genome during 
propagation and consecutive passages for adaptation to cell culture [185–187]. Random mutations 
might occur during passages for adaptation to growth in cell culture. The mutations important for 
the virus can in part be suggested by the reproducible occurrences observed in independent 
experiments using the same inoculum. 

Previously, our lab performed consecutive passages of two starting viruses―the feces-derived 
JE03-1760F/wild type (wt) (experiment A and experiment B) and the infectious cDNA clone-derived 
pJE03-1760F/wt―to characterize genomic mutations of HEV during consecutive passages associated 
with adaptation to growth in cell culture. During the passages, increased growth efficiency was 
observed in both feces-derived and infectious cDNA clone-derived viruses. To determine the 
molecular mechanism underlying the adaptation of JE03-1760 to growth in cell culture, full-genome 
sequencing and a comparison with the wild-type parent were performed [185,187]. The full genome 
sequences of passage 10 (feces-derived p10f/A, feces-derived p10f/B and cDNA-derived p10c) are 
presented in Table 2. 
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Table 2. A comparison of sequences of the wild-type (wt) JE03-1760F, its cell culture-produced 
variants (feces-derived) and the cell culture-produced variant of pJE03-1760F/wt (cDNA-derived) 
over the entire genome. 

Nucleotide 

Position 
Region 

Nucleotide Amino Acid 

JE03-

1760F/ 

wt 

p10f/A 

(Feces-

derived) 

p10f/B 

(Feces-

derived) 

p10c 

(cDNA-

derived) 

Position Substitution 

22 5’UTR U A U U NA a - 

61 ORF1 (MeT) U U C U 12 - 

370 ORF1 (MeT) C U C C 115 - 

445 ORF1 (MeT) U U C U 140 - 

591 ORF1 (MeT) C U C C 189 Ala to Val 

829 ORF1 (Y) C C U C 268 - 

1213 ORF1 (Y) C C C U 396 - 

1378 ORF1 (PCP) C C U C 451 - 

1549 ORF1 (PCP) U U C U 508 - 

2191 ORF1 (HVR) C C U C 722 - 

2236 ORF1 (HVR) C C U C 737 - 

2246 ORF1 (HVR) U C C U 741 Trp to Arg 

2557 ORF1 (X) U U U C 844 - 

2704 ORF1 (X) U C U U 893 - 

2808 ORF1 (X) U U C C 928 Val to Ala 

2913 ORF1 (Hel) A A G A 963 Glu to Gly 

2915 ORF1(Hel) G G U G 964 Val to Leu  

2938 ORF1 (Hel) C U C C 971 - 

3106 ORF1 (Hel) A G A A 1027 - 

3118 ORF1 (Hel) C C C U 1031 - 

3223 ORF1 (Hel) U U C U 1066 - 

3235 ORF1 (Hel) C U C C 1070 - 

3453 ORF1 (Hel) C U C C 1143 Ala to Val 

3475 ORF1 (Hel) C C U C 1150 - 

3496 ORF1 (Hel) C U C C 1157 - 

4015 ORF1 (RdRp) C U C C 1330 - 

4309 ORF1 (RdRp) C C U C 1428 - 

4435 ORF1 (RdRp) C C C U 1470 - 

4462 ORF1 (RdRp) C U C C 1479 - 

5054 ORF1 (RdRp) A A A G 1677 Ile to Val 

5312 ORF2 U U C U 47 - 

 ORF3     51 Ile to Thr 

5378 ORF2 A G G A 69 - 

 ORF3     73 Asn to Ser 
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5456 ORF2 C U U C 95 - 

 ORF3     99 Pro to Leu 

6047 ORF2 U U C U 292 - 

6470 ORF2 C U C C 433 - 

6578 ORF2 C U C C 469 - 

6611 ORF2 C U C C 480 - 

6626 ORF2 U C U U 485 - 

6652 ORF2 U U C U 494 Val to Ala 

6855 ORF2 A A G A 562 Asn to Asp 

6944 ORF2 U U C U 591 - 

7186 3’UTR C C U C NAa - 
Made from Lorenzo et al. [185], Okamoto [186] and Nagashima et al. [187]. a Not available. MeT: 
methyltransferase; Y: Y domain; PCP: papain-like cysteine protease; HVR: hypervariable region; X: X 
domain; Hel: helicase; RdRp: RNA-dependent RNA-polymerase. Green background color indicates 
nucleotide mutation.  

In feces-derived passages (experiment A), the average time required by p0–p5 to reach an HEV 
RNA titer of 1 × 105 copies/mL was 35.2 days, while it was 16.0 days for p6–p10, which means that 
p6–p10 reached the target titer 19.2 days earlier. A direct comparison showed that it took 40 days for 
p1 to reach the titer, while it took 12 days (28 days earlier) for p10 to do so. However, experiment B, 
which used the same inoculum as experiment A, found that the average time required by p6–p10 to 
reach 1 × 105 copies/mL was one week less than the time for p0–p5 to reach the same titer. Full-genome 
sequencing revealed that, in experiment A, the total number of mutations accumulated over 10 
consecutive passages was 18 (18/7226 or 0.25%), with five amino acid substitutions, while this value 
was 22 (22/7226 or 0.30%), with nine amino acid substitutions, in experiment B [185,186]. The limited 
number of mutations found in these experiments was also observed in passages of another enterically 
transmitted hepatitis virus, hepatitis A virus (HAV), where HAV variants of passage 16 HM175 (16th 
in vitro passage level) exhibited 19 mutations accounting for 0.3% of the entire genome of the parent 
virus [188]. 

In infectious cDNA clone-derived passages, the average time required by p1–p5 to reach an HEV 
RNA titer of 1 × 105 copies/mL was 17.0 days, while it was 7.8 days for p6–p10, which means that p6–
p10 reached this titer 9.2 days earlier. A direct comparison showed that it took 31 days for p1 to reach 
the titer, while it took only five days (26 days earlier) for p10 to do so. Full-genome sequencing 
revealed that the total number of nucleotide mutations accumulated over 10 consecutive passages 
was six (6/7226 or 0.08%), with two amino acid substitutions. Eight new infectious cDNA clones based 
on these six mutations (six individual nucleotide mutations (C1213T, T2557C, T2808C, C3118T, 
C4435T, A5054G); two amino acids substitution (T2808C + A5054G); and all six nucleotide mutations) 
were then constructed (Figure 3) in order to confirm the results. Compared to the wild-type virus, 
T2808C + A5054G showed a higher viral load (10-fold), while the infectious cDNA clone with all six 
mutations demonstrated a 100-fold-higher viral load than the wild-type virus. This result suggests 
that the virus is adapted to growth in cell culture. Among the clones with four individual mutations, 
two individual mutants (C1213T and T2557C) with no amino acid substitutions demonstrated faster 
viral growth than the wild-type virus. In these two mutants, minimal changes in the secondary 
structure of the RNA sequence were observed (Figure 3). In contrast, the other two individual 
mutants (C3118T and C4435T) showed similar growth to the wild-type virus. In those two mutants, 
the secondary structures were not changed, suggesting that changes in the secondary structures 
might affect the viral replication capacity [187]. 

A common mutation (T2808C) found in experiment B and the infectious cDNA clone experiment 
plays an important role in heightened virus replication, as shown by the results indicated above; 
therefore, the common mutations found in experiments A and B (three) might play important roles 



Viruses 2019, 11, 456 15 of 27 

 

in heightened virus replication as well. The finding of common mutations in the two independent 
experiments (A and B) suggests the possible role they may play in heightened virus replication, which 
was further proven by the reproducible occurrence observed in two independent experiments. The 
extended in vitro passage of the virus may result in the virus attenuation, an approach that could be 
utilized for the development of attenuated HEV vaccine in the future. 

 
Figure 3. Positions of mutations in the eight recombinant cDNA clones of the JE03-1760F strain. Upper 
panel: the genomic structure of HEV. Abbreviations: MeT, methyltransferase; Y, Y domain; PCP, 
papain-like cysteine protease; HVR, hypervariable region; X, X domain; Hel, helicase; and RdRp, 
RNA-dependent RNA polymerase. Lower panel: the open circles denote synonymous mutations 
without structural changes in HEV RNA, the shaded circles denote synonymous mutations with 
structural changes in HEV RNA and the closed circles denote non-synonymous mutations. Modified 
from Nagashima et al. [187]. 

5.2. Possible Clinical Implication of HEV Genomic Mutations 

HEV infections in humans have been caused by five different genotypes whose genomic 
organization is highly conserved [189]. The HEV strains capable of infecting humans were previously 
thought to be restricted to HEV-1, HEV-2, HEV-3 and HEV-4. However, the range expanded 
following reports of human infection through the regular consumption of camel meat and milk in the 
United Arab Emirates (HEV-7) [60]. HEV-1, HEV-2, HEV-3, HEV-4 and HEV-7 are all classified under 
the genus Orthohepevirus A. The host range has been found to expand to another species—
Orthohepevirus C—as the first case of HEV-C1 (rat) infection in an immunocompromised patient (a 
recipient of liver transplant) was reported from Hong Kong [95]. Within one month, another case of 
HEV-C1 infection in a human was reported from an immunocompetent Canadian male [96]. 
However, how the rat HEV was transmitted to humans remains unclear at present. The emergence 
of rat HEV infecting both immunocompromised and immunocompetent humans raises the 
possibility that rat HEV strains infecting humans in wider geographic areas around the world might 
be discovered in the future, as rat HEV strains have been isolated increasingly frequently in many 
parts of the world, including several European countries [79,86], the US [80] and Asian countries 
[38,83–85,87]. 

Infection with HEV-1 and HEV-2 is restricted to humans, while HEV-3 and HEV-4 have a 
broader host range, including humans as well as a variety of animals, such as pigs, wild boars, rabbits, 
mongoose and deer. HEV-1 is the most conserved among the main four genotypes, while HEV-3 and 
HEV-4 strains are highly diverse. HEV host specificity is a heritable and convergent phenotypic trait 
that can be achieved independently by various HEV-3 and HEV-4 strains through many genetic 
pathways, explaining the broad host range for HEV-3 and HEV-4 [190]. Amino acid positions 605, 
1017 and 1252 in helicase, which have been associated with severe hepatitis in HEV-3-infected 
patients [191], were found to be some of the most influential sites of the HEV-3 ORF1-encoded 
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protein. All three sites were involved in a Bayesian Network (BN)HEV3. In addition, position 1252 was 
recognized as an HEV-3 host-specific motif, with position 605 being a part of the human motif. These 
observations suggest the possibility that the host-specific coevolution among protein sites is 
associated with HEV virulence [190]. 

HEV-1 is linked to severe forms of liver disease and complications in pregnant women. A recent 
work in North India reported molecular alterations in the partial sequence of the RdRp region from 
patients with acute liver failure (ALF) and acute viral hepatitis (AVH), including pregnant women, 
and its association with the poor outcome of the disease. They demonstrated two novel mutations—
Cysteine 1483 Tryptophan (C1483W) and Asparagine 1530 Threonine (N1530T)—in 100% (25/25) of 
the patients with ALF compared to none (0/30) of the patients with AVH (p < 0.0001). The disease 
severity parameters and viral load in samples with C1483W and N1530T mutations were significantly 
higher than in those lacking the mutation. This means that the mutations are associated with the 
outcome in ALF patients. The nucleotide substitutions in the RdRp region may play an important 
role in enhancing HEV replication, thereby leading to disease severity [192]. 

HEV-1 and HEV-2 are associated with acute infection, while HEV-3, HEV-4 and HEV-7 not only 
cause acute hepatitis, but can lead to chronic infection in immunocompromised patients. A small 
study involving 14 solid organ transplant recipients in France [184] demonstrated that the complexity 
and diversity of the polyproline region (PPR) and macro domain in ORF1 were higher in patients 
whose HEV infection became chronic compared with those who cleared the virus, suggesting a great 
quasispecies heterogeneity in these regions [184]. As the PPR could modulate the host immune 
response, and the macro domain could influence virus pathogenicity [184,193–195], the genetic 
heterogeneity of the PPR and the macro domain may play a role in the outcome of HEV infection in 
immunocompromised patients (e.g., the solid organ transplant recipients) that could facilitate HEV 
persistence [184,196]. 

The high variability and frequent selection of mutations in the HEV genome are due to the 
transcription process [197]. Mutations can occur frequently over the entire HEV genome during 
propagation and consecutive passages for adaptation to cell culture [185]. The HEV mutation rates 
were estimated indirectly from clinical isolates as 1.5 base substitutions per site per year [43]. 
Selection pressure imposed by antiviral drugs and host immune responses may contribute to 
increased HEV variability [184]. Non-synonymous substitutions can modulate viral proteins 
structurally and thus dysregulate virus-host interactions [197]. 

Several reports have described the HEV nucleotide mutations related to ribavirin treatment. The 
virus can acquire mutations that make intra-host populations less sensitive or even resistant to 
ribavirin. One of the proposed modes of action is a direct mutagenic effect on viral genomes, inducing 
mismatches and subsequent nucleotide substitutions [198]. Ribavirin resistance was associated with 
Y1320H, K1383N and G1634R mutations in the viral polymerase, along with an insertion in the HVR 
comprising a duplication and a polymerase-derived fragment. Mutations Y1320H and G1634R and 
the HVR insertion compensated for K1383N-associated replication defects [181]. A recent report from 
Singapore also described mutational hotspots within ORF3 and the PCP/HVR domain of ORF1 [152]. 
The viral heterogeneity related to ribavirin treatment was reversible when treatment was stopped 
[199]. 

HEV has been constantly evolving in order to adapt to new hosts. Most of the HEV genome is 
evolutionarily constrained. HEV-1, which infects humans only, has been evolving differently from 
HEV-3 and HEV-4, which infect multiple species. This is probably because HEV-3 and HEV-4 are 
unable to achieve the same fitness due to repeated host jumps [200]. HEV-3 and HEV-4 are enzootic 
and zoonotic, and capable of infecting a number of different species. The adaptation of each strain to 
a range of hosts may lead to a greater demand for genetic changes in the genome [201]. A greater 
number of polymorphic positions were carried by HEV-3 and HEV-4 compared with those of HEV-
1 and HEV-2, suggesting a high genetic diversity of HEV-3 and HEV-4 that may reflect their strong 
adaptation to many hosts. Under different selective pressures, many positive selection (mutations 
leading to amino acid substitution) sites were located in the overlapping region of ORF2 and ORF3. 
Meanwhile, the ORF1 and the non-overlapping ORF2 have many negative selections sites (silent 



Viruses 2019, 11, 456 17 of 27 

 

mutations) that were greater in HEV-1 compared with those in HEV-3 and HEV-4, which may explain 
why HEV-1 is well conserved and adapted only by human hosts [201,202]. A divergence analysis of 
HEV-1 to HEV-4 suggested that the split into zoonotic and anthropotropic genotypes occurred 
around 536 to 1344 years ago. HEV-1 appears to be more recent than the zoonotic genotypes, with 
the estimated time to the most recent common ancestor (tMRCA) of most modern lineages of HEV-1 
being roughly ∼87 to 199 years ago. The population dynamics of HEV-1, HEV-3 and HEV-4 over the 
last century have demonstrated the association of effective population size with global trade, wars, 
fluctuations in pork consumption and the increased recognition of hepatitis E as a result of zoonosis 
and control measures in swine [201,203]. 

6. Conclusions 

Over the past two decades, HEV strains have been isolated with increasing frequency not only 
from humans but also from other animal species, necessitating revisions to the previous consensus, 
as many of the newly identified strains remain unclassified. It is possible that more strains will be 
discovered from even more diverse animal species in the future. This variability among HEV 
genotypes contributes to the pathophysiology, transmission patterns, severity of the infection and 
likely therapeutic response. Evolutionary events have conferred the ability of HEV to adapt to new 
hosts. 

Author Contributions: P.P.P wrote the paper. S.N. reviewed the paper. H.O. prepared the figures and revised 
the paper. 

Funding: This work was supported in part by the Research Program on Hepatitis from Japan Agency for Medical 
Research and Development, AMED (19fk0210043). 

Acknowledgments: We thank Ms. Harumi Shiosei for her excellent literature search. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Lhomme, S.; Marion, O.; Abravanel, F.; Chapuy-Regaud, S.; Kamar, N.; Izopet, J. Hepatitis E pathogenesis. 
Viruses 2016, 8, 212. 

2. Kamar, N.; Izopet, J.; Pavio, N.; Aggarwal, R.; Labrique, A.; Wedemeyer, H.; Dalton, H.R. Hepatitis E virus 
infection. Nat. Rev. Dis. Primers 2017, 3, 17086. 

3. Nimgaonkar, I.; Ding, Q.; Schwartz, R.E.; Ploss, A. Hepatitis E virus: Advances and challenges. Nat. Rev. 
Gastroenterol. Hepatol. 2018, 15, 96–110. 

4. Hoofnagle, J.H.; Nelson, K.E.; Purcell, R.H. Hepatitis E. N. Engl. J. Med. 2012, 367, 1237–1244. 
5. Kamar, N.; Marion, O.; Abravanel, F.; Izopet, J.; Dalton, H.R. Extrahepatic manifestations of hepatitis E 

virus. Liver Int. 2016, 36, 467–472. 
6. World Health Organization. Hepatitis E. Available online: https://www.who.int/news-room/fact-

sheets/detail/hepatitis-E. (accessed on 23 April 2019). 
7. Boccia, D.; Guthmann, J.P.; Klovstad, H.; Hamid, N.; Tatay, M.; Ciglenecki, I.; Nizou, J.Y.; Nicand, E.; 

Guerin, P.J. High mortality associated with an outbreak of hepatitis E among displaced persons in Darfur, 
Sudan. Clin. Infect. Dis. 2006, 42, 1679–1684. 

8. Bhatnagar, G.; Sharma, S.; Kumar, A.; Prasad, S.; Agarwal, S.; Kar, P. Reduced glutathione in hepatitis E 
infection and pregnancy outcome. J. Obstet. Gynaecol. Res. 2016, 42, 789–795. 

9. Perez-Gracia, M.T.; Suay-Garcia, B.; Mateos-Lindemann, M.L. Hepatitis E and pregnancy: Current state. 
Rev. Med. Virol. 2017, 27, e1929. 

10. Galiana, C.; Fernandez-Barredo, S.; Garcia, A.; Gomez, M.T.; Perez-Gracia, M.T. Occupational exposure to 
hepatitis E virus (HEV) in swine workers. Am. J. Trop. Med. Hyg. 2008, 78, 1012–1015. 

11. Teixeira, J.; Mesquita, J.R.; Pereira, S.S.; Oliveira, R.M.S.; Abreu-Silva, J.; Rodrigues, A.; Myrmel, M.; Stene-
Johansen, K.; Overbo, J.; Goncalves, G.; et al. Prevalence of hepatitis E virus antibodies in workers 
occupationally exposed to swine in Portugal. Med. Microbiol. Immunol. 2017, 206, 77–81. 

12. Matsubayashi, K.; Nagaoka, Y.; Sakata, H.; Sato, S.; Fukai, K.; Kato, T.; Takahashi, K.; Mishiro, S.; Imai, M.; 
Takeda, N.; et al. Transfusion-transmitted hepatitis E caused by apparently indigenous hepatitis E virus 
strain in Hokkaido, Japan. Transfusion 2004, 44, 934–940. 



Viruses 2019, 11, 456 18 of 27 

 

13. Mitsui, T.; Tsukamoto, Y.; Yamazaki, C.; Masuko, K.; Tsuda, F.; Takahashi, M.; Nishizawa, T.; Okamoto, H. 
Prevalence of hepatitis E virus infection among hemodialysis patients in Japan: Evidence for infection with 
a genotype 3 HEV by blood transfusion. J. Med. Virol. 2004, 74, 563–572. 

14. Boxall, E.; Herborn, A.; Kochethu, G.; Pratt, G.; Adams, D.; Ijaz, S.; Teo, C.G. Transfusion-transmitted 
hepatitis E in a 'nonhyperendemic' country. Transfus. Med. 2006, 16, 79–83. 

15. Satake, M.; Matsubayashi, K.; Hoshi, Y.; Taira, R.; Furui, Y.; Kokudo, N.; Akamatsu, N.; Yoshizumi, T.; 
Ohkohchi, N.; Okamoto, H.; et al. Unique clinical courses of transfusion-transmitted hepatitis E in patients 
with immunosuppression. Transfusion 2017, 57, 280–288. 

16. Kamar, N.; Selves, J.; Mansuy, J.M.; Ouezzani, L.; Peron, J.M.; Guitard, J.; Cointault, O.; Esposito, L.; 
Abravanel, F.; Danjoux, M.; et al. Hepatitis E virus and chronic hepatitis in organ-transplant recipients. N. 
Engl. J. Med. 2008, 358, 811–817. 

17. Shrestha, A.; Adhikari, A.; Bhattarai, M.; Rauniyar, R.; Debes, J.D.; Boonstra, A.; Lama, T.K.; Al Mahtab, 
M.; Butt, A.S.; Akbar, S.M.F.; et al. Prevalence and risk of hepatitis E virus infection in the HIV population 
of Nepal. Virol. J. 2017, 14, 228. 

18. Tavitian, S.; Peron, J.M.; Huguet, F.; Kamar, N.; Abravanel, F.; Beyne-Rauzy, O.; Oberic, L.; Faguer, S.; Alric, 
L.; Roussel, M.; et al. Ribavirin for chronic hepatitis prevention among patients with hematologic 
malignancies. Emerg. Infect. Dis. 2015, 21, 1466–1469. 

19. Dalton, H.R.; Kamar, N.; van Eijk, J.J.J.; McLean, B.N.; Cintas, P.; Bendall, R.P.; Jacobs, B.C. Hepatitis E virus 
and neurological injury. Nat. Rev. Neurol. 2016, 12, 77–85. 

20. Bazerbachi, F.; Haffar, S.; Garg, S.K.; Lake, J.R. Extra-hepatic manifestations associated with hepatitis E 
virus infection: A comprehensive review of the literature. Gastroenterol. Rep. (Oxf). 2016, 4, 1–15. 

21. Balayan, M.S.; Andjaparidze, A.G.; Savinskaya, S.S.; Ketiladze, E.S.; Braginsky, D.M.; Savinov, A.P.; 
Poleschuk, V.F. Evidence for a virus in non-A, non-B hepatitis transmitted via the fecal–oral route. 
Intervirology 1983, 20, 23–31. 

22. Tam, A.W.; Smith, M.M.; Guerra, M.E.; Huang, C.C.; Bradley, D.W.; Fry, K.E.; Reyes, G.R. Hepatitis E virus 
(HEV): Molecular cloning and sequencing of the full-length viral genome. Virology 1991, 185, 120–131. 

23. Purdy, M.A.; Harrison, T.J.; Jameel, S.; Meng, X.J.; Okamoto, H.; Van der Poel, W.H.M.; Smith, D.B.; ICTV 
Report Consortium. ICTV virus taxonomy profile: Hepeviridae. J. Gen. Virol. 2017, 98, 2645–2646. 

24. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger 
datasets. Mol. Biol. Evol. 2016, 33, 1870–1874.  

25. Di Martino, B.; Di Profio, F.; Melegari, I.; Sarchese, V.; Robetto, S.; Marsilio, F.; Martella, V. Detection of 
hepatitis E virus (HEV) in goats. Virus Res. 2016, 225, 69–72. 

26. Saad, M.D.; Hussein, H.A.; Bashandy, M.M.; Kamel, H.H.; Earhart, K.C.; Fryauff, D.J.; Younan, M.; 
Mohamed, A.H. Hepatitis E virus infection in work horses in Egypt. Infect. Genet. Evol. 2007, 7, 368–373. 

27. Zhang, W.; Shen, Q.; Mou, J.; Gong, G.; Yang, Z.; Cui, L.; Zhu, J.; Ju, G.; Hua, X. Hepatitis E virus infection 
among domestic animals in eastern China. Zoonoses Public Health 2008, 55, 291–298. 

28. Geng, J.B.; Fu, H.W.; Wang, L.; Wang, X.J.; Guan, J.M.; Chang, Y.B.; Li, L.J.; Zhu, Y.H.; Zhuang, H.; Liu, 
Q.H.; et al. Hepatitis E virus (HEV) genotype and the prevalence of anti-HEV in 8 species of animals in the 
suburbs of Beijing. Zhonghua Liu Xing Bing Xue Za Zhi 2010, 31, 47–50. 

29. Garcia-Bocanegra, I.; Rivero, A.; Caballero-Gomez, J.; Lopez-Lopez, P.; Cano-Terriza, D.; Frias, M.; Jimenez-
Ruiz, S.; Risalde, M.A.; Gomez-Villamandos, J.C.; Rivero-Juarez, A. Hepatitis E virus infection in equines 
in Spain. Transbound. Emerg. Dis. 2019, 66, 66–71. 

30. Montalvo Villalba, M.C.; Cruz Martinez, D.; Ahmad, I.; Rodriguez Lay, L.A.; Bello Corredor, M.; Guevara 
March, C.; Martinez, L.S.; Martinez-Campo, L.S.; Jameel, S. Hepatitis E virus in bottlenose dolphins Tursiops 
truncatus. Dis. Aquat. Organ. 2017, 123, 13–18. 

31. Sarchese, V.; Di Profio, F.; Melegari, I.; Palombieri, A.; Sanchez, S.B.; Arbuatti, A.; Ciuffetelli, M.; Marsilio, 
F.; Martella, V.; Di Martino, B. Hepatitis E virus in sheep in Italy. Transbound. Emerg. Dis. 2019, doi: 
10.1111/tbed.13157 [Epub ahead of print]. 

32. Hu, G.D.; Ma, X. Detection and sequences analysis of bovine hepatitis E virus RNA in Xinjiang 
Autonomous Region. Bing Du Xue Bao 2010, 26, 27–32. 

33. Vitral, C.L.; Pinto, M.A.; Lewis-Ximenez, L.L.; Khudyakov, Y.E.; dos Santos, D.R.; Gaspar, A.M.C. 
Serological evidence of hepatitis E virus infection in different animal species from the southeast of Brazil. 
Mem. Inst. Oswaldo Cruz 2005, 100, 117–122. 



Viruses 2019, 11, 456 19 of 27 

 

34. Huang, F.; Li, Y.; Yu, W.; Jing, S.; Wang, J.; Long, F.; He, Z.; Yang, C.; Bi, Y.; Cao, W.; et al. Excretion of 
infectious hepatitis E virus into milk in cows imposes high risks of zoonosis. Hepatology 2016, 64, 350–359. 

35. Wu, J.; Si, F.; Jiang, C.; Li, T.; Jin, M. Molecular detection of hepatitis E virus in sheep from southern 
Xinjiang, China. Virus Genes 2015, 50, 410–417. 

36. Li, S.; Liu, M.; Cong, J.; Zhou, Y.; Miao, Z. Detection and characterization of hepatitis E virus in goats at 
slaughterhouse in Tai'an region, China. Biomed Res. Int. 2017, 2017, 3723650. 

37. Xu, F.; Pan, Y.; Baloch, A.R.; Tian, L.; Wang, M.; Na, W.; Ding, L.; Zeng, Q. Hepatitis E virus genotype 4 in 
yak, northwestern China. Emerg. Infect. Dis. 2014, 20, 2182–2184. 

38. Li, W.; Guan, D.; Su, J.; Takeda, N.; Wakita, T.; Li, T.C.; Ke, C.W. High prevalence of rat hepatitis E virus in 
wild rats in China. Vet. Microbiol. 2013, 165, 275–280. 

39. Guan, D.; Li, W.; Su, J.; Fang, L.; Takeda, N.; Wakita, T.; Li, T.C.; Ke, C. Asian musk shrew as a reservoir of 
rat hepatitis E virus, China. Emerg. Infect. Dis. 2013, 19, 1341–1343. 

40. Krog, J.S.; Breum, S.O.; Jensen, T.H.; Larsen, L.E. Hepatitis E virus variant in farmed mink, Denmark. Emerg. 
Infect. Dis. 2013, 19, 2028–2030. 

41. Woo, P.C.Y.; Lau, S.K.P.; Teng, J.L.L.; Cao, K.Y.; Wernery, U.; Schountz, T.; Chiu, T.H.; Tsang, A.K.L.; 
Wong, P.C.; Wong, E.Y.M.; et al. New hepatitis E virus genotype in Bactrian camels, Xinjiang, China, 2013. 
Emerg. Infect. Dis. 2016, 22, 2219–2221. 

42. Tei, S.; Kitajima, N.; Takahashi, K.; Mishiro, S. Zoonotic transmission of hepatitis E virus from deer to 
human beings. Lancet 2003, 362, 371–373. 

43. Takahashi, K.; Kitajima, N.; Abe, N.; Mishiro, S. Complete or near-complete nucleotide sequences of 
hepatitis E virus genome recovered from a wild boar, a deer, and four patients who ate the deer. Virology 
2004, 330, 501–505. 

44. Nakamura, M.; Takahashi, K.; Taira, K.; Taira, M.; Ohno, A.; Sakugawa, H.; Arai, M.; Mishiro, S. Hepatitis 
E virus infection in wild mongooses of Okinawa, Japan: Demonstration of anti-HEV antibodies and a full-
genome nucleotide sequence. Hepatol. Res. 2006, 34, 137–140. 

45. Nidaira, M.; Takahashi, K.; Ogura, G.; Taira, K.; Okano, S.; Kudaka, J.; Itokazu, K.; Mishiro, S.; Nakamura, 
M. Detection and phylogenetic analysis of hepatitis E viruses from mongooses in Okinawa, Japan. J. Vet. 
Med. Sci. 2012, 74, 1665–1668. 

46. Zhao, C.; Ma, Z.; Harrison, T.J.; Feng, R.; Zhang, C.; Qiao, Z.; Fan, J.; Ma, H.; Li, M.; Song, A.; et al. A novel 
genotype of hepatitis E virus prevalent among farmed rabbits in China. J. Med. Virol. 2009, 81, 1371–1379. 

47. Cossaboom, C.M.; Cordoba, L.; Dryman, B.A.; Meng, X.J. Hepatitis E virus in rabbits, Virginia, USA. Emerg. 
Infect. Dis. 2011, 17, 2047–2049. 

48. Wang, L.; Liu, L.; Wang, L. An overview: Rabbit hepatitis E virus (HEV) and rabbit providing an animal 
model for HEV study. Rev. Med. Virol. 2018, 28, e1961. 

49. Woo, P.C.Y.; Lau, S.K.P.; Teng, J.L.L.; Tsang, A.K.L.; Joseph, M.; Wong, E.Y.M.; Tang, Y.; Sivakumar, S.; 
Xie, J.; Bai, R.; et al. New hepatitis E virus genotype in camels, the Middle East. Emerg. Infect. Dis. 2014, 20, 
1044–1048. 

50. Spahr, C.; Knauf-Witzens, T.; Vahlenkamp, T.; Ulrich, R.G.; Johne, R. Hepatitis E virus and related viruses 
in wild, domestic and zoo animals: A review. Zoonoses Public Health 2018, 65, 11–29. 

51. Geng, Y.; Zhao, C.; Huang, W.; Wang, X.; Xu, Y.; Wu, D.; Du, Y.; Liu, H.; Wang, Y. Hepatitis E virus was 
not detected in feces and milk of cows in Hebei province of China: No evidence for HEV prevalence in 
cows. Int. J. Food Microbiol. 2019, 291, 5–9. 

52. Baechlein, C.; Becher, P. No evidence for zoonotic hepatitis E virus infection through dairy milk in 
Germany. Hepatology 2017, 65, 394–395. 

53. Vercouter, A.S.; Sayed, I.M.; Lipkens, Z.; De Bleecker, K.; De Vliegher, S.; Colman, R.; Koppelman, M.; 
Supre, K.; Meuleman, P. Absence of zoonotic hepatitis E virus infection in Flemish dairy cows. Int. J. Food 
Microbiol. 2018, 281, 54–59. 

54. Yugo, D.M.; Cossaboom, C.M.; Heffron, C.L.; Huang, Y.W.; Kenney, S.P.; Woolums, A.R.; Hurley, D.J.; 
Opriessnig, T.; Li, L.; Delwart, E.; et al. Evidence for an unknown agent antigenically related to the hepatitis 
E virus in dairy cows in the United States. J. Med. Virol. 2019, 91, 677–686. 

55. Sanford, B.J.; Emerson, S.U.; Purcell, R.H.; Engle, R.E.; Dryman, B.A.; Cecere, T.E.; Buechner-Maxwell, V.; 
Sponenberg, D.P.; Meng, X.J. Serological evidence for a hepatitis E virus (HEV)-related agent in goats in 
the United States. Transbound. Emerg. Dis. 2013, 60, 538–545. 



Viruses 2019, 11, 456 20 of 27 

 

56. Izopet, J.; Dubois, M.; Bertagnoli, S.; Lhomme, S.; Marchandeau, S.; Boucher, S.; Kamar, N.; Abravanel, F.; 
Guerin, J.L. Hepatitis E virus strains in rabbits and evidence of a closely related strain in humans, France. 
Emerg. Infect. Dis. 2012, 18, 1274–1281. 

57. Takahashi, K.; Terada, S.; Kokuryu, H.; Arai, M.; Mishiro, S. A wild boar-derived hepatitis E virus isolate 
presumably representing so far unidentified "genotype 5". Kanzo 2010, 51, 536–538. 

58. Takahashi, M.; Nishizawa, T.; Sato, H.; Sato, Y.; Jirintai; Nagashima, S.; Okamoto, H. Analysis of the full-
length genome of a hepatitis E virus isolate obtained from a wild boar in Japan that is classifiable into a 
novel genotype. J. Gen. Virol. 2011, 92, 902–908. 

59. Rasche, A.; Saqib, M.; Liljander, A.M.; Bornstein, S.; Zohaib, A.; Renneker, S.; Steinhagen, K.; Wernery, R.; 
Younan, M.; Gluecks, I.; et al. Hepatitis E virus infection in dromedaries, North and East Africa, United 
Arab Emirates, and Pakistan, 1983–2015. Emerg. Infect. Dis. 2016, 22, 1249–1252. 

60. Lee, G.H.; Tan, B.H.; Teo, E.C.Y.; Lim, S.G.; Dan, Y.Y.; Wee, A.; Aw, P.P.K.; Zhu, Y.; Hibberd, M.L.; Tan, 
C.K.; et al. Chronic infection with camelid hepatitis E virus in a liver transplant recipient who regularly 
consumes camel meat and milk. Gastroenterology 2016, 150, 355–357. 

61. Li, T.C.; Bai, H.; Yoshizaki, S.; Ami, Y.; Suzaki, Y.; Doan, Y.H.; Takahashi, K.; Mishiro, S.; Takeda, N.; 
Wakita, T. Genotype 5 hepatitis E virus produced by a reverse genetics system has the potential for zoonotic 
infection. Hepatol. Commun. 2019, 3, 160–172. 

62. Li, T.C.; Zhou, X.; Yoshizaki, S.; Ami, Y.; Suzaki, Y.; Nakamura, T.; Takeda, N.; Wakita, T. Production of 
infectious dromedary camel hepatitis E virus by a reverse genetic system: Potential for zoonotic infection. 
J. Hepatol. 2016, 65, 1104–1111. 

63. Wang, L.; Teng, J.L.L.; Lau, S.K.P.; Sridhar, S.; Fu, H.; Gong, W.; Li, M.; Xu, Q.; He, Y.; Zhuang, H.; et al. 
Transmission of a novel genotype of hepatitis E virus from Bactrian camels to cynomolgus macaques. J. 
Virol. 2019, 93, e02014-18. 

64. Smith, D.B.; Simmonds, P.; Izopet, J.; Oliveira-Filho, E.F.; Ulrich, R.G.; Johne, R.; Koenig, M.; Jameel, S.; 
Harrison, T.J.; Meng, X.J.; et al. Proposed reference sequences for hepatitis E virus subtypes. J. Gen. Virol. 
2016, 97, 537–542. 

65. Nishizawa, T.; Primadharsini, P.P.; Namikawa, M.; Yamazaki, Y.; Uraki, S.; Okano, H.; Horiike, S.; Nakano, 
T.; Takaki, S.; Kawakami, M.; et al. Full-length genomic sequences of new subtype 1g hepatitis E virus 
strains obtained from four patients with imported or autochthonous acute hepatitis E in Japan. Infect. Genet. 
Evol. 2017, 55, 343–349. 

66. Okamoto, H. Genetic variability and evolution of hepatitis E virus. Virus Res. 2007, 127, 216–228. 
67. Miura, M.; Inoue, J.; Tsuruoka, M.; Nishizawa, T.; Nagashima, S.; Takahashi, M.; Shimosegawa, T.; 

Okamoto, H. Full-length genomic sequence analysis of new subtype 3k hepatitis E virus isolates with 
99.97% nucleotide identity obtained from two consecutive acute hepatitis patients in a city in northeast 
Japan. J. Med. Virol. 2017, 89, 1116–1120. 

68. Wang, B.; Harms, D.; Hofmann, J.; Ciardo, D.; Kneubuhl, A.; Bock, C.T. Identification of a novel hepatitis 
E virus genotype 3 strain isolated from a chronic hepatitis E virus infection in a kidney transplant recipient 
in Switzerland. Genome Announc. 2017, 5, e00345-17. 

69. De Sabato, L.; Lemey, P.; Vrancken, B.; Bonfanti, L.; Ceglie, L.; Vaccari, G.; Di Bartolo, I. Proposal for a new 
subtype of the zoonotic genotype 3 hepatitis E virus: HEV-3l. Virus Res. 2018, 248, 1–4. 

70. Payne, C.J.; Ellis, T.M.; Plant, S.L.; Gregory, A.R.; Wilcox, G.E. Sequence data suggests big liver and spleen 
disease virus (BLSV) is genetically related to hepatitis E virus. Vet. Microbiol. 1999, 68, 119–125. 

71. Haqshenas, G.; Shivaprasad, H.L.; Woolcock, P.R.; Read, D.H.; Meng, X.J. Genetic identification and 
characterization of a novel virus related to human hepatitis E virus from chickens with hepatitis-
splenomegaly syndrome in the United States. J. Gen. Virol. 2001, 82, 2449–2462. 

72. Bilic, I.; Jaskulska, B.; Basic, A.; Morrow, C.J.; Hess, M. Sequence analysis and comparison of avian hepatitis 
E viruses from Australia and Europe indicate the existence of different genotypes. J. Gen. Virol. 2009, 90, 
863–873. 

73. Banyai, K.; Toth, A.G.; Ivanics, E.; Glavits, R.; Szentpali-Gavaller, K.; Dan, A. Putative novel genotype of 
avian hepatitis E virus, Hungary, 2010. Emerg. Infect. Dis. 2012, 18, 1365–1368. 

74. Zhao, Q.; Zhou, E.M.; Dong, S.W.; Qiu, H.K.; Zhang, L.; Hu, S.B.; Zhao, F.F.; Jiang, S.J.; Sun, Y.N. Analysis 
of avian hepatitis E virus from chickens, China. Emerg. Infect. Dis. 2010, 16, 1469–1472. 

75. Kwon, H.M.; Sung, H.W.; Meng, X.J. Serological prevalence, genetic identification, and characterization of 
the first strains of avian hepatitis E virus from chickens in Korea. Virus Genes 2012, 45, 237–245. 



Viruses 2019, 11, 456 21 of 27 

 

76. Hsu, I.W.Y.; Tsai, H.J. Avian hepatitis E virus in chickens, Taiwan, 2013. Emerg. Infect. Dis. 2014, 20, 149–
151. 

77. Matczuk, A.K.; Cwiek, K.; Wieliczko, A. Avian hepatitis E virus is widespread among chickens in Poland 
and belongs to genotype 2. Arch. Virol. 2019, 164, 595–599. 

78. Wang, B.; Li, W.; Zhou, J.H.; Li, B.; Zhang, W.; Yang, W.H.; Pan, H.; Wang, L.X.; Bock, C.T.; Shi, Z.L.; et al. 
Chevrier's field mouse (Apodemus chevrieri) and Pere David's vole (Eothenomys melanogaster) in China carry 
Orthohepeviruses that form two putative novel genotypes within the species Orthohepevirus C. Virol. Sin. 
2018, 33, 44–58. 

79. Johne, R.; Heckel, G.; Plenge-Bonig, A.; Kindler, E.; Maresch, C.; Reetz, J.; Schielke, A.; Ulrich, R.G. Novel 
hepatitis E virus genotype in Norway rats, Germany. Emerg. Infect. Dis. 2010, 16, 1452–1455. 

80. Purcell, R.H.; Engle, R.E.; Rood, M.P.; Kabrane-Lazizi, Y.; Nguyen, H.T.; Govindarajan, S.; St Claire, M.; 
Emerson, S.U. Hepatitis E virus in rats, Los Angeles, California, USA. Emerg. Infect. Dis. 2011, 17, 2216–
2222. 

81. Lack, J.B.; Volk, K.; Van Den Bussche, R.A. Hepatitis E virus genotype 3 in wild rats, United States. Emerg. 
Infect. Dis. 2012, 18, 1268–1273. 

82. Johne, R.; Dremsek, P.; Kindler, E.; Schielke, A.; Plenge-Bonig, A.; Gregersen, H.; Wessels, U.; Schmidt, K.; 
Rietschel, W.; Groschup, M.H.; et al. Rat hepatitis E virus: Geographical clustering within Germany and 
serological detection in wild Norway rats (Rattus norvegicus). Infect. Genet. Evol. 2012, 12, 947–956. 

83. Mulyanto; Depamede, S.N.; Sriasih, M.; Takahashi, M.; Nagashima, S.; Jirintai, S.; Nishizawa, T.; Okamoto, 
H. Frequent detection and characterization of hepatitis E virus variants in wild rats (Rattus rattus) in 
Indonesia. Arch. Virol. 2013, 158, 87–96. 

84. Mulyanto; Suparyatmo, J.B.; Andayani, I.G.; Khalid; Takahashi, M.; Ohnishi, H.; Jirintai, S.; Nagashima, S.; 
Nishizawa, T.; Okamoto, H. Marked genomic heterogeneity of rat hepatitis E virus strains in Indonesia 
demonstrated on a full-length genome analysis. Virus Res. 2014, 179, 102–112. 

85. Li, T.C.; Ami, Y.; Suzaki, Y.; Yasuda, S.P.; Yoshimatsu, K.; Arikawa, J.; Takeda, N.; Takaji, W. 
Characterization of full genome of rat hepatitis E virus strain from Vietnam. Emerg. Infect. Dis. 2013, 19, 
115–118. 

86. Ryll, R.; Bernstein, S.; Heuser, E.; Schlegel, M.; Dremsek, P.; Zumpe, M.; Wolf, S.; Pepin, M.; Bajomi, D.; 
Muller, G.; et al. Detection of rat hepatitis E virus in wild Norway rats (Rattus norvegicus) and Black rats 
(Rattus rattus) from 11 European countries. Vet. Microbiol. 2017, 208, 58–68. 

87. Primadharsini, P.P.; Mulyanto; Wibawa, I.D.N.; Anggoro, J.; Nishizawa, T.; Takahashi, M.; Jirintai, S.; 
Okamoto, H. The identification and characterization of novel rat hepatitis E virus strains in Bali and 
Sumbawa, Indonesia. Arch. Virol. 2018, 163, 1345–1349. 

88. Raj, V.S.; Smits, S.L.; Pas, S.D.; Provacia, L.B.V.; Moorman-Roest, H.; Osterhaus, A.D.M.E.; Haagmans, B.L. 
Novel hepatitis E virus in ferrets, the Netherlands. Emerg. Infect. Dis. 2012, 18, 1369–1370. 

89. Li, T.C.; Yonemitsu, K.; Terada, Y.; Takeda, N.; Takaji, W.; Maeda, K. Ferret hepatitis E virus infection in 
Japan. Jpn. J. Infect. Dis. 2015, 68, 60–62. 

90. Wu, Z.; Lu, L.; Du, J.; Yang, L.; Ren, X.; Liu, B.; Jiang, J.; Yang, J.; Dong, J.; Sun, L.; et al. Comparative analysis 
of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious 
diseases. Microbiome 2018, 6, 178. 

91. de Souza, W.M.; Romeiro, M.F.; Sabino-Santos, G. Jr.; Maia, F.G.M,; Fumagalli, M.J.; Modha, S.; Nunes, 
M.R.T.; Murcia, P.R.; Figueiredo, L.T.M. Novel orthohepeviruses in wild rodents from São Paulo State, 
Brazil. Virology 2018, 519, 12–16. 

92. Reuter, G.; Boros, A.; Matics, R.; Kapusinszky, B.; Delwart, E.; Pankovics, P. Divergent hepatitis E virus in 
birds of prey, common kestrel (Falco tinnunculus) and red-footed falcon (F. vespertinus), Hungary. Infect. 
Genet. Evol. 2016, 43, 343–346. 

93. Dremsek, P.; Wenzel, J.J.; Johne, R.; Ziller, M.; Hofmann, J.; Groschup, M.H.; Werdermann, S.; Mohn, U.; 
Dorn, S.; Motz, M.; et al. Seroprevalence study in forestry workers from eastern Germany using novel 
genotype 3- and rat hepatitis E virus-specific immunoglobulin G ELISAs. Med. Microbiol. Immunol. 2012, 
201, 189–200. 

94. Shimizu, K.; Hamaguchi, S.; Ngo, C.C.; Li, T.C.; Ando, S.; Yoshimatsu, K.; Yasuda, S.P.; Koma, T.; Isozumi, 
R.; Tsuda, Y.; et al. Serological evidence of infection with rodent-borne hepatitis E virus HEV-C1 or 
antigenically related virus in humans. J. Vet. Med. Sci. 2016, 78, 1677–1681. 



Viruses 2019, 11, 456 22 of 27 

 

95. Sridhar, S.; Yip, C.C.Y.; Wu, S.; Cai, J.; Zhang, A.J.; Leung, K.H.; Chung, T.W.H.; Chan, J.F.W.; Chan, W.M.; 
Teng, J.L.L.; et al. Rat hepatitis E virus as cause of persistent hepatitis after liver transplant. Emerg. Infect. 
Dis. 2018, 24, 2241–2250. 

96. Andonov, A.; Robbins, M.; Borlang, J.; Cao, J.; Hattchete, T.; Stueck, A.; Deschaumbault, Y.; Murnaghan, 
K.; Varga, J.; Johnston, B. Rat hepatitis E virus linked to severe acute hepatitis in an immunocompetent 
patient. J. Infect. Dis. 2019, doi: 10.1093/infdis/jiz025 [Epub ahead of print]. 

97. Drexler, J.F.; Seelen, A.; Corman, V.M.; Tateno, A.F.; Cottontail, V.; Melim Zerbinati, R.; Gloza-Rausch, F.; 
Klose, S.M.; Adu-Sarkodie, Y.; Oppong, S.K.; et al. Bats worldwide carry hepatitis E virus-related viruses 
that form a putative novel genus within the family Hepeviridae. J. Virol. 2012, 86, 9134–9147. 

98. Wu, Z.; Yang, L.; Ren, X.; He, G.; Zhang, J.; Yang, J.; Qian, Z.; Dong, J.; Sun, L.; Zhu, Y.; et al. Deciphering 
the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of 
emerging infectious diseases. ISME J. 2016, 10, 609–620. 

99. Lin, J.; Norder, H.; Uhlhorn, H.; Belak, S.; Widen, F. Novel hepatitis E like virus found in Swedish moose. 
J. Gen. Virol. 2014, 95, 557–570. 

100. Lin, J.; Karlsson, M.; Olofson, A.S.; Belak, S.; Malmsten, J.; Dalin, A.M.; Widen, F.; Norder, H. High 
prevalence of hepatitis E virus in Swedish moose--a phylogenetic characterization and comparison of the 
virus from different regions. PLoS ONE 2015, 10, e0122102. 

101. Bodewes, R.; van der Giessen, J.; Haagmans, B.L.; Osterhaus, A.D.M.E.; Smits, S.L. Identification of multiple 
novel viruses, including a parvovirus and a hepevirus, in feces of red foxes. J. Virol. 2013, 87, 7758–7764. 

102. Reuter, G.; Boros, A.; Matics, R.; Kapusinszky, B.; Delwart, E.; Pankovics, P. A novel avian-like hepatitis E 
virus in wild aquatic bird, little egret (Egretta garzetta), in Hungary. Infect. Genet. Evol. 2016, 46, 74–77. 

103. Yang, C.; Wang, L.; Shen, H.; Zheng, Y.; Gauger, P.C.; Chen, Q.; Zhang, J.; Yoon, K.J.; Harmon, K.M.; Main, 
R.G.; et al. Detection and genomic characterization of new avian-like hepatitis virus in a sparrow in the 
United States. Arch. Virol. 2018, 163, 2861–2864. 

104. Reuter, G.; Boros, A.; Toth, Z.; Kapusinszky, B.; Delwart, E.; Pankovics, P. Detection of a novel RNA virus 
with hepatitis E virus-like non-structural genome organization in amphibian, agile frog (Rana dalmatina) 
tadpoles. Infect. Genet. Evol. 2018, 65, 112–116. 

105. Kabrane-Lazizi, Y.; Meng, X.J.; Purcell, R.H.; Emerson, S.U. Evidence that the genomic RNA of hepatitis E 
virus is capped. J. Virol. 1999, 73, 8848–8850. 

106. Koonin, E.V.; Gorbalenya, A.E.; Purdy, M.A.; Rozanov, M.N.; Reyes, G.R.; Bradley, D.W. Computer-
assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: Delineation 
of an additional group of positive-strand RNA plant and animal viruses. Proc. Natl. Acad. Sci. USA 1992, 
89, 8259–8263. 

107. Nan, Y.; Zhang, Y.J. Molecular biology and infection of hepatitis E virus. Front. Microbiol. 2016, 7, 1419. 
108. Sridhar, S.; Teng, J.L.L.; Chiu, T.H.; Lau, S.K.P.; Woo, P.C.Y. Hepatitis E virus genotypes and evolution: 

Emergence of camel hepatitis E variants. Int. J. Mol. Sci. 2017, 18, 869. 
109. Reyes, G.R.; Huang, C.C.; Tam, A.W.; Purdy, M.A. Molecular organization and replication of hepatitis E 

virus (HEV). Arch. Virol. Suppl. 1993, 7, 15–25. 
110. Kalia, M.; Chandra, V.; Rahman, S.A.; Sehgal, D.; Jameel, S. Heparan sulfate proteoglycans are required for 

cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection. J. Virol. 2009, 83, 12714–
12724. 

111. Xing, L.; Wang, J.C.; Li, T.C.; Yasutomi, Y.; Lara, J.; Khudyakov, Y.; Schofield, D.; Emerson, S.U.; Purcell, 
R.H.; Takeda, N.; et al. Spatial configuration of hepatitis E virus antigenic domain. J. Virol. 2011, 85, 1117–
1124. 

112. Yamada, K.; Takahashi, M.; Hoshino, Y.; Takahashi, H.; Ichiyama, K.; Nagashima, S.; Tanaka, T.; Okamoto, 
H. ORF3 protein of hepatitis E virus is essential for virion release from infected cells. J. Gen. Virol. 2009, 90, 
1880–1891. 

113. Emerson, S.U.; Nguyen, H.T.; Torian, U.; Burke, D.; Engle, R.; Purcell, R.H. Release of genotype 1 hepatitis 
E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein 
and requires an intact PXXP motif. J. Virol. 2010, 84, 9059–9069. 

114. Nagashima, S.; Takahashi, M.; Jirintai; Tanaka, T.; Yamada, K.; Nishizawa, T.; Okamoto, H. A PSAP motif 
in the ORF3 protein of hepatitis E virus is necessary for virion release from infected cells. J. Gen. Virol. 2011, 
92, 269–278. 



Viruses 2019, 11, 456 23 of 27 

 

115. Ding, Q.; Heller, B.; Capuccino, J.M.V.; Song, B.; Nimgaonkar, I.; Hrebikova, G.; Contreras, J.E.; Ploss, A. 
Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles. Proc. Natl. 
Acad. Sci. USA 2017, 114, 1147–1152. 

116. Gouttenoire, J.; Pollan, A.; Abrami, L.; Oechslin, N.; Mauron, J.; Matter, M.; Oppliger, J.; Szkolnicka, D.; 
Dao Thi, V.L.; van der Goot, F.G.; et al. Palmitoylation mediates membrane association of hepatitis E virus 
ORF3 protein and is required for infectious particle secretion. PLoS Pathog. 2018, 14, e1007471. 

117. Graff, J.; Torian, U.; Nguyen, H.; Emerson, S.U. A bicistronic subgenomic mRNA encodes both the ORF2 
and ORF3 proteins of hepatitis E virus. J. Virol. 2006, 80, 5919–5926. 

118. Ichiyama, K.; Yamada, K.; Tanaka, T.; Nagashima, S.; Jirintai; Takahashi, M.; Okamoto, H. Determination 
of the 5'-terminal sequence of subgenomic RNA of hepatitis E virus strains in cultured cells. Arch. Virol. 
2009, 154, 1945–1951. 

119. Batts, W.; Yun, S.; Hedrick, R.; Winton, J. A novel member of the family Hepeviridae from cutthroat trout 
(Oncorhynchus clarkii). Virus Res. 2011, 158, 116–123. 

120. Takahashi, M.; Hoshino, Y.; Tanaka, T.; Takahashi, H.; Nishizawa, T.; Okamoto, H. Production of 
monoclonal antibodies against hepatitis E virus capsid protein and evaluation of their neutralizing activity 
in a cell culture system. Arch. Virol. 2008, 153, 657–666. 

121. Takahashi, M.; Tanaka, T.; Takahashi, H.; Hoshino, Y.; Nagashima, S.; Jirintai; Mizuo, H.; Yazaki, Y.; 
Takagi, T.; Azuma, M.; et al. Hepatitis E Virus (HEV) strains in serum samples can replicate efficiently in 
cultured cells despite the coexistence of HEV antibodies: characterization of HEV virions in blood 
circulation. J. Clin. Microbiol. 2010, 48, 1112–1125. 

122. Nagashima, S.; Takahashi, M.; Kobayashi, T.; Tanggis; Nishizawa, T.; Nishiyama, T.; Primadharsini, P.P.; 
Okamoto, H. Characterization of the quasi-enveloped hepatitis E virus particles released by the cellular 
exosomal pathway. J. Virol. 2017, 91, e00822-17. 

123. Yin, X.; Ambardekar, C.; Lu, Y.; Feng, Z. Distinct entry mechanisms for nonenveloped and quasi-enveloped 
hepatitis E viruses. J. Virol. 2016, 90, 4232–4242. 

124. Nair, V.P.; Anang, S.; Subramani, C.; Madhvi, A.; Bakshi, K.; Srivastava, A.; Shalimar; Nayak, B.; Ranjith 
Kumar, C.T.; Surjit, M. Endoplasmic reticulum stress induced synthesis of a novel viral factor mediates 
efficient replication of genotype-1 hepatitis E virus. PLoS Pathog. 2016, 12, e1005521. 

125. Tanggis; Kobayashi, T.; Takahashi, M.; Jirintai, S.; Nishizawa, T.; Nagashima, S.; Nishiyama, T.; Kunita, S.; 
Hayama, E.; Tanaka, T.; et al. An analysis of two open reading frames (ORF3 and ORF4) of rat hepatitis E 
virus genome using its infectious cDNA clones with mutations in ORF3 or ORF4. Virus Res. 2018, 249, 16–
30. 

126. Tsatsralt-Od, B.; Baasanjav, N.; Nyamkhuu, D.; Ohnishi, H.; Takahashi, M.; Okamoto, H. Prevalence of 
hepatitis viruses in patients with acute hepatitis and characterization of the detected genotype 4 hepatitis 
E virus sequences in Mongolia. J. Med. Virol. 2016, 88, 282–291. 

127. Lapa, D.; Capobianchi, M.R.; Garbuglia, A.R. Epidemiology of hepatitis E virus in European countries. Int. 
J. Mol. Sci. 2015, 16, 25711–25743. 

128. Takahashi, M.; Nishizawa, T.; Yoshikawa, A.; Sato, S.; Isoda, N.; Ido, K.; Sugano, K.; Okamoto, H. 
Identification of two distinct genotypes of hepatitis E virus in a Japanese patient with acute hepatitis who 
had not travelled abroad. J. Gen. Virol. 2002, 83, 1931–1940. 

129. Takahashi, K.; Kang, J.H.; Ohnishi, S.; Hino, K.; Mishiro, S. Genetic heterogeneity of hepatitis E virus 
recovered from Japanese patients with acute sporadic hepatitis. J. Infect. Dis. 2002, 185, 1342–1345. 

130. Okamoto, H.; Takahashi, M.; Nishizawa, T. Features of hepatitis E virus infection in Japan. Intern. Med. 
2003, 42, 1065–1071. 

131. Takahashi, M.; Nishizawa, T.; Miyajima, H.; Gotanda, Y.; Iita, T.; Tsuda, F.; Okamoto, H. Swine hepatitis E 
virus strains in Japan form four phylogenetic clusters comparable with those of Japanese isolates of human 
hepatitis E virus. J. Gen. Virol. 2003, 84, 851–862. 

132. Takahashi, K.; Kang, J.H.; Ohnishi, S.; Hino, K.; Miyakawa, H.; Miyakawa, Y.; Maekubo, H.; Mishiro, S. 
Full-length sequences of six hepatitis E virus isolates of genotypes III and IV from patients with sporadic 
acute or fulminant hepatitis in Japan. Intervirology 2003, 46, 308–318. 

133. Takahashi, K.; Okada, K.; Kang, J.H.; Karino, Y.; Ichida, T.; Matsuda, H.; Ohnishi, S.; Toyota, J.; Yamagiwa, 
S.; Maekubo, H.; et al. A lineage of hepatitis E virus within genotype IV, associated with severe forms of 
hepatitis. Kanzo 2005, 46, 389–390. 



Viruses 2019, 11, 456 24 of 27 

 

134. Urayama, T.; Sapsutthipas, S.; Tsujikawa, M.; Yamashita, A.; Nishigaki, H.; Ibrahim, M.S.; Hagiwara, K.; 
Yunoki, M.; Yasunaga, T.; Yamaguchi, T.; et al. Full-length sequences of one genotype 4 and three genotype 
3 hepatitis E viruses in fecal samples from domestic swine in Japan. Open Vet. Sci. J. 2010, 4, 11–19. 

135. Sato, Y.; Sato, H.; Naka, K.; Furuya, S.; Tsukiji, H.; Kitagawa, K.; Sonoda, Y.; Usui, T.; Sakamoto, H.; 
Yoshino, S.; et al. A nationwide survey of hepatitis E virus (HEV) infection in wild boars in Japan: 
Identification of boar HEV strains of genotypes 3 and 4 and unrecognized genotypes. Arch. Virol. 2011, 156, 
1345–1358. 

136. Takahashi, M.; Okamoto, H. Features of hepatitis E virus infection in humans and animals in Japan. Hepatol. 
Res. 2014, 44, 43–58. 

137. Hara, Y.; Terada, Y.; Yonemitsu, K.; Shimoda, H.; Noguchi, K.; Suzuki, K.; Maeda, K. High prevalence of 
hepatitis E virus in wild boar (Sus scrofa) in Yamaguchi Prefecture, Japan. J. Wildl. Dis. 2014, 50, 378–383. 

138. Motoya, T.; Nagata, N.; Komori, H.; Doi, I.; Kurosawa, M.; Keta, T.; Sasaki, N.; Ishii, K. The high prevalence 
of hepatitis E virus infection in wild boars in Ibaraki Prefecture, Japan. J. Vet. Med. Sci. 2016, 77, 1705–1709. 

139. Sasaki, Y.; Haruna, M.; Uema, M.; Noda, M.; Yamada, Y. Prevalence and phylogenetic analysis of hepatitis 
E virus among pigs in Japan. Jpn. J. Infect. Dis. 2018, 71, 75–78. 

140. Zehender, G.; Ebranati, E.; Lai, A.; Luzzago, C.; Paladini, S.; Tagliacarne, C.; Galli, C.; Galli, M.; Ciccozzi, 
M.; Zanetti, A.R.; et al. Phylogeography and phylodynamics of European genotype 3 hepatitis E virus. 
Infect. Genet. Evol. 2014, 25, 138–143. 

141. Pavio, N.; Meng, X.J.; Renou, C. Zoonotic hepatitis E: Animal reservoirs and emerging risks. Vet. Res. 2010, 
41, 46. 

142. Bouwknegt, M.; Frankena, K.; Rutjes, S.A.; Wellenberg, G.J.; de Roda Husman, A.M.; van der Poel, W.H.; 
de Jong, M.C.M. Estimation of hepatitis E virus transmission among pigs due to contact-exposure. Vet. Res. 
2008, 39, 40. 

143. Primadharsini, P.P.; Miyake, M.; Kunita, S.; Nishizawa, T.; Takahashi, M.; Nagashima, S.; Tanggis; Ohnishi, 
H.; Kobayashi, T.; Nishiyama, T.; et al. Full-length genome of a novel genotype 3 hepatitis E virus strain 
obtained from domestic pigs in Japan. Virus Res. 2017, 240, 147–153. 

144. Nakano, T.; Takahashi, M.; Takahashi, K.; Nagashima, S.; Suzuki, Y.; Nishigaki, Y.; Tomita, E.; Okano, H.; 
Oya, Y.; Shiraki, K.; et al. Hepatitis E virus subtype 3f strains isolated from Japanese hepatitis patients with 
no history of travel to endemic areas - The origin analyzed by molecular evolution. Virology 2018, 513, 146–
152. 

145. Ren, X.; Wu, P.; Wang, L.; Geng, M.; Zeng, L.; Zhang, J.; Xia, N.; Lai, S.; Dalton, H.R.; Cowling, B.J.; et al. 
Changing epidemiology of hepatitis A and hepatitis E viruses in China, 1990–2014. Emerg. Infect. Dis. 2017, 
23, 276–279. 

146. Tsatsralt-Od, B.; Primadharsini, P.P.; Nishizawa, T.; Ohnishi, H.; Nagashima, S.; Takahashi, M.; Jirintai, S.; 
Nyamkhuu, D.; Okamoto, H. Distinct changing profiles of hepatitis A and E virus infection among patients 
with acute hepatitis in Mongolia: The first report of the full genome sequence of a novel genotype 1 
hepatitis E virus strain. J. Med. Virol. 2018, 90, 84–92. 

147. Intharasongkroh, D.; Thongmee, T.; Sa-Nguanmoo, P.; Klinfueng, S.; Duang-In, A.; Wasitthankasem, R.; 
Theamboonlers, A.; Charoonruangrit, U.; Oota, S.; Payungporn, S.; et al. Hepatitis E virus infection in Thai 
blood donors. Transfusion 2019, 59, 1035–1043. 

148. Nouhin, J.; Prak, S.; Madec, Y.; Barennes, H.; Weissel, R.; Hok, K.; Pavio, N.; Rouet, F. Hepatitis E virus 
antibody prevalence, RNA frequency, and genotype among blood donors in Cambodia (Southeast Asia). 
Transfusion 2016, 56, 2597–2601. 

149. Nouhin, J.; Madec, Y.; Prak, S.; Ork, M.; Kerleguer, A.; Froehlich, Y.; Pavio, N.; Rouet, F. Declining hepatitis 
E virus antibody prevalence in Phnom Penh, Cambodia during 1996–2017. Epidemiol. Infect. 2019, 147, e26. 

150. Teo, E.C.Y.; Tan, B.H.; Purdy, M.A.; Wong, P.S.; Ting, P.J.; Chang, P.E.J.; Oon, L.L.E.; Sue, A.; Teo, C.G.; 
Tan, C.K. Hepatitis E in Singapore: A case-series and viral phylodynamics study. Am. J. Trop. Med. Hyg. 
2017, 96, 922–928. 

151. Tan, L.T.; Tan, J.; Ang, L.W.; Chan, K.P.; Chiew, K.T.; Cutter, J.; Chew, S.K.; Goh, K.T. Epidemiology of 
acute hepatitis E in Singapore. J. Infect. 2013, 66, 453–459. 

152. Zhu, Y.O.; Aw, P.; Aung, M.M.; Lee, H.K.; Hibberd, M.; Lee, G.H. Patterns of mutation within an emerging 
endemic lineage of HEV-3a. J. Viral. Hepat. 2019, 26, 191–198. 



Viruses 2019, 11, 456 25 of 27 

 

153. Yamada, H.; Takahashi, K.; Lim, O.; Svay, S.; Chuon, C.; Hok, S.; Do, S.H.; Fujimoto, M.; Akita, T.; Goto, 
N.; et al. Hepatitis E virus in Cambodia: Prevalence among the general population and complete genome 
sequence of genotype 4. PLoS ONE 2015, 10, e0136903. 

154. Hudu, S.A.; Niazlin, M.T.; Nordin, S.A.; Harmal, N.S.; Tan, S.S.; Omar, H.; Shahar, H.; Mutalib, N.A.; 
Sekawi, Z. Hepatitis E virus isolated from chronic hepatitis B patients in Malaysia: Sequences analysis and 
genetic diversity suggest zoonotic origin. Alexandria J. Med. 2018, 54, 487–494. 

155. Bouamra, Y.; Gerolami, R.; Arzouni, J.P.; Grimaud, J.C.; Lafforgue, P.; Nelli, M.; Tivoli, N.; Ferretti, A.; 
Motte, A.; Colson, P. Emergence of autochthonous infections with hepatitis E virus of genotype 4 in Europe. 
Intervirology 2014, 57, 43–48. 

156. Wichmann, O.; Schimanski, S.; Koch, J.; Kohler, M.; Rothe, C.; Plentz, A.; Jilg, W.; Stark, K. Phylogenetic 
and case-control study on hepatitis E virus infection in Germany. J. Infect. Dis. 2008, 198, 1732–1741. 

157. Hakze-van der Honing, R.W.; van Coillie, E.; Antonis, A.F.; van der Poel, W.H. First isolation of hepatitis 
E virus genotype 4 in Europe through swine surveillance in the Netherlands and Belgium. PLoS ONE 2011, 
6, e22673. 

158. Tesse, S.; Lioure, B.; Fornecker, L.; Wendling, M.J.; Stoll-Keller, F.; Bigaillon, C.; Nicand, E. Circulation of 
genotype 4 hepatitis E virus in Europe: First autochthonous hepatitis E infection in France. J. Clin. Virol. 
2012, 54, 197–200. 

159. Colson, P.; Romanet, P.; Moal, V.; Borentain, P.; Purgus, R.; Benezech, A.; Motte, A.; Gerolami, R. 
Autochthonous infections with hepatitis E virus genotype 4, France. Emerg. Infect. Dis. 2012, 18, 1361–1364. 

160. Jeblaoui, A.; Haim-Boukobza, S.; Marchadier, E.; Mokhtari, C.; Roque-Afonso, A.M. Genotype 4 hepatitis 
E virus in France: An autochthonous infection with a more severe presentation. Clin. Infect. Dis. 2013, 57, 
e122–e126. 

161. Colson, P.; Brunet, P.; Lano, G.; Moal, V. Hepatitis E virus genotype 4 in Southeastern France: Still around. 
Liver Int. 2016, 36, 765–767. 

162. Garbuglia, A.R.; Scognamiglio, P.; Petrosillo, N.; Mastroianni, C.M.; Sordillo, P.; Gentile, D.; La Scala, P.; 
Girardi, E.; Capobianchi, M.R. Hepatitis E virus genotype 4 outbreak, Italy, 2011. Emerg. Infect. Dis. 2013, 
19, 110–114. 

163. Midgley, S.; Vestergaard, H.T.; Dalgaard, C.; Enggaard, L.; Fischer, T.K. Hepatitis E virus genotype 4, 
Denmark, 2012. Emerg. Infect. Dis. 2014, 20, 156–157. 

164. Mikhailov, M.L.; Malinnikova, E.Y.; Kyuregyan, K.K.; Isaeva, O.V. A case of import of genotype 4 hepatitis 
E virus into Russia. Zh. Mikrobiol. Epidemiol. Immunobiol. 2016, 3, 64–69. 

165. Rolfe, K.J.; Curran, M.D.; Mangrolia, N.; Gelson, W.; Alexander, G.J.; L'Estrange, M.; Vivek, R.; Tedder, R.; 
Ijaz, S. First case of genotype 4 human hepatitis E virus infection acquired in India. J. Clin. Virol. 2010, 48, 
58–61. 

166. Jin, H.; Zhao, Y.; Zhang, X.; Wang, B.; Liu, P. Case-fatality risk of pregnant women with acute viral hepatitis 
type E: A systematic review and meta-analysis. Epidemiol. Infect. 2016, 144, 2098–2106. 

167. Tabatabai, J.; Wenzel, J.J.; Soboletzki, M.; Flux, C.; Navid, M.H.; Schnitzler, P. First case report of an acute 
hepatitis E subgenotype 3c infection during pregnancy in Germany. J. Clin. Virol. 2014, 61, 170–172. 

168. Anty, R.; Ollier, L.; Peron, J.M.; Nicand, E.; Cannavo, I.; Bongain, A.; Giordanengo, V.; Tran, A. First case 
report of an acute genotype 3 hepatitis E infected pregnant woman living in South-Eastern France. J. Clin. 
Virol. 2012, 54, 76–78. 

169. Charre, C.; Ramiere, C.; Dumortier, J.; Abravanel, F.; Lhomme, S.; Gincul, R.; Scholtes, C. Chronic genotype 
3 hepatitis E in pregnant woman receiving infliximab and azathioprine. Emerg. Infect. Dis. 2018, 24, 941–
943. 

170. Aikawa, T.; Yamagata, K.; Miyamoto, K.; Tsuda, F.; Takahashi, M.; Okamoto, H. A first case of pregnant 
woman who contracted infection of indigenous genotype 3 hepatitis E virus in Japan. Kanzo 2009, 50, 163–
165. 

171. Brayne, A.B.; Dearlove, B.L.; Lester, J.S.; Kosakovsky Pond, S.L.; Frost, S.D. Genotype-specific evolution of 
hepatitis E virus. J. Virol. 2017, 91, e02241-02216. 

172. Mizuo, H.; Yazaki, Y.; Sugawara, K.; Tsuda, F.; Takahashi, M.; Nishizawa, T.; Okamoto, H. Possible risk 
factors for the transmission of hepatitis E virus and for the severe form of hepatitis E acquired locally in 
Hokkaido, Japan. J. Med. Virol. 2005, 76, 341–349. 



Viruses 2019, 11, 456 26 of 27 

 

173. Ohnishi, S.; Kang, J.H.; Maekubo, H.; Arakawa, T.; Karino, Y.; Toyota, J.; Takahashi, K.; Mishiro, S. 
Comparison of clinical features of acute hepatitis caused by hepatitis E virus (HEV) genotypes 3 and 4 in 
Sapporo, Japan. Hepatol. Res. 2006, 36, 301–307. 

174. Geng, Y.; Zhang, H.; Huang, W.; Harrison, T.J.; Geng, K.; Li, Z.; Wang, Y. Persistent hepatitis E virus 
genotype 4 infection in a child with acute lymphoblastic leukemia. Hepat. Mon. 2014, 14, e15618. 

175. Perumpail, R.B.; Ahmed, A.; Higgins, J.P.; So, S.K.; Cochran, J.L.; Drobeniuc, J.; Mixson-Hayden, T.R.; Teo, 
C.G. Fatal accelerated cirrhosis after imported HEV genotype 4 infection. Emerg. Infect. Dis. 2015, 21, 1679–
1681. 

176. Sridhar, S.; Chan, J.F.W.; Yap, D.Y.H.; Teng, J.L.L.; Huang, C.; Yip, C.C.Y.; Hung, I.F.N.; Tang, S.C.W.; Lau, 
S.K.P.; Woo, P.C.Y.; et al. Genotype 4 hepatitis E virus is a cause of chronic hepatitis in renal transplant 
recipients in Hong Kong. J. Viral. Hepat. 2018, 25, 209–213. 

177. Wang, Y.; Chen, G.; Pan, Q.; Zhao, J. Chronic hepatitis E in a renal transplant recipient: The first report of 
genotype 4 hepatitis E virus caused chronic infection in organ recipient. Gastroenterology 2018, 154, 1199–
1201. 

178. Wu, C.H.; Ho, C.M.; Tsai, J.H.; Sun, H.Y.; Hu, R.H.; Lee, P.H. First case genotype 4 hepatitis E infection 
after a liver transplant. Exp. Clin. Transplant. 2017, 15, 228–230. 

179. Sridhar, S.; Cheng, V.C.C.; Wong, S.C.; Yip, C.C.Y.; Wu, S.; Lo, A.W.I.; Leung, K.H.; Mak, W.W.N.; Cai, J.; 
Li, X.; et al. Donor-derived genotype 4 hepatitis E virus infection, Hong Kong, China, 2018. Emerg. Infect. 
Dis. 2019, 25, 425–433. 

180. Kamar, N.; Garrouste, C.; Haagsma, E.B.; Garrigue, V.; Pischke, S.; Chauvet, C.; Dumortier, J.; Cannesson, 
A.; Cassuto-Viguier, E.; Thervet, E.; et al. Factors associated with chronic hepatitis in patients with hepatitis 
E virus infection who have received solid organ transplants. Gastroenterology 2011, 140, 1481–1489. 

181. Debing, Y.; Ramiere, C.; Dallmeier, K.; Piorkowski, G.; Trabaud, M.A.; Lebosse, F.; Scholtes, C.; Roche, M.; 
Legras-Lachuer, C.; de Lamballerie, X.; et al. Hepatitis E virus mutations associated with ribavirin 
treatment failure result in altered viral fitness and ribavirin sensitivity. J. Hepatol. 2016, 65, 499–508. 

182. Neukam, K.; Barreiro, P.; Macias, J.; Avellon, A.; Cifuentes, C.; Martin-Carbonero, L.; Echevarria, J.M.; 
Vargas, J.; Soriano, V.; Pineda, J.A. Chronic hepatitis E in HIV patients: Rapid progression to cirrhosis and 
response to oral ribavirin. Clin. Infect. Dis. 2013, 57, 465–468. 

183. Haffar, S.; Shalimar; Kaur, R.J.; Wang, Z.; Prokop, L.J.; Murad, M.H.; Bazerbachi, F. Acute liver failure 
caused by hepatitis E virus genotype 3 and 4: A systematic review and pooled analysis. Liver Int. 2018, 38, 
1965–1973. 

184. Lhomme, S.; Garrouste, C.; Kamar, N.; Saune, K.; Abravanel, F.; Mansuy, J.M.; Dubois, M.; Rostaing, L.; 
Izopet, J. Influence of polyproline region and macro domain genetic heterogeneity on HEV persistence in 
immunocompromised patients. J. Infect. Dis. 2014, 209, 300–303. 

185. Lorenzo, F.R.; Tanaka, T.; Takahashi, H.; Ichiyama, K.; Hoshino, Y.; Yamada, K.; Inoue, J.; Takahashi, M.; 
Okamoto, H. Mutational events during the primary propagation and consecutive passages of hepatitis E 
virus strain JE03–1760F in cell culture. Virus Res. 2008, 137, 86–96. 

186. Okamoto, H. Hepatitis E virus cell culture models. Virus Res. 2011, 161, 65–77. 
187. Nagashima, S.; Kobayashi, T.; Tanaka, T.; Tanggis; Jirintai, S.; Takahashi, M.; Nishizawa, T.; Okamoto, H. 

Analysis of adaptive mutations selected during the consecutive passages of hepatitis E virus produced 
from an infectious cDNA clone. Virus Res. 2016, 223, 170–180. 

188. Jansen, R.W.; Newbold, J.E.; Lemon, S.M. Complete nucleotide sequence of a cell culture-adapted variant 
of hepatitis A virus: Comparison with wild-type virus with restricted capacity for in vitro replication. 
Virology 1988, 163, 299–307. 

189. Meister, T.L.; Bruening, J.; Todt, D.; Steinmann, E. Cell culture systems for the study of hepatitis E virus. 
Antiviral Res. 2019, 163, 34–49. 

190. Lara, J.; Purdy, M.A.; Khudyakov, Y.E. Genetic host specificity of hepatitis E virus. Infect. Genet. Evol. 2014, 
24, 127–139. 

191. Takahashi, K.; Okamoto, H.; Abe, N.; Kawakami, M.; Matsuda, H.; Mochida, S.; Sakugawa, H.; Suginoshita, 
Y.; Watanabe, S.; Yamamoto, K.; et al. Virulent strain of hepatitis E virus genotype 3, Japan. Emerg. Infect. 
Dis. 2009, 15, 704–709. 

192. Borkakoti, J.; Ahmed, G.; Kar, P. Report of a novel C1483W mutation in the hepatitis E virus polymerase in 
patients with acute liver failure. Infect. Genet. Evol. 2016, 44, 51–54. 



Viruses 2019, 11, 456 27 of 27 

 

193. Pudupakam, R.S.; Huang, Y.W.; Opriessnig, T.; Halbur, P.G.; Pierson, F.W.; Meng, X.J. Deletions of 
hypervariable region (HVR) in open reading frame 1 of hepatitis E virus do not abolish virus infectivity: 
Evidence for attenuation of HVR deletion mutants in vivo. J. Virol. 2009, 83, 384–395. 

194. Chen, Z.; Zhou, X.; Lunney, J.K.; Lawson, S.; Sun, Z.; Brown, E.; Christopher-Hennings, J.; Knudsen, D.; 
Nelson, E.; Fang, Y. Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome 
virus are dispensable for replication, but play an important role in modulation of the host immune 
response. J. Gen. Virol. 2010, 91, 1047–1057. 

195. Eriksson, K.K.; Cervantes-Barragan, L.; Ludewig, B.; Thiel, V. Mouse hepatitis virus liver pathology is 
dependent on ADP-ribose-1”-phosphatase, a viral function conserved in the alpha-like supergroup. J. Virol. 
2008, 82, 12325–12334. 

196. Lhomme, S.; Abravanel, F.; Dubois, M.; Sandres-Saune, K.; Rostaing, L.; Kamar, N.; Izopet, J. Hepatitis E 
virus quasispecies and the outcome of acute hepatitis E in solid-organ transplant patients. J. Virol. 2012, 86, 
10006–10014. 

197. van Tong, H.; Hoan, N.X.; Wang, B.; Wedemeyer, H.; Bock, C.T.; Velavan, T.P. Hepatitis E virus mutations: 
Functional and clinical relevance. EBioMedicine 2016, 11, 31–42. 

198. Todt, D.; Walter, S.; Brown, R.J.; Steinmann, E. Mutagenic effects of ribavirin on hepatitis E virus-viral 
extinction versus selection of fitness-enhancing mutations. Viruses 2016, 8, 283. 

199. Todt, D.; Gisa, A.; Radonic, A.; Nitsche, A.; Behrendt, P.; Suneetha, P.V.; Pischke, S.; Bremer, B.; Brown, 
R.J.; Manns, M.P.; et al. In vivo evidence for ribavirin-induced mutagenesis of the hepatitis E virus genome. 
Gut 2016, 65, 1733–1743. 

200. Brayne, A.B.; Dearlove, B.L.; Lester, J.S.; Kosakovsky Pond, S.L.; Frost, S.D.W. Genotype-specific evolution 
of hepatitis E virus. J. Virol. 2017, 91, e02241-16. 

201. Purdy, M.A.; Khudyakov, Y.E. Evolutionary history and population dynamics of hepatitis E virus. PLoS 
ONE 2010, 5, e14376. 

202. Fenaux, H.; Chassaing, M.; Berger, S.; Gantzer, C.; Bertrand, I.; Schvoere, E. Transmission of hepatitis E 
virus by water: An issue still pending in industrialized countries. Water Res. 2019, 151, 144–157. 

203. Mirazo, S.; Mir, D.; Bello, G.; Ramos, N.; Musto, H.; Arbiza, J. New insights into the hepatitis E virus 
genotype 3 phylodynamics and evolutionary history. Infect. Genet. Evol. 2016, 43, 267–273. 

 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


