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Abstract: Rift Valley fever (RVF) is a re-emerging arboviral disease of public health and veterinary 

importance in Africa and the Arabian Peninsula. Major RVF epidemics were documented in South 

Africa in 1950–1951, 1974–1975, and 2010–2011. The number of individuals infected during these 

outbreaks has, however, not been accurately estimated. A total of 823 people in close occupational 

contact with livestock were interviewed and sampled over a six-month period in 2015–2016 within 

a 40,000 km2 study area encompassing parts of the Free State and Northern Cape provinces that 

were affected during the 2010–2011 outbreak. Seroprevalence of RVF virus (RVFV) was 9.1% (95% 

Confidence Interval (CI95%): 7.2–11.5%) in people working or residing on livestock or game farms 

and 8.0% in veterinary professionals. The highest seroprevalence (SP = 15.4%; CI95%: 11.4–20.3%) 

was detected in older age groups (≥40 years old) that had experienced more than one known large 

epidemic compared to the younger participants (SP = 4.3%; CI95%: 2.6–7.3%). The highest 

seroprevalence was in addition found in people who injected animals, collected blood samples 

(Odds ratio (OR) = 2.3; CI95%: 1.0–5.3), slaughtered animals (OR = 3.9; CI95%: 1.2–12.9) and 

consumed meat from an animal found dead (OR = 3.1; CI95%: 1.5–6.6), or worked on farms with 

dams for water storage (OR = 2.7; CI95%: 1.0–6.9). We estimated the number of historical RVFV 

infections of farm staff in the study area to be most likely 3849 and 95% credible interval between 

2635 and 5374 based on seroprevalence of 9.1% and national census data. We conclude that human 

RVF cases were highly underdiagnosed and heterogeneously distributed. Improving precautions 

during injection, sample collection, slaughtering, and meat processing for consumption, and using 

personal protective equipment during outbreaks, could lower the risk of RVFV infection. 
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1. Introduction 

Rift Valley fever (RVF) is an important emerging, zoonotic, mosquito-borne disease that causes 

periodic outbreaks in ruminants and febrile illness in humans [1,2]. The disease is caused by an RNA 

virus which belongs to the genus Phlebovirus within the Phenuiviridae family, order of Bunyavirales 

[3]. Approximately 80–90% of individuals infected with RVF virus (RVFV) manifest symptoms of 

influenza-like illness [4], with a reported overall case-fatality rate of 1–3%, but as high as 50% among 

patients with hemorrhagic fever, hepatitis, and renal failure [5]. Retinitis occurs in up to 2% of RVF 

cases [6,7]. During RVF outbreaks, infection in livestock leads to increased occupational risk for 

humans exposed to tissues and fluids of infected animals [8]. Individuals at increased risk of RVFV 

infection include farmers and farm workers, veterinary professionals and those employed in the 

animal processing industry [9,10]. Humans in these professions often serve as sentinels of RVFV 

outbreaks even though the disease usually occurs first in animals and then in humans [11]. Inhalation 

of aerosols during slaughter of infected animals or inoculation via needle-stick or injury or broken 

skin are other routes of transmission in aforementioned occupational groups [7]. Laboratory-acquired 

RVFV infections have also been reported [12,13]. General population may become susceptible to 

RVFV infection by consuming raw milk or via mosquito bites, but no human-to human transmission 

[7] has been documented. 

The first RVF outbreak documented in South Africa occurred in 1950–1951 on the interior 

plateau (Free State, Eastern Cape and Northern Cape Provinces) [14,15], followed by a second major 

outbreak in 1974–1975 [16]. The most recent major outbreaks in South Africa occurred during 2010–

2011 [17]. After this outbreak, there were no RVF human or animal cases confirmed in South Africa 

until May 2018, when an isolated outbreak was detected on a single farm in western Free State 

Province [18,19]. The central plateau of South Africa is a RVF outbreak-prone area where more 

frequent and intensive outbreaks have occurred compared to the eastern coastal area [20].  

In South Africa, little is known about the seroprevalence and associated risk factors of human 

RVFV exposure in the farm environment [16,17]. This study aimed to estimate the seroprevalence of 

RVFV and to identify hotspots of exposure and factors associated with RVFV infection amongst 

farmers, farm workers, and veterinary personnel in an epidemic-prone area in South Africa (the 

central plateau) four years after the 2010–2011 outbreaks. A better identification of these factors will 

aid in improvement of targeted prevention measures. Further, we aimed to estimate the number of 

human RVFV infections that had occurred in the farm population in the study area during the 

previous outbreaks. This study was conducted within a one-health framework for the investigation 

of the epidemiology of RVF in South Africa. 

2. Materials and Methods 

2.1. Ethics Statement 

This project was conducted under the protocol approved by the US Hummingbird Institutional 

Review Board (no. 2014–25 24/11/2014), US DTRA Research Oversight Board (CT 2014–33 27/01/2015), 

SA Witwatersrand and Pretoria Universities Human Ethics Committee (M140306 30/04/2014; 

140/2018 11/06/2018), and SA Provincial Departments of Health Free State and Northern Cape 

(NC2015/001 09/02/2015; 04/04/2015). Voluntary written consent was obtained from all participants 

included in the study. 

2.2. Study Design and Data Collection 

We conducted a cross-sectional serological survey during October 2015–February 2016 using 

single stage cluster sampling of healthy participants aged >11 years in a 40,000 km2 area situated 
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between Bloemfontein (Latitude: –29.081885; Longitude: 26.162902 and Mokala National Park 

(Latitude: –29.132526; Longitude: 24.322333) in the Free State and Northern Cape Provinces. This area 

experienced a high number of RVFV infections in livestock during 2010–2011. For the survey we 

targeted individuals at high risk for RVFV infection, including livestock and game farmers and farm 

workers, and members of livestock (cattle, sheep, or goats)-owning households (livestock farm 

population; LSFP); and para-veterinary workers and veterinarians (animal health-care workers; 

AHCW). We estimated a sample size of 770 individuals for an expected RVFV seroprevalence of 50% 

with 95% confidence intervals, 5% precision, 0.2 intra-cluster correlation, and an average cluster 

(farm) size of 6. 

For the selection of farms, since no complete list of farms was available, we generated random 

geographic coordinates within the study area using ArcGIS 10.2 (Esri, Redlands, CA, USA) and 

projected them on Google Earth (Google LLC, Mountain View, CA, USA). The coordinates were 

selected with probability proportional to the density of livestock-owning households calculated 

using the 2011 National Census data [21]. The closest farm to each random coordinate was invited to 

participate to the study. If the farm owner refused participation, we invited the next closest farm 

willing to participate. All consenting target individuals in the selected farms were invited to 

participate. For the AHCW group we obtained a complete sampling frame of veterinary professionals 

working within the study area from the South African Veterinary Council register. 

We collected data on demographics, RVF-related knowledge, attitudes, and practices and work-

, exposure-, and health-related information using a pre-tested, standardized questionnaire. A farm-

level survey was also conducted to obtain farm characteristics. English, Afrikaans, and Sesotho 

versions of the questionnaires were loaded as an Open Data Kit application [22] on tablets for self-

administered use or researcher-assisted interview. 

2.3. Sample Collection and Laboratory Procedures 

Blood was collected by venipuncture into two 8.5 mL serum separator tubes by a South African 

Nursing Council–registered nurse. Following centrifugation, serum was refrigerated (4 °C) until 

delivery to the National Institute for Communicable Diseases (NICD) for testing at the Arbovirus 

Reference Laboratory of the Centre for Emerging Zoonotic and Parasitic Diseases (CEZPD) 

(Johannesburg, South Africa).  

Human sera were screened for IgG antibodies using an indirect ELISA based on a recombinant 

nucleocapsid antigen of RVFV using a cut-off value of 28.9 percentage positivity relative to a positive 

control (sensitivity, Se = 99.72%; specificity, Sp = 99.62%), as previously described [23]. Positive 

samples were confirmed using a cut-off value of 38.6 percentage inhibition relative to a positive 

control, by inhibition ELISA based on whole RVFV antigen (Se = 99.47%; Sp = 99.66%), as previously 

described [24]. 

2.4. Statistical Analyses 

We estimated proportion of seroprevalence and constructed confidence intervals adjusted for 

clustering at farm level by using the linearized variance estimator based on a first-order Taylor series 

linear approximation [25]. In addition, we adjusted the apparent seroprevalence by test sensitivity 

and specificity as follows: TP = (AP + Sp-1) / (Se + Sp – 1) where TP = true prevalence, AP = apparent 

prevalence, Sp = specificity, and Se = sensitivity. We used the sensitivity and specificity of the two 

tests in series assuming conditional independence: Se = Se1 x Se2  and Sp = 1 – (1 - Sp1) x (1 - Sp2) 

 [26,27]. 

We used logistic regression to assess the association between potential risk factors and the 

apparent RVFV serological status of study participants. For the multivariable logistic regression 

model, we included all variables with p < 0.2 on univariable analysis and then dropped non-

significant factors (p ≥ 0.05) with manual backward elimination. Some variables (e.g. job description 

on farm and the ownership of the land used by the farmer (private or communal)) were included in 

the model regardless of their significance in order to control for confounding. Analysis was done 

using Stata 13 (StataCorp, College Station, TX, USA) with adjustment for data that were collected 
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using a survey sampling design and clustering using the svy-set command that specified the farm 

identifier as the primary sampling unit (cluster) variable and svy-prefix for estimation and risk factor 

analysis commands. 

The historical cumulative number of RVF cases that occurred in the study area was estimated as 

the product of the true seroprevalence, the number of livestock-owning households (LOHH) in the 

study area, and the number of employees per LOHH in the study area (2015–2016). A probability 

distribution of RVF case numbers with median and 95% credible interval (2.5th and 97.5th percentiles 

of distribution) was obtained via 10,000 Monte Carlo simulations using @Risk (Palisade Corporation, 

Ithaca, NY, USA). Each simulation sampled from the following probability distributions for the input 

factors: 

Seroprevalence ~ Beta(α, β) 

No. of LOHH ~ Pert(a, b, c) 

No. of employees per LOHH ~ Normal(μ, σ) 

where α = total number of RVFV-seropositive farm workers, β = total number of people sampled – α, 

a = minimum no. of LOHH, b = most likely no. of LOHH, c = maximum no. of LOHH estimates, � = 

mean number of employees on the farm, � = standard error for �. LOHH estimates were made using 

data available from the 2011 National Census ((K. Parry Statistics South Africa 2014, pers. Comm.) as 

described below. Data were based on 1541 “small areas,” a census-defined geographic area, within 

the study area. The numbers of LOHH per small area were obtained separately for cattle, for sheep 

and for goats and it was not possible to determine the total number of households that owned cattle 

or sheep or goats. The high LOHH estimate (c) assumed that no farms kept more than one species, 

the low LOHH estimate (a) assumed that every household kept all three species and the most likely 

LOHH estimate (b) assumed most likely in-between scenario calculated as average of a and c. 

The geographical coordinates of the farms where participants that had worked/lived at that farm 

for four years or longer (therefore were there during the 2010–2011 outbreaks) were sampled-were 

used for mapping the spatial distribution of the proportion of people that were seropositive on each 

farm and these data were used for hotspot analysis using ArcGIS 10.5. (Esri, Redlands, California, 

USA). We first checked overall pattern of the farm seroprevalence data by measuring spatial 

autocorrelation (Moran’s I statistic), which was transformed to a z-score, a measure of standard 

deviation from the mean from a normal distribution in which values greater than 1.96 or smaller than 

−1.96 indicate spatial autocorrelation that is significant at the 5% level [28]. At the same time, we 

examined consistency of the spatial pattern of the variable across the study area to evaluate 

effectiveness of global Moran’s I tool. Next, we calculated the Getis-Ord Gi* statistic (z-score) by 

comparing the local situation, i.e. sum of the value for a farm in question and those of neighboring 

farms to the global situation, i.e. sum of all farm values [29].  

This identifies local clusters (of farms) that have higher seropositivity values than expected by 

random chance (hotspots). We used Inverse Distance Weighted (IDW) as interpolation method that 

averaged the z-scores of the measured farm points to predict the z-score for the location points 

without measurement in the interpolated raster cell surface to create the hotspot layer. We also 

predicted mean RVFV seroprevalence of people that had worked/lived at that farm for four years or 

longer by fitting a logistic regression model to age data in Stata. We subtracted predicted from actual 

mean farm seroprevalence of human RVFV and ran a hotspot analysis on the difference in 

seroprevalences. This was done to verify whether external factors other than age caused hot and cold 

spots.  
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3. Results 

3.1. Study Population 

A total of 823 individuals were enrolled and tested during October 2015–February 2016. The 

median age of participants with available data was 36 years (range 16–84 years). There was a much 

higher number male (93% (634/684)) than female (7% (50/684)) LSFPs encountered and sampled on 

farms and amongst AHCWs sex was more equally distributed between men (49% (68/138) and 

women (51% (70/138)). Most, 685 (83%) were LSFPs from 204 farms and 138 were AHCWs. Of the 

LSFPs 669 (98%) were from 199 domestic animal farms and the remaining 16 were from five farms 

that primarily farmed game. The majority, 641 (94%) participants were from 185 privately-owned 

farms and 44 participants were from 19 communal land farms. The median size of privately-owned 

farms was 1001–2000 ha. Six percent of farm owners refused participation, but these were replaced 

by a next farm willing to participate for the same geographical random point. A median of 3 (range 

1–14) individuals were enrolled from the farms with a median of 4 LSFPs (range 1–45). Amongst the 

LSFPs with available data (684), 487 (71%) were farm workers or herdsmen (including several 

contracted wool shearers), 173 (25%) were farm/livestock owners or managers, and 24 (4%) were 

family members, housewives, domestic helpers or drivers. Amongst the AHCWs with available data 

(122), 66 (54%) were veterinarians, 37 (30%) were veterinary technicians, animal health technicians or 

para-veterinarians, 9 (7%) were veterinary nurses, 5 (4%) were researchers, 3 (3%) worked in 

game/nature conservation, and 2 (2%) indicated they practiced farming (Table S2 of Supplementary 

Materials). 

3.2. Seroprevalence and Factors Associated with Human Exposure 

The RVFV apparent seroprevalence was 9.1% (62/685) among LSFPs and 8.0% (11/138) among 

AHCWs (p = 0.87). Adjusting for test sensitivity and specificity and for clustering, the estimated true 

seroprevalence was 9.1% (CI95%: 7.2–11.5%) and 8.0% (CI95%: 4.5–13.8%) among LSFPs and 

AHCWs, respectively. 

On multivariable analysis (Table 1), adjusting for intra-farm clustering, factors associated with 

increased risk of RVFV seropositivity were: slaughtering animals (odds ratio (OR) = 3.9; CI95%: 1.2–

12.9); preparing/consuming meat of hooved animals found dead (OR = 3.1; CI95%: 1.5–6.6); working 

on farm with one or more man-made dam structures for holding water (OR = 2.7; CI95%: 1.0–6.9); 

and injection of and collection of samples from animals (OR = 2.3; CI95%: 1.0–5.3). There was also a 

distinct difference in prevalence of RVFV antibody between age groups and those that had 

experienced one versus two or more large epidemics: the seropositivity of 30–39 age group (6.1%; 

CI95%: 3.1–11.7%) versus 16–29 age group (2.6%; CI95%: 1.1–6.1%), that had both experienced only 

one large epidemic, was not significantly different (p = 0.126); however, aged 40–49 (11.4%; CI95%: 

6.3–20.9%) (p = 0.001) and aged 50–63 (18.9%; CI95%: 12.5–27.4%) (p < 0.001) that had both experienced 

two epidemics and 64 years of age and older (17.5%; CI95%: 8.4–32.9%) (p < 0.001) that had 

experienced three epidemics were all more likely to be seropositive than the youngest age group 

(aged 16–29). There was no significant difference between age group that experienced three versus 

two epidemics (p = 0.539). The youngest seropositive individual was a 23-year-old farm worker.  

In addition, taking measures against mosquito bites (use of skin or coil repellents) (OR: 0.52; 

CI95%: 0.29–0.90), and working on farms with animals used for a variety of purposes (e.g. milk 

ceremonial, wealth, bartering, resale, tourism) compared to one purpose breeds for meat production 

(OR = 0.17; CI95%: 0.03–0.93) and that has kept cattle compared to those that have not (OR = 0.35; 

CI95%: 0.14–0.88) were associated with lower odds of RVFV seropositivity. A lower odds of 

seropositivity was found in people that assisted with surgery on farm animals (OR = 0.38; CI95%: 

0.15–0.98). There was no association between the presence of seropositive animals (including both 

vaccinated and naturally exposed animals) and the serostatus of the humans associated with that 

farm (univariable p = 0.795). 
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Table 1. Univariable and multivariable logistic regression analysis of potential risk factors for Rift Valley fever virus (RVFV) seropositivity in people working on 

farms in the study area of South Africa during 2015–2016. 

Variables1 
RVFV Seropositive 

n/N (%) 

Univariable Analysis Multivariable Analysis2 

Odds Ratio 

(CI95%) 

p-Value 

(<0.2) 
Odds Ratio (CI95%) 

p-Value 

(<0.05) 

Demographic characteristics      

Age (years)      

16–29 5/196 (2.6%) 1 (base) - 1(base) - 

30–39 12/196 (6.1%) 2.7(0.8–8.7) 0.100 2.64(0.76–9.18) 0.126 

40–49 13/114 (11.4%) 5.9(1.9–18.2) 0.002 6.91(2.15–22.2) 0.001 

50–63 20/106(18.9%) 12.6(4.3–37.0) <0.001 12.9(4.15–40.0) <0.001 

≥64 7/40 (17.5%) 16.9(4.3–66.0) <0.001 25.6(5.50–119) <0.001 

Working on farm (years)    Eliminated  

≤5 16/299 (5.4%) 1 (base) -   

6–10 11/108 (10.2%) 2.1(1.0–4.5) 0.53   

11–20 14/128 (10.9%) 2.5(1.2–5.3) 0.019   

21–30 8/64 (12.5%) 3.1(1.2–7.9) 0.016   

31–40 5/37 (13.5%) 4.0(1.4–11.8) 0.012   

>40 8/48 (16.7%) 5.3(2.0–13.6) 0.001   

Working with animals (years)    Eliminated  

≤5 10/240 (4.2%) 1(base) -   

6–10 8/110 (7.3%) 1.9(0.8–4.7) 0.166   

11–20 15/145 (10.3%) 3.0(1.3–7.3) 0.014   

21–30 15/85 (17.6%) 6.1(2.5–15.2) <0.001   

31–40 6/51 (11.8%) 4.5(1.4–14.8) 0.014   

>40 7/48 (14.6%) 6.3(2.1–18.6) 0.001   

Job      

Farm worker/herdsman 46/487 (9.5%) 1(base) - 1(base) - 

Farm/livestock owner/manager 15/173 (8.7%) 0.9(0.5–1.7) 0.758 1.26(0.42–3.80) 0.678 

Family, domestic worker, driver 1/24 (4.2%) 0.4(0.05–3.3) 0.403 0.65(0.06–6.72) 0.718 

Activities in past      

Cleaning equipment    Eliminated  

Yes 53/547 (9.7%) 1.5(0.8–2.9) 0.176   
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No 9/137 (6.6%) 1(base) -   

Injection and collection of samples from animals       

Yes 53/500 (10.6%) 2.4(1.2–4.7) 0.014 2.33(1.03–5.30) 0.043 

No 9/184 (4.9%) 1(base) - 1(base) - 

Assisting with birth of animal    Eliminated  

Yes 57/577 (9.9%) 2.1(0.7–6.3) 0.172   

No 5/107 (4.7%) 1(base) -   

Assisting with surgery      

Yes 8/136 (6.0%) 0.5(0.3–1.1) 0.097 0.38(0.15–0.98) 0.046 

No 54/548 (9.9%) 1(base) - 1(base) - 

Slaughtering of animals      

Yes 58/563 (10.3%) 3.3(1.3–8.7) 0.014 3.93(1.20–12.88) 0.024 

No 4/121 (3.3%) 1(base) - 1(base) - 

Burying dead animals    Eliminated  

Yes 45/422 (10.7%) 1.7(0.9–3.0) 0.079   

No 17/262 (6.5%) 1(base) -   

Eating hooved animal found dead      

Yes 42/342 (12.3%) 3.4(1.8–6.7) <0.001 3.14(1.49–6.61) 0.003 

No 20/342 (5.8%) 1(base) - 1(base) - 

Measures against mosquito bites      

Yes 22/305 (7.2%) 0.7(0.4–1.1) 0.114 0.52(0.29–0.90) 0.021 

No 40/379 (10.6%) 1(base) - 1(base) - 

Working on farm with primarily domestic or wild 

animals 
   Eliminated  

Wild 3/16 (18.8%) 2.3(1.2–4.4) 0.011   

Domestic 59/669 (8.8%) 1(base) -   

Working on farm with private or communal land use3      

Communal 3/44 (6.8%) 0.8(0.3–2.4) 0.656 0.75(0.09–5.93) 0.784 

Private 59/641 (9.2%) 1(base) - 1(base) - 

Working on farm that kept cattle      

Yes 47/581 (8.1%) 0.5(0.2–1.0) 0.059 0.35(0.14–0.88) 0.025 

No 15/104 (14.4%) 1(base) - 1(base) - 

Manmade dam(s) on farm      

Yes 54/532 (10.2%) 2.5(1.1–5.7) 0.032 2.68(1.04–6.89) 0.041 
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No 6/139 (4.3%) 1(base) - 1(base) - 

New animals are quarantined    Eliminated  

Yes 7/142 (4.9%) 0.4(0.2–1.1) 0.069   

No 55/543 (10.1%) 1(base) -   

Main purpose of farming3      

Meat 40/367 (10.9%) 1(base) - 1(base) - 

Dairy 1/24 (4.2%) 0.3(0.03–3.6) 0.373 1.00(0.13–7.56) 0.999 

Meat-wool 15/194 (7.7%) 0.7(0.4–1.2) 0.186 0.67(0.34–1.29) 0.225 

Other (milk, bartering, wealth, ceremonial, resale, 

tourism) 
6/100 (6.0%) 0.5(0.2–1.3) 0.169 0.17(0.03–0.93) 0.041 

Animals are slaughtered on farm    Eliminated  

Yes 47/443 (10.6%) 1.8(0.8–4.2) 0.158   

No 12/198 (6.1%) 1(base) -   

Animals vaccinated against RVFV in the past    Eliminated  

Yes 41/357 (11.5%) 1.9(1.1–3.3) 0.027   

No 19/300 (6.3%) 1(base) -   

RVF on farm in past incl. participants working there 4 

years or more only 
   Not included  

Yes 19/149(12.8%) 1.3(0.6–2.7) 0.498 
Checked for 

confounding 
 

No 28/272 (10.3%) 1(base) -   

Drinking milk    Not included  

Pasteurised/boiled 19/233(8.2%) 1(base)    

On occasion raw 5/56(8.9%) 1.2(0.4–3.6) 0.762   

Raw 27/292(9.2%) 1.1(0.5–2.2) 0.817   
1 The variables with univariable p-value < 0.2 were included in the multivariable analysis. The variables with multivariable p-value < 0.05 were kept in the 

multivariable model. 2 Eliminated means that the variable was first included in the model and then it was omitted due to the fact that its p-value in the model was 

≥ 0.05. 3 Most communal farmers farm with mixed purpose while private land-owned farms usually specialize in one or dual production motive. When 

landownership variable was eliminated from the model the odds for seropositivity in mixed production purpose gave unrealistic results and for this reason 

landownership was retained as potential confounder in the model despite its statistical insignificance. 4  Sex was not significant by univariable analysis (p ≥ 0.2). 

Sex was not considered as potential confounder and most farm workers were male. 

Amongst veterinary professionals (Table 2), similar to the LSFPs, the proportion of positive samples increased markedly in subjects older than 50 years: 

those aged 50–63 (OR = 92.5; CI95%: 7.2–1196) and those 64 or older (OR = 167; CI95%: 7.1–3916) were much more likely to have antibodies against RVFV 

than subjects younger than 50 years of age. No other factors for risk of RVFV exposure were retained as significant during multivariable analysis.  
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Table 2. Univariable and multivariable logistic regression analyses for potential risk factors for RVFV seropositivity in veterinarians and associated professions 

(AHCWs) in the study area of South Africa during 2015–2016. 

Variables1 RVFV Seropositive n/N (%) 

Univariable Analysis Multivariable Analysis2 

Odds Ratio (CI95%) 
p-Value 

(<0.2) 
Odds Ratio (CI95%) 

p-Value 

(<0.05) 

Demographic characteristics      

Age (years)      

16–49 1/98 (1.0%) 1(base) - 1(base) - 

50–63 6/22 (27.3%) 92.5(7.2–1196) 0.001 92.5(7.16–1196) 0.001 

≥64 2/7 (28.6%) 166(7.2–3916) 0.002 167(7.08–3916) 0.002 

Working as AHCW (years)    Eliminated  

≤40 1/85(1.2%) 1(base) -   

41–50 5/22(22.7%) 62.4(2.07–1886) 0.018   

≥51 4/15(26.7%) 65.4(3.9–1110) 0.004   

Job description      

Animal health tech 2/37(5.4%) 1(base) - 1(base) - 

Veterinarian 6/66(9.1%) 1.75(0.40–7.57) 0.450 0.11(0.01–1.72) 0.116 

Other (incl. vet nurse, researcher, wildlife capturers) 2/19(10.5%) 2.06(0.28–15.03) 0.473 0.74(0.05–11.01) 0.825 

Activities in past      

Cleaning waste    Eliminated  

Yes 9/83 (10.8%) 3.4(0.7–16.6) 0.137   

No 2/55 (3.6%) 1(base) -   

Working with hoofed animals    Eliminated  

<1 h 3/67 (4.5%) 1 (base) -   

Half day 3/37 (8.1%) 1.7(0.3–9.7) 0.548   

Whole day 5/34 (14.7%) 3.6(0.7–17.3) 0.110   

Contact with RVF positive animals in the past    Eliminated  

Yes 9/82 (11.0%) 5.1(0.7–38.6) 0.112   

No 1/40 (2.5%) 1(base) -   

Taking measures against mosquito bites    Eliminated  

Yes 4/84 (4.8%) 0.4(0.1–1.6) 0.193   

No 7/54 (13.0%) 1(base) -   

Drinking milk    Eliminated  

Yes 8/125 (6.4%) 0.18(0.03–0.98) 0.047   
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No  3/13 (23.1%) 1(base) -   

Conditions      

On chronic medication    Eliminated  

Yes 5/43 (11.6%) 2.6(0.7–9.8) 0.170   

No 6/95 (6.3%) 1(base)    

Chronic liver disease    Eliminated  

Yes 1/2 (50%) 11.8(0.6–229) 0.102   

No 10/136 (7.4%) 1(base) -   
1 The variables with univariable p-value < 0.2 were included in the multivariable analysis. The variables with multivariable p-value < 0.05 were kept in the 

multivariable model. 2 Eliminated means that the variable was first included in the model and then it was omitted due to the fact that its p-value in the model was 

≥ 0.05. 3 Sex was not significant by univariable analysis (p ≥ 0.2). Sex was not considered as potential confounder and sexes were equally distributed in veterinary 

professionals. 
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3.3. Estimation of RVF Cases in Farm Population 

The values for the parameters defining the distributions used in the Monte Carlo simulation are 

given in Table S1 (Supplementary Materials). The simulation estimated that the most likely number 

of historically RVFV infected farm workers in the study area was 3849 (95% credible interval: 2635–

5374) (Figure S1 Supplementary Materials). 

3.4. Spatial Distribution of RVFV Farm Seroprevalence  

Almost 25% (44/189) of the mapped farms had at least one seropositive individual. Amongst 

those, percentage of seropositive individuals ranged from 15–100% on a given farm. Figure 1 shows 

the distribution of farms with respective seroprevalence of human RVFV and sample size. The spatial 

patterns of farm seroprevalence of human RVFV appeared not significantly different than random 

by global Moran’s I statistic (z = −0.412, p = 0.681). Instead Getis-Ord Gi* analysis was carried out as 

the spatial pattern was not consistent across the study area. Hot and cold spots of farm-level RVFV 

seropositivity locally within the study area were identified based on results of the Getis-Ord Gi* 

model of difference of observed and predicted seroprevalences, which indicated locations with 

causes for hot spots other than age (Figure 2). Three hot spots of human RVFV seropositivity were 

identified: A hotspot of high intensity was located towards western central part of the study area 

which is the northwestern part of the Xhariep District, encompassing Jacobsdal and Koffiefontein 

(Getis-Ord Gi* p < 0.05).  

The second hotspot was located in the northeastern part of the study area which is the middle 

of Lejweleputswa District, in the west of Brandfordt area (Getis-Ord Gi* p < 0.05). A third hotspot 

was found in the Nord central part, which is Boshoff area (Getis-Ord Gi* p < 0.05). 

Three cold zones were identified in the northwestern part (Kimberley-Barkley-West), central 

part (Petrusburg surrounds) and eastern central part of the study area (east of Bloemfontein), of 

which none were significant by Getis-Ord Gi*.  
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Figure 1. Distribution of anti–Rift Valley fever virus antibodies in 462 humans on 189 ruminant 

livestock and game farms in the study area in central South Africa, sampled during 2015–2016. 

 

Figure 2. Hotspot map of anti–Rift Valley fever virus antibody prevalence, adjusted for age, 1 in 462 

humans on 189 ruminant livestock and game farms in the study area in central South Africa, sampled 

during 2015–2016. 

1 Difference of RVFV observed seroprevalence and predicted seroprevalence (by logistic regression 

model including age) by farm. 

4. Discussion 

Our seroprevalence study achieved RVFV estimates for two high-risk populations in a high-

outbreak area in South Africa. Based on seroprevalence and farm population estimates we were able 

to provide a conservative estimate of the cumulative number of infections that had occurred in the 

area in order to compare it with the number of confirmed reported cases during past outbreaks in 

South Africa. We also obtained the first multivariable logistic regression model identifying risks for 

RVFV exposure in high-risk population of high-outbreak area. We were able to use it to substantiate 

what had been reported from outbreaks and Archer et Al. [9] study in confirmed clinical cases. 

Finally, we created a map to show levels and variability of farm seroprevalence and past exposure of 

human RVFV within the study area.  

4.1. Seroprevalence 

The study identified a true RVFV seroprevalence of 9.1% in 685 people from primarily private 

livestock farms four years after the 2010–2011 RVF outbreak. Another study conducted also in the 

central plateau, but three years after the 1974–1975 RVF outbreak, reported a seroprevalence of 14.5% 

in a farming community (68 farms, 1162 participants) [16]. Although the 1978 survey included farms 
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within our study site, it only sampled known outbreak farms and also included sites that were quite 

distant; this, along with the differing duration since outbreak, study design and population’s age 

distribution and serological tests may explain the discrepancy between the observed seroprevalences, 

making it difficult to determine whether there was indeed a true difference in the extent of human 

exposure between the two epidemics.  

Serological surveys conducted in other parts of the country that are considered low risk for RVF 

outbreak due to the low reported case numbers [20,30] published variable findings. A value of 10% 

in rural people near the eastern coast in northern KwaZulu-Natal during 1955–1958 [31], which is 

similar to our and McIntosh et al. estimates [16]. Surveys reported less than 1% seroprevalence in 333 

Kruger National Park (KNP) personnel during 2013–2014 [32] and 0% in 64 veterinary staff and 

livestock workers at government diptanks in Mpumalanga [33], while we reported 8.0% among 138 

veterinary professionals. The low detection compared to our study area could be explained by low 

virus activity or be due to high endemicity in wildlife (as in the KNP) [34], or an absence of large 

populations of wildlife and livestock. It is also expected that park personnel have different types of 

RVFV associated exposure risks as they are working with wild animals. There may also be difference 

in the sampled age when comparing the one survey to other surveys of veterinary professionals. 

Our age group-specific results confirm the known history that no RVF epidemics occurred 

following the 1974–1975 outbreak until 2010–2011 within this farming community, but the increases 

in seroprevalence in the older age groups clearly demonstrate higher seropositivity in people that 

could have experienced one or more RVF epidemic.  

Inter-country comparison between published studies is complicated because the population 

surveyed, implementation time and scope and diagnostic assay varied by study region [35–37]. 

Similar results to our estimate of 4.3% in <40-year-olds that experienced one known epidemic in South 

Africa were detected on the island of Mayotte in 2011 (4.1%; 58/1413) [38], four years after RVF had 

emerged in humans in 2007.  

4.2. Risk Factors 

As found in other studies [14–17, 34–36], most of the significant associations in our study were 

between RVFV seropositive status and activities, habits, and behaviors involving exposure to blood 

or tissues of animals or their products, i.e. injecting animals or collection of clinical specimens, 

slaughtering, and consuming meat from an animal after it was found dead. There was only a weaker 

univariable association with assisting with the birth of animals compared to above-mentioned risks 

from the multivariable model. 

Our results are similar to findings of a systematic review and meta-analysis on RVFV risk factors 

[39] using studies between 1989–2011, which identified slaughtering but also contact with aborted 

animal tissues, assisting with the birth, and skinning as being significantly associated with RVFV 

seropositivity. While fresh carcasses can be a source of infection with RVFV, the virus is quickly 

destroyed by cooking the meat [40]. The bulk of food-borne RVFV infections are probably from cross-

contamination during meat preparation, which would implicate poor hygiene practices and/or meat 

contamination during processing of a carcass. The results of the aforementioned meta-analysis also 

confirmed drinking raw milk as associated with positive RVFV serology [39], but neither we nor 

Archer et al. in 2008–2011 [9,17] found such an association for South Africa.  

The majority of confirmed cases during the 2008–2011 RVF outbreak in South Africa had a 

documented history of physical contact with animals either through disposal of dead animals or 

aborted fetuses, or slaughtering of animals [9,17,39]. Mosquitoes, however, were believed to have 

had a substantial involvement in human transmission in major outbreaks in Egypt in 1977 [41] and 

in northern Kenya and southern Somalia in 1998 [42]. We also found some indication of the 

involvement of mosquitoes in human transmission, by finding that members of the farm population 

who took precautions against mosquito bites had a significantly lower odds of seropositivity than 

those that did not.  

Participants from farms with one or more dams had higher odds of seropositivity; this may 

indicate vector-borne exposure of livestock or humans directly because standing water provides 
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breeding sites for mosquitoes previously implicated in RVFV transmission in South Africa (Culex 

theileri, Aedes mcintoshi, and Aedes juppi) and which readily bite people, thus suggesting that 

mosquito-borne human RVFV infection is possible in South Africa [16].  

An age-dependent RVFV antibody increase has been consistent across various studies [39,43,44] 

and can be explained by the fact that older persons have had more opportunity to acquire viral 

infections and the RVFV IgG persists [45]. Using age categories, we demonstrated that seroprevalence 

was highly associated with the likely number of epidemics experienced during a person’s lifetime. 

This does not exclude the possibility that some exposure may have taken place during interepidemic 

periods but we know that in our study area the vast majority of exposure would have taken place 

during epidemics.  

4.3. Case Estimates 

We estimated that between 2635 and 5374 historical RVFV infections occurred in people still 

alive on farms in the study area. Our projection suggests that the impact of RVF outbreaks on human 

health is likely much higher than previously documented. For example, of 2009 clinically suspected 

cases tested for the whole country during 2010–2011, only 278 were confirmed to be RVF cases [17]. 

Although numerous human infections were estimated to have occurred during the 1974–1975 

epidemic, only 110 were laboratory confirmed [16].  

Despite the observation of clinical RVF in people since 1930 [46], the first deaths were only 

reported in 1974–1975 in South Africa [16]. During the 2010–2011 outbreaks, 25 deaths were 

confirmed in South Africa [17]. The frequency of reported RVF complications and deaths has 

apparently increased in successive outbreaks from multiple African countries [44,47,48]. This rise 

may partly be due to re-assortment to virulence of live attenuated virus when infected livestock are 

vaccinated with live RVFV vaccine during outbreaks [48,49]. The increase may also partly reflect 

better recognition of RVF cases in people over time. We believe, however, that statistics for South 

Africa are reliable and all deaths were correctly attributed to RVF during past outbreaks. In contrast 

to uncomplicated cases, they would have required and likely had access to hospitalization in South 

Africa.  

In certain outbreaks, RVF was associated with frequent ocular morbidity [50,51]. Ocular 

complications have been described for the earlier epidemics of RVF [52–54], but it was not studied in 

the most recent epidemic in South Africa. Two percent is the percentage suffering from retinitis 

among clinical cases [7]. It cannot be directly deduced that this is the situation with sub-clinical cases 

as well. In view of the apparent increasing morbidity and mortality associated with RVF [47], the 

development of a commercial vaccine that is safe for use in humans is highly recommended to permit 

the immunisation of people in risk occupations [55].  

4.4. Spatial Analysis 

Local spatial tools found that farm RVFV seroprevalence was spatially clustered in certain areas. 

Hot and cold spots of farm seroprevalence of human RVFV adjusted for age were found, indicating 

there is a broad varied risk of past exposure within this 40,000 km2 area of study. Disparity in spatial-

temporal patterns of RVF outbreaks was documented in Tanzania [35] and between rural villages in 

north-eastern Kenya [45]. However, further research by geographic analysis methods could explain 

environmental factors responsible for the hotspots in the identified areas.  

4.5. Limitations 

The seroprevalence estimate was based on selected farms and the veterinary professional 

register within an outbreak-prone area, and is not representative of the country as a whole 

(particularly for rural households that do not own ruminant livestock). The study targeted at-risk 

occupational groups in a high-risk area for RVFV exposure in order to find sufficient seropositivity 

to power a risk factor analysis. Future research should also include other areas of South Africa, 
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including those that are at low risk of outbreaks, to get a better understanding of how RVFV 

epidemiology varies geographically.  

Our calculations were based on information provided by the participants and may have been 

affected by recall bias and false self-reporting, e.g. it is much easier for a person to recall whether 

he/she had contact with animals than a mosquito bite exposure. Despite the small number of people 

without direct animal contact or working with game, we were able to draw some conclusions about 

factors associated with RVFV seropositivity which should be interpreted with caution. We used a 

simple simulation method to estimate cumulative numbers of infections that had historically 

occurred in the area. People exposed to more outbreaks may be under-represented in our sample 

because they might have died, and this may result in our estimates being conservative. Comparison 

with other areas will be limited with results obtained. We were not able to satisfy assumptions 

underlying other methods to calculate more informative estimates e.g. force of infection rather than 

a total number because estimates would vary a lot because of epidemic and occupational nature of 

RVFV infection amongst other. In addition, reliable population data for the study area during 

previous outbreaks are unavailable. Non-random sampling within farms may have affected the 

spatial analysis, which is dependent on accuracy of the farm-level estimates of seropositivity. If 

seropositive individuals moved between farms this could also have biased the spatial analysis. 

Geographic data were not available to analyse geographic distances between hotspots and other areas 

of the study. 

5. Conclusions 

Our study showed that one in ten individuals in at-risk occupations was seropositive in a region 

with three previously documented, large RVFV outbreaks. The study highlighted the increase in 

seroprevalence in people that had experienced more outbreaks. While seropositive status should 

provide long-lived immunity in an individual, the level identified here is not adequate for herd 

immunity. For that reason, prevention efforts should in the first instance be directed toward ensuring 

herd immunity is reached in livestock through vaccination on these farms to prevent the occurrence 

of outbreaks and subsequent zoonotic exposures in humans. As a second line of defense, our research 

identified exposure factors which could be targeted for reducing overall infections in populations 

during future outbreaks, including safe handling and animal slaughtering practices and wearing 

adequate protective equipment during injection, sample collection, slaughtering and processing of 

infected meat for consumption and precautions against mosquito bites.  

The distribution of RVFV seropositivity was broad but patchy in the central plateau of South 

Africa. Focusing RVF control measures during epidemic and inter-epidemic periods toward zones at 

high risk for RVF at livestock-owning household- and neighborhood-level may result in a more cost-

effective approach of RVF management and prevention of spread. Assessing the relationship 

between RVF clusters and environmental factors could further contribute to interventions for 

reducing transmission of RVFV.  

Research in understanding mosquito ecology, the most important way RVFV is spread amongst 

animals, is a prerequisite in prevention and control measures for RVF. In addition is monitoring to 

understand immunity in animals to protect against infection in these and humans from zoonotic 

exposure. By implementing collaborative cross-species RVFV surveys in livestock, wildlife, humans, 

and mosquito vectors together with climate and vegetation studies according to a one-health 

approach we had a much better chance to improve our understanding of RVFV ecology and 

epidemiology in South Africa instead of one-sided self-standing studies. Research by 

multidisciplinary team improved interdisciplinary communication and knowledge transfer which 

can lay foundation for continued collaboration at the control phase. At-risk community received 

awareness and education from professionals with a wide range of expertise in this way contributing 

to more effective joint disease control. Efforts are also shared in logistic services, the development 

and evaluation of diagnostic methods animal vaccines and larviciding measures, for example, that 

benefits early detection and prevention of loss of livestock and morbidity and death in humans in 

more cost-effective way. Associated risks identified in both animals and humans can be prevented 
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and controlled in one way which should be more cost-effective. RVF forecasting and climatic models 

a frontline control method requires input from all disciplines to improve accuracy for local setting.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Input 

distributions and parameter for Monte Carlo simulations of case projection, Table S2: Demographic distribution 

of participants and farm size distribution, Figure S1: Distribution of possible outcome values of historically 

infected RVF cases in the study area.  
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