
viruses

Review

Metabolic Reprogramming of the Host Cell by
Human Adenovirus Infection

Martin A. Prusinkiewicz 1 and Joe S. Mymryk 1,2,3,4,*
1 Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada;

mprusink@uwo.ca
2 Department of Otolaryngology, Head & Neck Surgery, Western University, London, ON N6A 3K7, Canada
3 Department of Oncology, Western University, London, ON N6A 3K7, Canada
4 London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
* Correspondence: jmymryk@uwo.ca; Tel.: +1-519-685-8600 (ext. 53012)

Received: 11 January 2019; Accepted: 3 February 2019; Published: 8 February 2019
����������
�������

Abstract: Viruses are obligate intracellular parasites that alter many cellular processes to create an
environment optimal for viral replication. Reprogramming of cellular metabolism is an important,
yet underappreciated feature of many viral infections, as this ensures that the energy and substrates
required for viral replication are available in abundance. Human adenovirus (HAdV), which is
the focus of this review, is a small DNA tumor virus that reprograms cellular metabolism in a
variety of ways. It is well known that HAdV infection increases glucose uptake and fermentation to
lactate in a manner resembling the Warburg effect observed in many cancer cells. However, HAdV
infection induces many other metabolic changes. In this review, we integrate the findings from
a variety of proteomic and transcriptomic studies to understand the subtleties of metabolite and
metabolic pathway control during HAdV infection. We review how the E4ORF1 protein of HAdV
enacts some of these changes and summarize evidence for reprogramming of cellular metabolism
by the viral E1A protein. Therapies targeting altered metabolism are emerging as cancer treatments,
and similar targeting of aberrant components of virally reprogrammed metabolism could have clinical
antiviral applications.

Keywords: human adenovirus; E1A; E4ORF1; metabolism; glycolysis; glutaminolysis; Warburg
effect; MYC; HAdV5; HAdV36

1. Introduction

Viruses are obligate intracellular parasites. As such, they are critically dependent upon energy and
substrates obtained from the infected host cell. Human adenoviruses (HAdVs) are double-stranded
DNA tumour viruses with a genome of approximately 36 kilobase pairs. There are approximately
90 specific types distributed across 7 species, termed A through G, based on genetic and biological
characteristics (Table 1). HAdVs exhibit a variety of tissue tropisms, often dependent on HAdV type,
including preference for respiratory, gastrointestinal, ocular, or renal tissues [1,2]. HAdVs generally
cause acute, lytic infections with a replicative cycle of typically several days between exposure and
production of new viruses in quiescent epithelial cells. In one round of infection, a single infectious
virion leads to the production of thousands of infectious progeny. Viral replication requires the
substrates and energy provided by the host cell, and an optimized environment within the virus
infected cell ensures maximal HAdV progeny production. HAdV proteins interact with host-cell
proteins to modify cellular functions, creating amenable conditions for virus replication and virion
production regardless of any pre-existing cell state.
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Table 1. Different HAdV species and associated types, tissue tropisms and clinically associated
infections. The last column indicates whether the species contains the metabolism-associated E4ORF1
viral gene.

Species Types Tissue Tropism
(Types) Associated Infections Contains E4ORF1

(Y/N)

A 12, 18, 31, 61 Gastrointestinal Gastroenteritis Yes

B
3, 7, 11, 14, 16, 21,

34, 35, 50, 55, 66, 68,
72, 79

Respiratory
(3, 7, 16, 21, 50)
Urinary/Renal
(11, 14, 34, 35)

Ocular (3, 7, 11, 14)

Acute respiratory disease,
conjunctivitis, nephritis Yes

C 1, 2, 5, 6, 57 Respiratory, Ocular
(5)

Acute respiratory disease,
conjunctivitis Yes

D

8–10, 13, 15, 17, 19,
20, 22–30, 32, 33,

36–39, 42–49, 51, 53,
54, 56, 58–60, 62–65,
67, 69, 70, 71, 73–75,

81, 83–85, 90

Ocular,
Gastrointestinal

(36, 67)

Follicular conjunctivitis,
pharyngeal conjunctival

fever, epidemic
keratoconjunctivitis,

gastroenteritis

Yes

E 4 Respiratory, Ocular Acute respiratory disease,
conjunctivitis Yes

F 40, 41 Gastrointestinal Gastroenteritis No

G 52 Gastrointestinal Gastroenteritis Yes

Unclassified/No
record 76–78, 80, 82, 86–89 - - -

The adenovirus genome is organized into early and late regions, corresponding to the temporal
kinetics of transcription of these regions [3]. The early region consists of multiple transcription units,
termed E1A, E1B, E2A, E2B, E3 and E4 [1]. The products of the E1A transcription unit function
to control transcription of viral genes, as well as modify host-cell gene expression to benefit viral
reproduction [4]. The E1B products modulate host-cell proliferation, apoptosis and assist with viral
replication [3]. The products from the E2 transcription units are primarily involved in viral DNA
replication [3]. The E3 transcription unit encodes viral proteins that subvert host immune responses [3].
The E4 transcription unit is comprised of 7 open reading frames (ORFs), the products of which act
to modulate cellular function and assist with viral DNA replication and RNA processing [5]. There
is a single late transcription unit that is alternatively spliced to yield five groups of mRNAs termed
L1 through L5. Late mRNAs encode products that are viral structural proteins or contribute to virion
production [3]. Other transcription units expressed during intermediate timepoints of infection, such
as pIX and IVa2, perform structural functions or play a role in viral packaging [3]. In addition, some
of the viral proteins are oncoproteins capable of inducing cancer-like phenotypes. For example, the
HAdV E1A oncoprotein is capable of transforming many cell types [6] in conjunction with a second
oncoprotein, such as RAS, or the HAdV E1B oncoproteins. E4ORF1, another HAdV oncoprotein [7],
can influence host-cell metabolism, which will be discussed extensively in this review. Many HAdV
types can oncogenically transform rodent cells [6,7], but HAdV is not currently associated with any
human cancer, possibly due to the lytic nature of HAdV infection. However, some viruses with a lytic
cycle, such as the γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpes
virus (KSHV), are oncogenic and expression of their lytic genes can contribute to oncogenesis [8–11].
A recent whole genome analysis of multiple tumour types for viral signatures indicated that HAdV
DNA may be especially prevalent in kidney, breast, prostate, and head and neck tumours, suggesting
a previously unsuspected causal relationship [12]. Understanding how HAdV reprograms cellular
metabolism is important, as it yields insight into the functions of various viral oncoproteins and reveals
parallels between virally induced metabolic changes and cancer metabolism. This review focuses on
the alterations made by HAdV to host cell metabolism. Recent metabolomic and proteomic studies
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will be reviewed and mechanisms by which the viral oncoproteins E4ORF1 and E1A alter metabolism
will be discussed.

2. Glycolysis and the Warburg Effect

Cellular energy production typically begins with the conversion of glucose to pyruvate through
glycolysis. Pyruvate is funnelled to the tricarboxylic acid (TCA) cycle to load electrons onto various
coenzymes that can be utilized in the electron transport chain to convert ADP to ATP (Figure 1).
However, many metabolites within glycolysis and the TCA cycle can be utilized in other pathways to
generate precursors for macromolecules required for viral replication. For example, intermediates of
glycolysis can be funnelled into the pentose phosphate pathway (PPP) to generate ribose, the sugar
backbone of nucleotides (Figure 1).
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Figure 1. Viruses co-opt many cellular metabolic pathways to satisfy their metabolic requirements.
These pathways include those used for energy production, primarily glycolysis and oxidative
phosphorylation, and macromolecule production, such as for the synthesis of nucleotides or fatty acids.
Created with BioRender.

Typically, cells prefer the slower, but more energetically productive electron transport chain
as the main source of cellular energy over glycolysis. Glycolysis proceeds rapidly, but produces
much less energy. However, under certain conditions, cells appear to utilize glycolysis over cellular
respiration, despite the presence of ample oxygen. This is known as the Warburg effect (Figure 2),
and was first observed in cancer cells [13–15]. It is becoming increasingly appreciated that many
viruses reprogram cellular metabolism in a similar manner (Figure 2). For example, DNA tumour and
tumour-associated viruses, such as human papillomavirus (HPV), KSHV, EBV, human cytomegalovirus
(HCMV) and HAdV, are all noted to increase host cell glycolytic activity (reviewed in [16,17]). Some
single-stranded RNA viruses, such as poliovirus, dengue virus, hepatitis C virus (HCV) and influenza
A virus have also been noted to increase glycolysis [16,17]. In addition, the Warburg effect is more
complex than initially appreciated, as it is commonly accompanied by glutaminolysis [18] (Figure 2),
which includes the utilization of glutamine as a substrate in the TCA cycle. This means that cells
exhibiting the Warburg effect still utilize cellular respiration, albeit to a lesser extent than cells with a
normal metabolic phenotype.
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Figure 2. Both cancer cells (A) and virus infected cells (B) often exhibit a characteristic metabolic
phenotype known as the Warburg effect. This phenotype is associated with an increase in cellular
glycolysis and a concurrent decrease, albeit not a complete reduction, of cellular respiration despite
the availability of ample oxygen. In contrast, healthy, uninfected cells (C) preferentially utilize cellular
respiration over glycolysis as the main ATP generating pathway. Glutaminolysis is also less active in
uninfected non-transformed cells. However, there are uninfected cells (D) that preferentially utilize
the Warburg effect. For example, endothelial cells consistently have a Warburg effect-like metabolic
phenotype [19]. Activated immune cells, such as effector T cells, activated macrophages, and activated
dendritic cells, also shift to a Warburg effect-like metabolic phenotype [20]. Created with BioRender.

3. The Earliest Observations of Metabolic Changes due to HAdV Infection

Shortly after adenoviruses were discovered in 1953 by Wallace Rowe and colleagues [21],
the effects of HAdV infection on metabolism were explored in cell culture (Figure 3). During these early
investigations, similarities in metabolic reprogramming between HAdV types were recognized [22–24].
For example, HAdV species B type 7 (HAdVB-7) (Table 1) infection of HeLa cells (Table 2) was noted to
exhibit increased lactic acid production, likely due to an increase in glucose utilization, when compared
to uninfected HeLa cells [24]. This increased lactic acid production corresponded to a 2-fold increase
in lactate dehydrogenase activity in infected cells [24]. In addition, the TCA cycle was necessary for
HAdVB-7 replication, as inhibition of this pathway with sodium fluoroacetate decreased viral titre by
300× [24], serving as a precursor to the subsequent recognition of the importance of glutamine and
glutaminolysis for viral replication [25,26].

The upregulation of nucleotide biosynthesis by HAdV infection was also discovered in the early
years of HAdV research. In 1964, HAdV species C type 5 (HAdVC-5) (Table 1) was found to cause a 2-
to 3-fold increase in aspartate transcarbamylase activity at 18 h post infection (hpi) in HeLa cells [27].
Aspartate transcarbamylase activity is a function of the first enzyme in the pyrimidine biosynthesis
pathway, carbamoyl phosphate synthetase-aspartate transcarbamylase-dihydroorotase (CAD) [28].
In another paper from 1971, increased cellular lipid metabolism, primarily triglyceride production, was
associated with HAdVC-5 infection of human embryonic kidney (HEK) cells (Table 2) [29]. As expected,
these lipids were not incorporated into the HAdVC-5 structure, since HAdV is a non-enveloped
virus [29]. As this increase in lipid metabolism could similarly be induced by a UV-inactivated
virus, a structural feature of the virus was possibly responsible for the upregulation [29]. Indeed,
exposure of the cell to purified HAdV structural proteins indicated that the penton and penton-base
proteins, but not the fiber or hexon proteins, were at least partially responsible for this increase in lipid
metabolism [29].
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Figure 3. Key relevant advances in metabolism research, adenovirus research and technology that
allowed for contemporary high-throughput studies on the effect of HAdV infection on cellular
metabolism. The early 20th century featured many insights into the basics of cellular metabolism. The
discovery of HAdV and early studies on the effect of HAdV on host-cell metabolism were performed
in the 1950s. Little further research on the influence of HAdV on cellular metabolism was performed
until the 21st century, when advances in metabolomic, proteomic and genomic technology allowed for
thorough study of host-cell metabolic changes.

Many years passed between these initial observations and advances in high-throughput
metabolomics technology that allowed for the first metabolomics study of virus-infected human
cells in 2006 [30]. Indeed, thorough metabolomic studies of HAdV infected cells began in 2016 [31].
These metabolomic studies of HAdV infected cells will be discussed in the next section. Important
relevant discoveries in metabolism, HAdV virology and high-throughput metabolomics technologies
are summarized in the timeline depicted in Figure 3.
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Table 2. Cell lines used by studies outlined in this review. Unless noted otherwise, all cell lines
are human.

Cell Line Donor
Characteristics

Date
Established

Cell
Morphology Tissue of Origin Transformation

Status

HeLa Female—31 years old 1951 [32] Epithelial Cervical
adenocarcinoma

HPV
transformed

HEK 1 Fetus 1970 [33] Epithelial Embryonic kidney Primary

HEK293 Female—Fetus 1977 [34] Epithelial Embryonic kidney HAdV5 E1A
transformed

1G3 2 Fetus 2015 [35] Amniocyte Amniotic fluid HAdV5 E1A
transformed

IMR-90 Female—Fetus
(16 weeks) 1977 [36] Fibroblast Lung Primary

A549 Male—58 years old 1973 [37] Epithelial Lung adenocarcinoma Transformed

SKOV3 Female—64 years old 1973 [38] Epithelial
Ovarian

adenocarcinoma
ascites

Transformed

MCF10A Female—36 years old 1990 [39] Epithelial Fibrocystic breast
mammary gland

Spontaneously
immortalized

NHBE Human 3 N.A. 3 Epithelial Bronchial Primary

3T3-L1 Mouse—Fetus 1973 [40] Fibroblast Embryonic–pre-adipose Spontaneously
immortalized

BRK Rat—Neonate N.A. 3 Epithelial Kidney Primary

HS68 Newborn 1969 [41] Fibroblast Foreskin Primary
1 Noted to be HeLa contaminated and is not the parent line of HEK293 cells; 2 Not to be confused with the
mouse-derived hybridoma of the same name; 3 Batch-specific.

4. Metabolomic and Proteomic Analyses of Adenovirus Infection

Since 2016, many high-throughput metabolic studies on HAdV infected cells have been performed.
Key studies will be summarized in this section. Recent genomic and proteomic studies of HAdV
infected cells in the context of host-cell metabolic changes will also be summarized.

An investigation using 1H-NMR spectroscopy looked for changes in 35 metabolite concentrations
in HEK293 (Table 2) and human amniocyte derived 1G3 cells (Table 2) during infection with E1-region
deleted HAdVC-5 [31]. Although cells were infected with an E1-region deleted HAdVC-5, this study
essentially measured the effects of wild type HAdVC-5 infection as both HEK293 and 1G3 cells
effectively complement the viral defect by expressing the E1A and E1B regions of HAdVC-5. The main
finding of this study was that glucose consumption doubles and lactate secretion increases 4-fold
compared to respective uninfected cells [31].

This study also examined the effects of cell density on metabolic changes induced by HAdVC-5
infections. Lower cell density at infection was associated with better HAdVC-5 production and
more extreme metabolic responses [31]. Interestingly, glutamine exhaustion was limiting for HAdV
replication, especially at higher cell densities [31]. In addition, this study explored whether glutamine
replenishment and pH control with cells grown in a bioreactor yielded a similar metabolic phenotype
upon HAdVC-5 infection. The results of these experiments suggest that 1G3 cells are less reliant
on glutamine during infection [31]. In short, cellular density at infection had significant effects on
metabolism [31] (Figure 4A). While glucose consumption trends were similar in both 1G3 and HEK293
cells, consumption and production of other metabolites (Supplementary Table S1) could vary with
cell type (Figure 4B) and growth phase [31] (Figure 4C), especially when the slower replication rate of
HAdV in primary cells is considered [42–44].
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glycolytic intermediates than TCA cycle intermediates, with a corresponding 4-fold increase in PPP 
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Figure 4. Factors influencing host-cell metabolism with HAdV infection. (A) HAdV induced changes
in cellular metabolism are less drastic in cells infected at a high cellular density in comparison to
cells infected at a low cellular density [31]. (B) Cell type can influence the metabolic reprogramming
enacted by HAdV. Primary cells are usually slower growing than immortalized cells, which is reflected
in a lower metabolic rate. Although metabolism is changed across various cell types upon HAdV
infection [31], the rate of that change is likely faster in immortalized cells and contributes to rapid
viral replication in immortalized cells [42–44]. However, even among immortalized cells, those with
a phenotype more closely resembling the Warburg effect appear primed for HAdV replication and
experience more drastic metabolic changes than immortalized cells with a metabolic phenotype reliant
on oxidative phosphorylation [45]. (C) Growing and dividing cells infected with HAdV show more
drastic metabolic changes than infected quiescent cells [46]. (D) The metabolic profile of HAdV infected
cells changes throughout the course of infection [47]. Initially, HAdV infected cells typically exhibit
upregulated glycolysis, amino acid metabolism and nucleotide biosynthesis pathways [47]. Towards
the later stages of infection, HAdV infected cells still perform glycolysis, but the majority of metabolic
activity is directed towards nucleotide biosynthesis and an upregulation of the pentose phosphate
pathway (PPP) occurs [47]. (E) Different HAdV types regulate metabolism through mechanisms
related to the functions of HAdV E4ORF1 proteins. Some HAdV types (e.g., HAdVF-40) do not have
E4ORF1 and clearly rely on other HAdV proteins to regulate metabolism [48]. E1A, which also varies
among HAdV types, is another potential regulator of cell metabolism during infection [49–51]. Created
with BioRender.

Another study measured the metabolic flux of [1,2-13C] glucose and [U-13C] glutamine in 1G3
cells infected with E1-deleted HAdVC-5, conditions which again essentially recapitulated a wild
type HAdVC-5 infection [46] (Supplementary Table S1). In 1G3 cells infected with HAdVC-5 during
exponential growth, glycolysis was upregulated by 17%, as evidenced by higher 13C incorporation in
glycolytic intermediates than TCA cycle intermediates, with a corresponding 4-fold increase in PPP [46].
Lactate production also increased with glucose production, as observed in other studies [26,31].
Increases in other metabolites, such as amino acids, under these conditions are shown in Supplementary
Table S1.

That study also reported an interesting 2-fold increase in acetyl-CoA production from citrate [46],
a process associated with fatty acid biosynthesis. Increased lipid biosynthesis is a logical requirement
for enveloped viruses, and both enveloped and non-enveloped viruses can increase lipid biosynthesis
for the expansion of membrane bound viral replication compartments (reviewed in [52,53]). However,
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HAdV replication compartments are located in the nucleus and are not surrounded by a membrane [54].
This leaves the reasons for the potential increase of lipid biosynthesis during HAdV infection unclear.

While overall metabolic activity was increased in 1G3 cells infected with HAdVC-5 during
stationary phase, which was induced by a combination of cell confluency and serum deprivation
for 36 h, these metabolic changes were different compared to 1G3 cells infected during exponential
growth [46]. Metabolic changes that occurred in infected stationary 1G3 cells included a 1.5-fold
increase in glutamine catabolism [46], which serves to replenish TCA cycle intermediates when
they might be limited due to the conversion of pyruvate to lactate by the Warburg effect [55].
A corresponding 1.5-fold increase in the TCA cycle itself also occurred in infected stationary
1G3 cells [46]. Glucose consumption in HAdVC-5-infected stationary 1G3 cells increased, with a
corresponding increase in lactate production [46]. Production of specific amino acids also increased
(Supplementary Table S1) [46]. An increase in acetyl-CoA production from citrate was observed with
HAdVC-5 infection of growth arrested 1G3 cells [46]. However, the PPP was not stimulated and overall
HAdVC-5 production decreased 4-fold when compared to exponentially growing HAdVC-5-infected
1G3 cells [46].

The metabolic state of HAdV infected cells also changes longitudinally (Figure 4D). A study
analyzing changes in cellular protein expression of HAdV species C type 2 (HAdVC-2) (Table 1)
infected growth-arrested IMR-90 cells (Table 2) at 6, 12, 24 and 36 hpi identified a variety of metabolism
related proteins with differential expression throughout infection. Early during infection, starting at
6 h and persisting through to 12 hpi, proteins encoding enzymes involved in glycolysis and de novo
purine and pyrimidine synthesis were upregulated [47]. The upregulation of glycolytic and nucleotide
biosynthesis proteins persisted through to the later 24 and 36 hpi time points [47]. Unique to the
6 and 12 h time points was an upregulation of proteins involved in glutathione metabolism [47]
(Supplementary Table S2), which is responsible for detoxifying reactive oxidative species, perhaps
generated as a result of virus infection [56]. An analysis of upregulated pathways indicated that at
the earliest time point (6 hpi) serine glycine biosynthesis (Supplementary Table S2), and mannose
metabolism (Supplementary Table S2) were upregulated [47]. The serine glycine biosynthesis pathway
converts 3-phosphoglycerate into serine, and eventually glycine [57], which could account for some of
the increased intracellular amino acid concentrations noted in the two studies mentioned above [25,46].
Mannose metabolism is responsible for contributing to protein glycosylation [58,59]. Later, at 12 hpi,
proteins involved in fructose galactose metabolism (Supplementary Table S2) were upregulated and
likely contribute to the upregulated glycolysis occurring at all time points [47]. There were also two
enzymes from the PPP that were upregulated at 12 hpi (Supplementary Table S2). At 24 hpi, most
proteins involved in the PPP were upregulated, although the authors did not find any changes in
mRNA expression for PPP genes [47]. This may be due to changes in expression based on cell type
and/or differences in infection timing between these two studies. At 24 hpi, a few proteins involved
in serine glycine biosynthesis continued to be upregulated (Supplementary Table S2), which could
contribute to the production of glycine used for purine biosynthesis [57].

In the same study, an analysis of putative transcription factors regulating the expression of
metabolic genes during HAdV infection indicated that MYC was significantly upregulated at all time
points [47]. Another transcription factor potentially responsible for the upregulation of metabolic
genes in HAdV infection was E2F1 [47]. The ATF/CREB family of transcription factors were also
upregulated [47]. ATF/CREB transcription factors are responsible for upregulating metabolism [60]
and are also known targets of E1A [61–63]. Finally, the transcription factor NRF2, which has metabolism
associated regulatory functions [64], was potentially responsible for the expression of a wide variety
of metabolic genes at all time points during HAdV infection [47]. The metabolic functions of NRF2
include inhibiting lipogenesis, activating fatty acid oxidation, influencing the PPP, as well as enhancing
purine biosynthesis and NADPH production [64].

Another study compared the effects of infection with HAdVC-5, wild-type HAdV species B
type 11p (HAdVB-11p) (Table 1), and an oncolytic HAdV, enadenotucirev (EnAd, formerly ColoAd1),
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on metabolism of A549 cells (Table 2) and SKOV3 ovarian carcinoma cells (Table 2) [45]. HAdV infection
increased glycolysis and glutaminolysis [45], as expected [25,26,46,47]. However, counterintuitively,
the authors found that inhibiting glycolysis with 2-deoxyglucose (2DG) or limiting glucose availability
increased viral genome replication and packaging efficiency in both A549 cells and SKOV3 cells [45].
Inhibition of glycolysis in SKOV3 cells, which, unlike A549 cells, exhibit a metabolic phenotype
that does not resemble the Warburg effect [65], also increased the speed of EnAd and HAdVB-11p
viral replication and progeny production [45]. Glucose limitation is hypothesized to be beneficial
to the expression of late proteins during HAdV infection, which could explain why HAdV progeny
production was increased with 2DG [45]. These results were maintained when viral replication was
measured in SKOV3 cells lacking functional endogenous glycolysis, in primary human ascites cells and
an in vivo xenograft mouse model treated with 2DG [45]. Furthermore, A549 cells grown in glutamine
limiting conditions had a 1 × 105-fold reduction in the production of infectious EnAd or HAdVB-11p
virions [45]. These results indicate that glycolysis is expendable, and perhaps even detrimental to viral
replication at higher levels. However, HAdV infected cells generally require glutamine, but the extent
to which glutamine is required may vary with HAdV type, as HAdVC-5 did not appear to have a
similar dependence [45].

When a variety of other TCA cycle intermediates were supplemented to glutamine limited A549
or SKOV3 cells infected with EnAd, only α-ketoglutarate, not oxaloacetate or pyruvate, was able
to completely rescue HAdV virion production [45]. This suggests that rather than wholly being
used to fuel the TCA cycle, glutamine may also be broken down to α-ketoglutarate, which is used for
production of other macromolecules required for viral replication, including amino acids and/or lipids.

An LC-MS proteomic study of A549 cells infected at confluency with HAdV species F type 40
(HAdVF-40) (Table 1) and examined at 30 hpi indicated that 206 host-cell proteins were upregulated
and 130 host-cell proteins were downregulated by infection [48]. Many of these were involved in
metabolism and energy production pathways. Specifically, these included glycolysis, the TCA cycle,
cellular respiration, beta-oxidation, the PPP, and amino acid metabolism [48]. Interestingly, the authors
observed higher mitochondrial activity in HAdVF-40 infected cells [48]. In addition, two glycolytic
proteins upregulated by HAdVC-5 infection, HK2 and PFKM, were not induced in HAdVF-40 infected
cells [48]. HAdVF-40 does not encode an E4ORF1 equivalent, which may explain why these two
specific glycolytic enzymes are not upregulated by HAdVF-40 infection [48]. This also suggests that,
despite E4ORF1 being the only HAdV protein currently implicated in transcriptionally regulating
metabolism upon infection, HAdV proteins other than E4ORF1 contribute to transcriptional regulation
of host-cell metabolism gene expression (Figure 4E).

5. E4ORF1 Positively Regulates Glycolysis and Glutamine Catabolism

The only concrete mechanism by which adenovirus is currently known to regulate host-cell
metabolism is through its E4ORF1 protein [25,26]. E4ORF1 is a viral oncoprotein that can transform
rat embryonic fibroblasts through its C-terminal PDZ-binding domain [7,66]. This PDZ-binding
domain binds host-cell PDZ domain proteins and mediates the activation of PI3K and AKT, leading to
oncogenic transformation [67]. However, the ability of E4ORF1 to regulate glycolysis is independent
of this C-terminal domain [26].

Thai et al. observed that MCF10A breast epithelial cells (Table 2) infected with wild type HAdVC-5
had increased glucose consumption and increased lactate production compared to uninfected cells [26]
(Supplementary Table S1). These metabolic changes were accompanied with decreased oxygen
consumption and presumably less oxidative phosphorylation compared to uninfected cells [26].
Thai et al. found that cells infected with a non-replicating ∆E4 HAdVC-5 mutant did not have
increased glycolysis or decreased oxidative phosphorylation [26]. When MCF10A cells were engineered
to express the adenovirus E4 region alone, glycolysis was increased, as indicated by increased glucose
consumption and lactate production [26]. However, oxidative phosphorylation was not affected,
as there was no change in oxygen consumption in these cells [26]. E4ORF1 was identified to be
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the viral protein responsible for these metabolic changes, but these changes were enhanced in the
presence of E4ORF6, which is known to have a stabilizing effect on E4ORF1 [26]. Microarray with gene
set enrichment analysis (GSEA) in MCF10A cells constitutively expressing E4ORF6 and transfected
with either E4ORF1 or an empty vector identified genes regulated by MYC as being particularly
upregulated by E4ORF1 [26]. This MYC upregulation agrees with another high throughput study
looking at transcription factors regulated by HAdV infection [47]. Chromatin immunoprecipitation
quantitative polymerase chain reaction (ChIP-qPCR) analysis indicated that MYC binding to glycolytic
genes was increased in E4ORF1 transfected cells and E4ORF1 was also found bound to some glycolytic
genes [26] (Figure 5). E4ORF1 formed a physical interaction with MYC, supported by E4ORF6, and
this increased MYC localization to the nucleus [26]. These changes corresponded to increased HK2
and PFKM1 mRNA levels in E4ORF1-expressing cells [26]. In agreement with this, A549 cells infected
with HAdVF-40, which does not contain E4ORF1, do not exhibit elevated levels of HK2 or PFKM
protein [48].
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Figure 5. Schematic of how E4ORF1 contributes to MYC-regulated transcription of genes involved in
glycolysis according to Thai et al. [26]. E4ORF1 binds to MYC, enhancing the transcriptional activity of
MYC, leading to increased transcription of metabolic genes such as HK2 and PFKM1. E4ORF1 can also
bind glycolytic genes, which may be how E4ORF1 brings MYC into proximity of these target genes.
E4ORF6 appears to play a scaffolding role and enhances E4ORF1 binding to MYC, although E4ORF6
does not appear to bind MYC or glycolytic genes itself [26]. Created with BioRender.

Thai et al. identified that E4ORF1 was responsible for regulating metabolic changes, as a point
mutation in this viral protein, D68A, abrogated all of the metabolic changes associated with E4ORF1 in
both vector transfection and mutant virus infection [26]. shRNA knockdown of MYC also abrogated
the glycolytic metabolic changes associated with E4ORF1 during HAdV infection [26]. In addition,
MYC knockdown decreased viral titre, providing evidence that metabolic changes do indeed enhance
virus yield during infection [26]. Interestingly, viral titre from cells infected with E4ORF1-D68A mutant
HAdVC-5 was only lower in infected HeLa cells, but not in infected MCF10A cells. Thai et al. attribute
this to the higher glycolytic activity of MCF10A cells [26].

Finally, increased nucleotide metabolism is one of the consequences of upregulated glycolysis.
Thai et al. traced carbon from 13C-labelled glucose to nucleotides during wild type HAdVC-5 infection
in normal human bronchial epithelial cells (NHBE) (Table 2). Increased 13C incorporation into
nucleotides did not occur during infection with HAdVC-5 E4ORF1-D68A [26]. Correspondingly,
transcripts of RPIA and RPE, two genes involved in the non-oxidative branch of the PPP, were
only upregulated in cells infected with wild type HAdVC-5, but not HAdVC-5 E4ORF1-D68A [26].
This upregulation of the PPP with an increase in glycolysis matches the observations in another high
throughput metabolomics study [46]. However, a second high throughput metabolomics study found
no changes in mRNA levels for any PPP genes [47].

In a follow-up study, HAdVC-5 infection of NHBE was associated with increased glutamine
consumption during early infection (Supplementary Table S1), which occurred at approximately
8 to 12 hpi [25]. This increased consumption was abrogated by shRNA knockdown of MYC, or
infection with the non-MYC binding E4ORF1-D68A mutant adenovirus [25]. miRNAs miR-23a and
miR-23b, which are associated with decreased glutaminase expression, were also downregulated
starting at 90 min post wild type HAdVC-5 infection [25]. LC-MS/MS U-13C5-glutamine labelling
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indicated that HAdVC-5 infected cells had a pattern of carbon labelling that corresponded to reductive
carboxylation [25]. Reductive carboxylation is the carboxylation of α-ketoglutarate, produced from
glutamine, to citrate. This citrate can be used to produce lipids from interconversion to acetyl-CoA
or fuel the TCA cycle [68]. mRNA transcripts associated with reductive carboxylation were also
upregulated with HAdVC-5 infection [25], but not in HAdVC-5 E4ORF1 D68A mutant infections [25].

Further emphasizing the importance of glutamine during HAdVC-5 infection, transcripts for
glutamine transporter genes ASCT2 and LAT1 were higher in HAdVC-5 infected cells [25]. These
transporters exchange glutamine for other amino acids. There were higher intracellular concentrations
of both essential and non-essential amino acids in HAdVC-5 infected NHBE cells as compared to
uninfected or HAdVC-5 E4ORF1-D68A mutant infected cells [25]. Increases in intracellular amino acid
concentrations (Supplementary Table S1) matched what was observed in another high throughput
metabolomics study [46]. Concentrations of amino acids likely increase to provide substrates required
for virus replication. Another pathway associated with HAdVC-5 infection-induced glutamine
metabolism is hexosamine biosynthesis [25], which produces UDP-GlcNAc. UDP-GlcNAc can be used
for O-GlcNAc protein modification to alter the activity of metabolic enzymes, such as those involved
in glycolysis [69]. The importance of glutamine for adenovirus replication is also emphasized by the
ability of CD-839, an inhibitor of glutaminase, to reduce HAdVC-5 replication at least 80-fold [25].
However, whether any of these changes in glutamine metabolism are linked to HAdVC-5-infection
induced decreases in oxidative phosphorylation remains to be explored.

6. Human Adenovirus 36 Influences Metabolism through E4ORF1

Despite the cellular metabolic changes enacted by HAdVC-5 E4ORF1 discussed above, no HAdV
types are conclusively linked to any human metabolic disorders. Although some adenovirus types,
such as HAdV species D type 36 (HAdVD-36) (Table 1) [70] and HAdV species A type 31 (HAdVA-31)
(Table 1) [71,72], are prevalent in obese individuals, this may simply be due to the higher susceptibility
of obese individuals to viral infections [73]. However, HAdVD-36 has been associated with metabolic
changes in animal models, including mice, chickens and non-human primates. [74,75]. Interestingly,
these metabolic effects are linked to the HAdVD-36 E4ORF1 protein. The downstream pathways
affected by HAdVD-36 E4ORF1 have been studied in detail and are somewhat different from those
affected by HAdVC-5 E4ORF1. However, commonalities still exist, which gives further insight into
general HAdV E4ORF1 function. Considering that obesity is a risk factor for certain types of cancer [76],
understanding how HAdVD-36 reprograms metabolism could yield insight into metabolic pathways
that may also prime the cell for a cancer-like phenotype. In one example study, both HAdVD-36
infection or expression of its E4ORF1 protein alone increased glucose consumption (Supplementary
Table S1) in 3T3-L1 adipocytes (Table 2) due to an increase in overall GLUT4 protein and phospho-AKT
mediated translocation of GLUT4 to the plasma membrane [77].

Another study compared the effects of HAdVD-36 E4ORF1 transduction to the effects of HAdVC-5
E4ORF1 transduction a diabetes mouse model (db/db) and a diet-induced obesity mouse model [78].
HAdVD-36 E4ORF1 was able to improve glycemic control and enhance glucose disposal independently
of insulin [78]. In addition, high doses of HAdVD-36 E4ORF1 lowered non-fasting blood glucose in
wild type mice [78]. Similar effects on blood glucose levels were not seen with HAdVC-5 E4ORF1.
Effects that were specific for db/db mice transduced with either HAdVC-5 E4ORF1 or HAdVD-36
E4ORF1 included decreased body weight in both transduced mice groups, combined with decreased
food intake [78]. However, the HAdVC-5 E4ORF1 transduced mice did not have reduced blood
glucose or glycemic control [78]. Also, the HAdVD-36 E4ORF1 transduced db/db mice had reduced
insulin and no changes in liver or fat mass [78]. Serum levels of adiponectin, which regulates fatty
acid beta-oxidation and glucose metabolism, were also lower in HAdVD-36 E4ORF1 transduced
mice [78]. In diet-induced obese mice transduced with HAdVD-36 E4ORF1, a decrease in body weight,
despite no change in food intake, occurred [78]. Also, in these mice, blood glucose decreased, glycemic
control increased and liver weight increased [78]. In wild type mice transduced with a high dose of
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HAdVD-36 E4ORF1, lowered blood glucose, increased serum fatty acids and increased liver mass were
observed [78]. These changes did not occur in wild type mice transduced with HAdVC-5 E4ORF1 [78].
In the liver of mice transduced with HAdVD-36 E4ORF1, fatty acid concentrations were increased,
while glycogen concentrations were decreased [78]. Liver fatty acid concentrations also increased in
HAdVC-5 E4ORF1 transduced mice [78]. To summarize, in db/db diabetic mice and diet-induced obese
mice, the HAdVD-36 E4ORF1 protein alone improved glycemic control and lowered non-fasting blood
glucose, while the HAdVC-5 E4ORF1 protein did not (Table 3). This suggests that HAdVD-36 E4ORF1
may actually counteract the obesogenic effects otherwise observed during HAdVD-36 infection of mice.

Table 3. Different metabolic effects in mice expressing E4ORF1 from HAdVD-36 or HAdVC-5 [78].
Diabetic mice (db/db) with transduced expression of HAdVD-36 E4ORF1 have decreased weight,
increased glycemic control and glucose disposal. This is accompanied by decreased non-fasting blood
glucose and adiponectin. In contrast, none of these effects, aside from decreased weight, occurred
in diabetic mice with transduced expression of HAdVC-5 E4ORF1. Diet-induced obese mice with
transduced expression of HAdVD-36 E4ORF1 display weight loss, increased glycolytic gene expression
and lipid metabolism gene expression, while HADVC-5 E4ORF1 transduced mice only exhibit increased
lipid metabolism. Wild type mice expressing HAdVD-36 E4ORF1 have decreased non-fasting blood
glucose, increased glycolytic gene expression and increased phosphorylation of AKT and FoxO1.
However, inflammation is also increased. Wild type mice expressing HAdVC-5 E4ORF1 do not show
any changes in blood glucose levels, but do have increased metabolism gene expression and p-AKT.
In contrast to other papers exploring the mechanism of HAdVC-5 E4ORF1 in culture [25,26], there
were no changes in glycolytic gene expression or MYC activity in these animal studies (denoted by an
asterisks *). Images created with BioRender.
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While the above changes occurred systemically in db/db mice and obese mice, changes in liver
gene expression were also examined in the study described above using RT-qPCR [78]. Gene
expression changes were examined in both db/db mice and diet-induced obese mice. These changes
revealed more about the possible mechanism by which E4ORF1 regulates metabolism of host-cells.
db/db mice transduced with HAdVD-36 E4ORF1 had upregulated glycolysis-related transcripts
(Supplementary Table S2) [78]. PDK4 transcript, which encodes a kinase responsible for inhibiting
pyruvate dehydrogenase and therefore inhibiting the TCA cycle following glycolysis, was higher
in db/db mice transduced with HAdVC-5 E4ORF1 [78]. Transcripts related to fatty acid synthesis
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were downregulated in both HAdVD-36 E4ORF1 or HAdVC-5 E4ORF1 transduced db/db mice
(Supplementary Table S2) [78].

In the diet-induced model of obesity, mice transduced with HAdVD-36 E4ORF1 had an
upregulation of the glycolytic genes in the liver (Supplementary Table S2) [78]. Upregulation of other
metabolic mRNAs was observed in the livers of HAdVD-36 E4ORF1 transduced diet-induced obese
mice (Supplementary Table S2) [78]. In diet-induced obese mice transduced with HAdVC-5 E4ORF1,
only the fatty acid metabolism related gene SCD1 was uniquely upregulated [78]. G6PD, involved in the
PPP, was downregulated in both HAdVD-36 E4ORF1 and HAdVC-5 E4ORF1 transduced diet-induced
obese mice [78]. In wild type mice transduced with a high dose of HAdVD-36 E4ORF1, INSR was
downregulated, corresponding to an insulin-independent effect of E4ORF1 activity, and genes involved
in glycolysis were upregulated, as was PDK4, an inhibitor of the TCA cycle [78]. Genes involved in
gluconeogenesis were downregulated, as was GYS2, involved in the formation of glycogen [78]. G6PD
was also downregulated [78]. Wild type mice transduced with a high dose of HAdVC-5 E4ORF1 did not
have any differential expression of glycolytic genes, but some genes involved in lipid biosynthesis were
upregulated [78]. In wild type mice transduced with low doses of HAdVD-36 E4ORF1, an increased
prevalence of phospho-AKT and phospho-FoxO1 was observed [78]. Phospho-AKT induction was also
observed in wild type mice transduced with a low dose of HAdVC-5 E4ORF1 [78]. Interestingly, and in
contradiction with other literature [25,26], possibly due to tissue specific effects, MYC expression was
not altered in wild type mice transduced with HAdVC-5 E4ORF1 [78]. To emphasize the importance
of phospho-AKT for the anti-diabetic or anti-glycemic effects of HAdVD-36 E4ORF1, wild type mice
treated with perifosine, an AKT inhibitor, did not show the decrease in blood glucose associated with
HAdVD-36 E4ORF1 [78]. In summary, HAdVD-36 E4ORF1 was not only efficient at increasing the
expression of metabolic genes in obese mice, but both HAdVD-36 E4ORF1 and HAdVC-5 E4ORF1
increased phospho-AKT (Table 3). This may represent a conserved mechanism by which E4ORF1
upregulates glycolysis across HAdV types.

7. E1A as a Regulator of Cellular Metabolism During Infection

Although E4ORF1 is the only HAdV protein with conclusive transcriptional effects on cellular
metabolism, these studies suggest that at least one other HAdV encoded metabolic regulator exists [26].
The HAdV oncoprotein E1A has been shown to interact with a wide variety of host-cell proteins
that are capable of influencing metabolism independently of an interaction with E1A [4,49,79–81]. In
addition, because E1A is the first HAdV protein expressed during infection, it seems to be ideally
positioned to establish early changes in cellular metabolism during HAdV infection.

Perhaps one of the first studies which suggested that E1A could influence cellular energy
metabolism was performed in 1990 [82]. Expression of creatine kinase B, an enzyme responsible
for maintaining cellular ATP levels [83], was shown to be induced by E1A [82]. This report represents
the first suggestion that E1A may be responsible for inducing a cancer-like metabolic phenotype in
human cells during infection. Another paper, published at roughly the same time, indicated that E1A
was capable of inducing expression of thymidylate synthase, linking E1A to metabolic changes related
to increased DNA synthesis [84].

A thorough metabolomic and transcriptomic study of IMR-90 cells transformed with E1A in
conjunction with RAS revealed that glucose consumption and lactate secretion increased, as did
glutamine consumption and glutamate secretion with transformation (Supplementary Table S1) [85].
The authors of this study elected to use E1A and RAS to study transformation as E1A alone only
immortalizes, but does not transform, IMR-90 cells [85]. This is a caveat for the interpretation of this
study towards the role of E1A in HAdV infection, as some of metabolic effects observed may mediated
by RAS rather than E1A. Consumption and secretion of certain carboxylic acids and amino acids
increased with transformation, as assayed from the extracellular media (Supplementary Table S1) [85].
A comparison of intracellular metabolites between E1A/RAS transformed IMR-90 cells versus wild
type IMR-90 cells indicated that E1A/RAS transformed IMR-90 cells were much more metabolically
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active [85]. Intracellular glucose and pyruvate levels were lower in E1A/RAS transformed IMR-90 cells,
as were concentrations of the amino acids (Supplementary Table S1) [85]. While lower intracellular
concentrations of amino acids stand in contrast to what was observed in the context of wild type
HAdVC-5 infection by Thai et al. [25], the increase in extracellular glutamine consumption is consistent
with a number of papers examining metabolic changes due to HAdV infection [25,31]. Despite lower
intracellular concentrations of amino acids, E1A/RAS transformed IMR-90 cells had increased amino
acid consumption (Supplementary Table S1) [85]. Another indicator that E1A/RAS transformed
IMR-90 cells were more metabolically active than wild type IMR-90 cells was the increase in the
phosphocreatine to creatine ratio observed in transformed cells [85]. This ratio is a proxy for the
cellular ATP/ADP ratio and energy state [85]. The higher metabolic activity of E1A/RAS transformed
IMR-90 cells was further emphasized by the number of significant internal metabolite correlations
within transformed cells [85]. There were 72 positive internal correlations and 92 negative internal
correlations between the measured intracellular metabolites of E1A/RAS transformed IMR-90 cells,
versus 23 positive internal correlations and 26 negative internal correlations in wild type IMR-90
cells [85]. The number of internal correlations is indicative of the number of perturbed metabolic
pathways [86].

One of the unique correlations among metabolites upregulated in E1A/RAS transformed cells was
a positive correlation between the levels of choline, involved in cell membrane structure [87], and the
levels of the amino acids isoleucine, leucine, phenylalanine, tyrosine and lysine [85]. In addition,
changes in phosphocholine, another component of cell membrane formation [87], was positively
correlated with changes in isoleucine, leucine, phenylalanine, tyrosine and lysine [85]. It is unclear
whether this increase in membrane metabolism components is specific to E1A/RAS transformed cells or
is more widely applicable to HAdV infection, even though HAdV is a non-enveloped virus. However,
choline consumption was increased in both HAdV infected HEK293 and 1G3 cells as discussed above
(Supplementary Table S1) [31], which may point to an upregulation of cell membrane-component
metabolism due to E1A in the context of HAdV infection.

Expression of genes involved in amino acid catabolism in the mitochondria, consistent with
amino acid use as a significant energy source, were also upregulated in E1A/RAS transformed IMR-90
cells (Supplementary Table S2) [85]. Other genes encoding components of amino acid metabolism
were similarly upregulated (Supplementary Table S2) [85]. In addition, genes involved in glucose
metabolism were significantly increased in E1A/RAS transformed IMR-90 cells (Supplementary
Table S2) [85]. Gene correlation analysis within E1A/RAS transformed IMR-90 cells indicated that
expression of these amino acid catabolism genes, for example BCKDHA, were positively correlated with
certain genes involved in the TCA cycle, such as SUCLG1, IDH3B and certain glycolytic genes, such as
ALDOC [85]. In a number of ways, the phenotype observed with IMR-90 transformation by E1A/RAS
follows the traditional definition of the Warburg effect, which is an upregulation of glycolysis and a
downregulation of oxidative phosphorylation despite the presence of ample oxygen [13–15]. However,
the increased consumption and potential utilization of amino acids as an energy source in E1A/RAS
transformed IMR-90 cells indicate that oxidative phosphorylation through amino acid catabolism is
another important metabolic pathway with nuanced regulation [85]. The increase in glycolysis and
glutaminolysis occurring from E1A/RAS transformation is very similar to the increase in glycolysis
and glutaminolysis attributed to the E4ORF1 protein of HAdV [25,26]. It is an interesting possibility
that E1A contributes to cellular metabolic changes during HAdV infection in a manner similar to,
but independent of, E4ORF1. If this question were to be examined, one confounding consideration
would be that E1A is responsible for inducing transcription of E4ORF1, in addition to its role in
modulating expression of many host-cell proteins during infection [79,88].

The interaction of E1A with host-cell proteins that can influence metabolism is also important
when considering the role of E1A in host-cell metabolic reprogramming (Figure 6). Like E4ORF1,
E1A is capable of influencing MYC activity [49]. However, this occurs indirectly via the interaction
of E1A with the TRAAP protein of the NuA4 histone acetyltransferase complex, leading to increased
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transcription of MYC regulated genes (Figure 6A) [49]. An RNA-seq analysis of HS68 primary human
foreskin fibroblast cells (Table 2) transduced with the TRRAP interacting region of E1A, indicated
that 140 metabolic genes were upregulated, according to the supplementary data from that study [49].
An additional 92 metabolic genes were upregulated in conjunction with an interaction of E1A with
p300 (Figure 6B), again extrapolated from the supplementary data of that paper [49].Viruses 2019, 11, 141 15 of 20 
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Figure 6. Putative mechanisms by which HAdV E1A regulates transcription of host-cell metabolic genes
based on models derived from the literature [49–51]. (A) E1A can regulate metabolic gene expression
through an interaction with the transcription factor MYC. E1A binds TRRAP, part of the NuA4 complex,
which in turn is bound to MYC leading to increased transcription of metabolic genes [49]. PFKM
and LDHB are two examples of transcripts that may be regulated due to this interaction based on
supplementary data from Zhao et al. [49]. (B) The same paper indicated that E1A may be bound to p300
in addition to TRRAP and MYC leading to the expression of other E1A-regulated genes [49]. Again,
CYP11A1 and ALG6 are two examples of metabolic genes potentially regulated by this interaction based
on supplementary data from Zhao et al. [49]. (C) E1A can bind to pRB and release the inhibition of
E2F-mediated gene transcription by pRB [51]. PRPS2 and PLPP3 are examples of two metabolic genes
whose expression are decreased in a HAdVC-5 infection with a non-pRB binding E1A mutant compared
to wild type infected cells and therefore could rely on the pRB-binding of E1A for expression during
infection [51]. (D) E1A may also mediate the expression of E2F regulated genes through an interaction
with DP1, which itself can bind to E2F and activate transcription [50]. No specific transcripts are shown,
as this study by Pelka et al. did not include an RNA-seq component [50]. (E) Finally, an interaction
between E1A, p300 and pRB may inhibit transcription of metabolism related genes through histone
deacetylation [51]. GK and AKR1C3 are two genes that may be regulated by E1A binding to p300 [51].
Image created with BioRender.

In addition to the targets listed above, E1A can influence the E2F family of transcription factors
via its interaction with their negative regulator Rb and Rb family members (Figure 6C) [89], or via a
direct interaction with the DP-1 binding partner of the E2Fs (Figure 6D) [50]. It is well established
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that E1A sequesters Rb from E2F, leading to E2F activation. A study of transcriptional regulation by
E1A indicated that the resulting E2F activation upregulates genes involved with RNA metabolism and
biopolymer (macromolecule) metabolism in the host cell [90]. Additionally, E2F1 has been reported
to influence oxidative phosphorylation and glycolysis [80]. Another comprehensive RNA-seq study
of IMR-90 cells infected with a HAdVC-5 E1A mutant virus deficient for pRB binding, showed an
upregulation of one metabolic gene, TRIB1 (fold-change > 2) and a downregulation of approximately
89 metabolic genes (fold-change < 2) compared to wild type HAdVC-5 infected cells, as extrapolated
from the supplementary RNA-seq gene list of that paper [51]. This suggests that pRB binding by
E1A likely contributes to the regulation of these genes. This agrees with a high throughput study
examining transcription factors potentially altered by HAdV infection, which found that E2F1 activity
was increased [47].

Additionally, extrapolation of data from an RNA-seq analysis of IMR-90 cells infected with
a HAdVC-5 E1A mutant virus deficient for p300 binding, indicated that 13 metabolic genes were
upregulated (fold-change > 2) and 5 metabolic genes were downregulated (fold-change < 2) when
compared to wild type HAdVC-5 infected cells [51]. Again, this suggests that the interaction of E1A
with p300 (Figure 6E) modulates host-cell metabolism during infection. Due to the paucity of studies
looking at metabolic effects of HAdV E1A, it seems that additional investigations of this area are clearly
warranted. However, the interactions of E1A with MYC, pRB/E2F and p300 are an interesting starting
point for understanding how E1A influences host-cell metabolism.

8. Conclusions

The changes in cellular metabolism enacted by HAdV infection very closely mimic the metabolic
phenotype of cancer cells. HAdV infection induces an increase in glucose and glutamine consumption
to fuel glycolysis and glutaminolysis, which ultimately lead to an increase in nucleotide production
for DNA replication. However, advanced metabolomic techniques have added some nuances to this
understanding, as the metabolic profile of infected cells is influenced by cell density and cell type.
In addition, different HAdV types modulate metabolism by different mechanisms. Although this may
occur primarily through the HAdV oncoprotein E4ORF1, it potentially also occurs through the HAdV
oncoprotein E1A. Understanding how this altered metabolism contributes to HAdV replication may
provide the insight needed to use small molecules that influence metabolism as anti-viral therapies.
In light of a recent report that HAdV may be present in a number of diverse human tumours [12],
understanding the metabolic modulation of HAdV may also have potential utility for cancer treatment.
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