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Abstract: Enteroviruses are small RNA viruses that cause diseases with various symptoms ranging 
from mild to severe. Enterovirus proteins are translated as a single polyprotein, which is cleaved by 
viral proteases to release capsid and nonstructural proteins. Here, we show that also cellular 
calpains have a potential role in the processing of the enteroviral polyprotein. Using purified 
calpains 1 and 2 in an in vitro assay, we show that addition of calpains leads to an increase in the 
release of VP1 and VP3 capsid proteins from P1 of enterovirus B species, detected by western 
blotting. This was prevented with a calpain inhibitor and was dependent on optimal calcium 
concentration, especially for calpain 2. In addition, calpain cleavage at the VP3-VP1 interface was 
supported by a competition assay using a peptide containing the VP3-VP1 cleavage site. Moreover, 
a mass spectrometry analysis showed that calpains can cleave this same peptide at the VP3-VP1 
interface, the cutting site being two amino acids aside from 3C’s cutting site. Furthermore, we show 
that calpains cannot cleave between P1 and 2A. In conclusion, we show that cellular proteases, 
calpains, can cleave structural proteins from enterovirus polyprotein in vitro. Whether they assist 
polyprotein processing in infected cells remains to be shown. 
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1. Introduction 

Enteroviruses belong to a large family on non-enveloped RNA-viruses Picornaviridae. 
Enteroviruses cause diverse diseases in humans with symptoms varying from mild, such as common 
cold, to more severe such as meningitis, encephalitis, and myocarditis [1–4]. In addition to acute 
diseases, enteroviruses have been associated with chronic diseases like type I diabetes or asthma [5–
7]. However, there is no antiviral on the market against enteroviruses. Our previous studies have 
shown that host cell proteases, calpains, have a role in enterovirus infection after entry and RNA 
release and that calpain activity increased during infection at around 3 h post infection (p.i.), when 
translation/replication starts to accelerate [8,9]. 

Enteroviruses are small viruses with single-stranded positive-sense 7500 nt RNA genome inside 
an icosahedral capsid. After cell entry, the viral RNA is released into the host cytoplasm, where it is 
directly translated to a single polyprotein and acts as a template in RNA synthesis. The four structural 
proteins (VP1–VP4) are encoded by P1 region in the polyprotein, whereas P2 and P3 regions contain 
several nonstructural viral proteins that either directly participate in viral replication or remodel the 
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host cell architecture to promote the viral replication [10]. According to current knowledge, the 
polyprotein is considered to contain all the necessary proteins needed for polyprotein processing as 
the nonstructural proteins also include viral proteases 2A and 3C and a precursor protein 3CD. These 
viral proteases have been shown to cleave the polyprotein co- and posttranslationally in order to 
release the individual proteins [11]. The viral protease 2A is located immediately after the P1 region 
and has been shown to carry out the first cleavage of itself and the rest of the polyproteins (P2–P3) 
out from the P1 region already during translation [10–13]. In addition, in trans-polyprotein cleavage 
by 2A has been reported [14]. The other cleavages, with the exception of capsid maturation cleavage 
VP0 to VP4 and VP2, have been shown to be carried out either by 3C or 3CD precursor, which are 
located in the P3 region [11,15]. In addition to the polyprotein cleavage, the viral proteases have been 
shown to cleave several host cell proteins in order to promote infection and to contribute the 
pathogenicity [10]. The identified cell targets include, for example, proteins involved in cellular 
transcription, translation, and immune responses [10,16]. The viral proteases 2A and 3C have cysteine 
in their catalytically active site, being structurally similar to chymotrypsin-like serine proteases [17]. 
Inside the enterovirus genus, the catalytic cysteine of these proteases and other amino acids in the 
catalytic triad are fully conserved [10]. 

Calpains are papain-like cysteine proteases found in almost all eukaryotes [18]. There are 15 
different calpains in humans, and the first identified was the conventional calpains 1 and 2. To form 
a functional protease, the catalytic subunit (80 kDa) of calpain 1 and 2 form a heterodimer with a 
regulatory subunit CAPNS1 (30 kDa), which is common to both conventional calpains [18]. Calpains 
exist in the cytoplasm as proenzymes and are activated when intracellular Ca2+ levels are increased. 
Instead of complete degradation, calpains cause limited proteolysis mainly in the inter-domain 
unstructured regions of their substrates. It has been suggested that this is due to a narrow and deep 
active site in the CysPc protease domain [19]. In order to fit into the active-site cleft, the substrate 
proteins have to be in an extended conformation. Several protein targets have been found for calpains 
in in vitro studies such as cytoskeletal proteins, membrane associated proteins, transcriptional 
factors, as well as kinases and phosphatases [9,20]. However, the substrate specificity of calpains has 
long been unclear, and it has been suggested that the 3D structure of the target protein may play  
more important role in substrate recognition compared to amino acid sequence of the target [21,22]. 

Calpains have been associated with enterovirus infection already in earlier studies: they have 
been suggested to have a role in coxsackie B virus-induced vesicle trafficking inside cells, necrosis, 
and autophagy [23–25]. Despite earlier studies by us and others, mechanistic understanding of 
calpain action during the replication/translation phase of enterovirus infection has remained unclear. 
In addition, the involvement of host cell proteases to take part in proteolytic processing has remained 
a possibility, but none have been proven so far. Here, we show that calpains are able to proteolytically 
process the enteroviral P1 region of enterovirus B species at two specific sites in vitro, thus suggesting 
that they may contribute to efficient capsid maturation of enteroviruses. 

2. Methods 

2.1. Reagents 

Purified calpain 1 (human) and 2 (rat) proteases were from Calbiochem. Purified viral proteases 
2A and 3C were expressed in E. coli as described before [26]. Calpain inhibitor I (N-Acetyl-Leu-Leu-
norleucinal) was from Roche (Basel, Switzerland). Elastatinal was from Santa Cruz biotechnology 
(Dallas, Texas, USA). Acetonitrile (ACN), formic acid (FA), water (UHPLC-MS grade), 
triethylammonium bicarbonate buffer 1 M (TEAB), sodium dodecyl sulfate (SDS), iodoacetamide 
(IAA), trifluoroacetic acid (TFA), ammonium bicarbonate (ABC), and urea were all purchased from 
Sigma Aldrich Corp. (St. Louis, MO, USA). Sample clean up tips (C18) were from Thermo Fisher 
Scientific (San Jose, CA, USA). A kit (Bio-Rad DC) and bovine serum albumin standard were 
purchased from Bio-Rad Laboratories Inc. (Hercules, CA, USA), and 30 kDa molecular weight cut-
off (MWCO) centrifugal devices were from PALL (Port Washington, NY, USA). 
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2.2. Cells 

Human alveolar basal epithelial A549 cells (ATCC) were cultured at 37 °C in Dulbecco’s 
modified Eagle’s medium (DMEM, Invitrogen, Carlsbad, CA, USA)) containing 10% fetal bovine 
serum (Invitrogen), 1% glutamax (Invitrogen), and 1% penicillin and streptomycin antibiotics 
(Invitrogen). Sf9 cells (Invitrogen) were cultured in insect-XPRESS culture medium (Lonza, Basel 
Switzerland) and maintained in non-humidified incubator at 27 °C, where the culture flask was 
rocked at 120 rpm. The cultures where passaged in mid-log phase between 4 × 106–6 x 106 cells/mL 
with the seeding density of 1 × 106 cells/mL. 

2.3. Production of P1 and P1-2A* Constructs 

Two baculoviral transfer vectors (pOET5) containing expression cassettes under polyhedrin 
promoter were ordered from GeneArt (Regensburg, Germany). pOET5-CVB1-P1 vector containing 
expression cassette for CVB1 capsid proteins VP1–4 and pOET5-CVB1-P1-2AC>A vector containing 
expression cassette for CVB1 capsid proteins VP1–4 and 2A protease with cysteine-to-alanine 
substitution (resulting in the loss of protease function) were utilized. CVB1 field isolate [7] was used 
as a template for these constructs. The recombinant baculoviruses were produced according to the 
FlashBAC baculovirus expression system (Oxford Expression Technologies, Oxford, UK). In 
FlashBAC ULTRA baculovirus genome, the genes coding for chitinase, cathepsin, p10, p26, and p74 
are deleted. CVB1-P1 (P1) and CVB1-P1-2AC>A (P1-2A*) polyproteins were produced in Sf9 insect 
cells, the cells containing the polyproteins were harvested 3–6 dpi by centrifugation, and proteins 
were released from the cells by freezing and thawing the cells. 

2.4. Calpain In Vitro Cleavage Assays 

A reaction mixture containing the following components was prepared: 1.6 μg of P1 or P1-2A* 
containing lysate, 1 U calpain proteases, 2 mM CaCl2, and PBS. In the inhibitor assay, the reaction 
mixture also contained 200 μM calpain inhibitor I or 250 μM elastatinal.  

In the calpain titration assay, the reaction mixture contained 1.6 μg of P1 containing lysate and 0.01 
U, 0.1 U, 0.5 U, or 1 U of calpain proteases in PBS. The mixture also contained 2 mM CaCl2 and 4 mM 
EGTA when indicated. In the calcium titration assay, the reaction mixture contained 1.6 μg of P1 
containing lysate; 1 U of calpain proteases; and 0, 0.002, 0.02, 0.2, or 2 mM CaCl2 in PBS. 

The reactions were incubated at 25 °C in water bath for 2 h. The reactions were terminated by 
adding 4× SDS-PAGE sample buffer containing mercaptoethanol (1× final concentration). 

2.5. In Vitro Cleavage Assay with Viral Proteases 

The reaction mixture contained 1.6 μg of P1 or P1-2A* containing lysate, 750 ng of purified viral 
proteases 2A or 3C in buffer containing 20 mM HEPES (pH 7.4), 120 mM KCH3COO, 4 mM 
Mg(CH3COO)2, and 5 mM DTT.  

In the inhibitor assay, the viral proteases were incubated with A549 cell homogenate, which was 
prepared as described [27]. The reaction mixture contained 75 μg of the homogenate, 375 ng of 2A or 
3C with or without 200 μM calpain inhibitor I or 250 μM elastatinal, and reaction buffer (20 mM 
HEPES (pH7.4), 120 mM KCH3COO, 4 mM Mg(CH3COO)2, and 5 mM DTT).  

The reactions were incubated at room temperature (+22 °C) for 18 h, after which 4× SDS-PAGE 
sample buffer containing mercaptoethanol (1× final concentration) was added to terminate the 
reaction. 

2.6. Infection Assay in Cells 

A549 cells were infected with EV1 (Farouk strain, ATCC), CVB3 (Nancy strain, ATCC), or CVB1 
(Conn 5 strain, ATCC) with 2 × 108 PFU/mL. The viruses were first bound on ice for 1 h in DMEM 
supplemented with 1% fetal bovine serum and 1% glutamax. Next, excess virus was washed away 
with PBS, and fresh DMEM supplemented with 1% fetal bovine serum and 1% glutamax containing 
200 μM calpain inhibitor I or 250 μM elastatinal was added. The infection was then allowed to 
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proceed at 37 °C for 5.5 h. Finally, the cells were either fixed with 4% paraformaldehyde for 30 min 
or collected into 2× Laemmli buffer containing mercaptoethanol (1× final concentration). 

2.7. Immunofluorescence Labeling and Microscopy 

The cells were permeabilized with 0.2% Triton X-100 and then treated with primary antibodies: 
rabbit anti-EV1 [28] for EV1 or monoclonal mouse Enterovirus clone 5-D8/1 antibody (Dako) for 
CVB3 and CVB1. After 1 h of incubation, excess primary antibody was washed with PBS and cells 
were treated with secondary antibodies: goat anti-rabbit Alexa 555 (Invitrogen) or goat anti-mouse 
Alexa 555 (Invitrogen). Secondary antibody was washed with PBS and nuclei stained with DAPI in 
PBS. Finally, the cells were mounted into mowiol-DABCO. 

Samples were imaged with Olympus FV1000-IX81 confocal microscope using 543-nm HeNe and 
405-nm diode lasers. The imaging was carried out with 60× UPLSAPO objective (NA 1.35), and levels 
for the laser power and detector amplification were optimized using negative infection control. 

2.8. Western Blot 

Samples were first boiled and then run in 4–20% Miniprotean TGX gradient gel (Bio-Rad 
Laboratories Inc.). Next, the proteins were transferred to PVDF membrane (Immobilon-P, Merck 
Millipore; Burlington, Massachusettes, USA), after which the blot was blocked overnight with 5% BSA 
in 0.05% tween in TBS. Poly A binding protein (PABP) was detected using 1:100 dilution of mouse anti-
PABP (Santa Cruz). Ras GTPase-activating protein-binding protein 1 (G3BP1) was detected using 
1:1000 dilution of mouse anti-G3BP1 (Santa Cruz). VP3 was detected using in-house produced rabbit-
anti-CVB1-6 polyclonal antibody. VP1, P1, and P1-2A* were detected using 1:4000 dilution of 
monoclonal mouse enterovirus clone 5-D8/1 antibody (Agilent Dako, Santa Clara, CA, USA). Gamma-
tubulin was detected using 1:20,000 dilution of rat anti-tubulin antibody (Abcam, Cambridge, Unitied 
Kingdom). The primary antibodies were detected using corresponding horseradish peroxidase-
conjugated secondary antibodies (cell signaling). Next, chemiluminescent substrate (supersignal West 
Pico PLUS, Thermo Fisher Scientific, Waltham, Massachusettes, USA) was incubated for 5 min and the 
chemiluminescence was detected using Chemidoc MP (Bio-Rad Laboratories Inc.). In the Figure 2, the 
total protein amount was revealed using stain-free method by UV-activating the gel with Chemidoc 
MP (Bio-Rad Laboratories Inc.) before transfer to PVDF membrane. The western blot results were 
quantified using the gel analyzer tool embedded in Image J. 

2.9. Cleavage Assay with the Peptide 

A 30-amino-acid peptide from CVB1 VP3 and VP1 capsid protein interface (peptide sequence: 
NH2-MLKDTPFIRQDNFYQ*GPVEESVERAMVRVA-COOH; putative 3C cleavage site indicated by 
asterisk) was chemically synthesized (Proteogenix, Sciltigheim, France) and treated with calpain 1, 
calpain 2, and 3C proteases. Two micrograms of the peptide was incubated in the presence of 0.25 U 
calpain 1, 0.25 U calpain 2, or 750 ng 3C protease. Reactions containing calpain 1 or calpain 2 were 
incubated two hours in 25 °C water bath in PBS containing 2 mM CaCl2. 3C protease reactions were 
incubated 20 h at room temperature in 20 mM Tris pH 7.3, 100 mM NaCl, and 1 mM EDTA. 

In the competition assay, a reaction mixture containing the following components was prepared: 
1.6 μg of P1 containing lysate, 1 U calpain proteases 1 or 2, or 750 ng of 3C protease with or without 
100 μg of the peptide. The calpain reactions were incubated in 25 °C water bath for 2 h in PBS 
containing 2 mM CaCl2. 3C protease reactions were incubated for 17 h at 22 °C in 50 mM Tris pH 7.5, 
150 mM NaCl, 1 mM EDTA, and 1 mM DTT. The reactions were terminated by adding 4× sample 
buffer containing mercaptoethanol (1× final concentration).  

2.10. Mass Spectrometry 

Cleavage assay’s peptides with or without proteases were analyzed with Eksigent 425 NanoLC 
coupled with Sciex high speed TripleTOF™ 5600+ mass spectrometer using sequential window 
acquisition of all theoretical mass spectra (SWATH-MS) proteomics. Prior to SWATH analysis 
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method, a relative protein quantification library was built from several data-dependent analysis 
(DDA) runs with the same LC gradient and instrument settings that were used for SWATH analyses. 
Before MS runs, samples were subjected to reduction, alkylation, and digestion with calpain protease 
instead of trypsin as described in detail in Reference [29]. After digestion, peptides were diluted to 
14 μl of sample buffer (2% acetonitrile and 0.1% formic acid) and 1 μl of sample was injected to the 
triple TOF mass spectrometry. Library was created using Protein Pilot 4.7 (Sciex, Redwood City, CA, 
USA), and all DDA run spectra were identified against coxsackievirus B3 and calpain (human and 
rat) UniprotKB/SwissProt protein library added with synthetic CVB1 VP3-VP1 peptide. 
Quantification was done by Peak Viewer and Marker Viewer (Sciex).  

2.11. Statistical Testing 

The statistical analysis was carried out using GraphPad Prism software. (GraphPad Software, 
San Diego, CA, USA) The data are presented as means ± SEM. The statistical significance was 
determined using parametric one-way ANOVA with Bonferroni’s multiple comparisons test.  

3. Results 

3.1. Calpain Inhibitor Prevents the Enterovirus Infection Whereas 2A Inhibitor Does Not 

The effect of calpain inhibitor on the infection of A549 cells with different serotypes of 
enterovirus B species was tested, and infection was detected by the marked accumulation of VP1 in 
the cytoplasm by immunofluorescence. The results showed that the presence of 200 μM calpain 
inhibitor strongly reduced the VP1 signal and decreased the number of EV1-, CVB3-, and CVB1-
infected cells compared to the control infection (Figure 1A). The input virus used in the infection was 
seen as bright spots in endosomes, particularly in CVB3 infected cells (Figure 1A). In contrast, the 
addition of 250 μM elastatinal, which has been shown to inhibit 2A [30], did not suppress the infection 
of A549 cells by any of these viruses (Figure 1A). The same observation was also evident when the 
levels of VP1 protein were analyzed from the whole cell population using western blotting (Figure 
1B). 

 
Figure 1. Calpain inhibitor prevents the infection by enteroviruses: A549 cells were infected with EV1, 
CVB3, or CVB1 for 5.5. h p.i. with or without 200 μM calpain inhibitor (ci) or 250 μM elastatinal (ela). 
(A) Immunofluorescence microscopy was used to evaluate the infection. Viral protein VP1 is in red, 
and DAPI-stained nuclei are in blue. Scale bar 20 μM. (B) For Western blot analysis, the infected A549 
cell lysates were resolved in 4–20% SDS-PAGE gels, blotted, and immunolabeled with antibodies 
against VP1 and gamma-tubulin as a loading control. 



Viruses 2019, 11, 1106 6 of 15 

 

3.2. Calpain Inhibitor Cross-Reacts with Viral Proteases 2A and 3C 

Both calpains and viral proteases of enteroviruses have cysteine in their catalytically active site. 
Because our present and earlier results [8] showed that the enterovirus infection was inhibited by a 
calpain inhibitor, we also wanted to test whether the inhibitor has an effect on viral proteases. We 
carried out an in vitro assay, where A549 cell homogenate was incubated with purified viral proteases 
with or without a calpain inhibitor (Figure 2). The cleavage action of 2A and 3C was evaluated by 
detecting the known host cell targets of the proteases, poly A binding protein (PABP), and Ras 
GTPase-activating protein-binding protein 1 (G3BP1). Western blot results showed that the calpain 
inhibitor prevented the action of both proteases: the amount of PABP protein was in the same level 
as in controls lacking proteases, and the amount of G3BP1 cleavage product was clearly less in the 
presence of the inhibitor than without it (Figure 2). In addition, we confirmed that another protease 
inhibitor, elastatinal, which has been shown to inhibit 2A, inhibited the action of 2A but not 3C 
(Figure 2.). 

 

Figure 2. Calpain inhibitor cross-reacts with viral proteases. A549 cell homogenate was incubated 
with purified viral proteases 2A and 3C in the presence or absence of 200 μM calpain inhibitor (ci) or 
250 μM elastatinal (ela) for 18 h at 22 °C. Western blot analysis was done by resolving the samples in 
4–20% SDS-PAGE gels and transferring to PVDF membrane. The blots were immunolabeled with 
PABP and G3BP1 antibodies, and the total protein amount was assessed using a stain-free method. 
Arrow indicates 3C protease induced cleavage fragment of G3BP1. 

3.3. Calpains Can Cleave P1 into VP1 and VP3 In Vitro but Cannot Release P1 from the Polyprotein 

Because we noticed that calpain inhibitor also cross-reacts with viral proteases, we wanted to 
study the action of calpains and viral proteases separately. We used the baculovirus-infected Sf9 
insect cells to produce the P1 region of CVB1 polyprotein (Figure 3A). In addition, since our 
preliminary study showed that the 2A inhibitor elastatinal could not prevent virus infection, we also 
produced a construct where the P1 region was followed by mutated 2A (P1-2A*) in order to study 
the cleavage site between P1 and 2A (Figure 3A). Viral protease 2A cotranslationally cleaves between 
itself and P1 region [11–13], so in order to avoid this cleavage action by 2A, the active site cysteine of 
2A (C110) was mutated into alanine. 
Purified calpain proteases 1 and 2 as well as viral proteases 2A and 3C were incubated with P1 or 
P1-2A* in vitro, after which the cleavage products were detected by western blotting. The results 
showed that the amount of P1 and P1-2A* decreased in the presence of both calpain 1 and 2 
enzymes (Figure 3B,C). More importantly, when the P1 construct was treated with calpains, the 
cleavage products corresponding to VP1 and VP3 proteins appeared and accumulated compared to 
the control, where no calpains were added (Figures 3B,D,E). The amounts of both VP1 and VP3 
were statistically higher compared to control, when P1 was treated with calpain 2 (p < 0.01 and 
0.001 for VP1 and VP3, respectively). Also, calpain 1 produced more VP1 and especially VP3 
compared to control, but the results were not statistically significant. This result thus suggested that 
calpain 2 is more potent at cleaving the P1 region in vitro as compared to calpain 1. As we saw, a 
low background signal of VP1 in the insect cell produced a P1-containing sample; we tested 
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whether this may be due to a low activity of endogenous proteases, perhaps close to mammalian 
calpains. Addition of the calpain inhibitor after day 1 in the infected insect cell culture prevented 
the accumulation of VP1 band at day 2, suggesting that the inhibitor prevented proteolytic 
processing carried out by endogenous calpain or a close relative in the insect cells (Mira Laajala, 
University of Jyväskylä, Finland, Unpublished experiments performed on insect cell cultures). 
Understandably, we could not add calpain inhibitor in our assays when we assessed the proteolytic 
processing of exogenously added calpains, which caused the presence of a low endogenous amount 
of processed VP1 in the assays (Figures 3–5B). As a positive control, we used purified viral protease 
3C, which resulted in a statistically significant increase of released VP1 and VP3 proteins compared 
to the negative control (Figures 3B,D,E) (p < 0.01 and 0.001 for VP1 and VP3, respectively). 
Additionally, our results showed that 2A viral protease cannot cleave at the P1-2A cleavage site in 
trans, when it is not attached to the polyprotein (Figures 3B,D,E). It was also evident that calpains 
cannot cleave at this cleavage site, since no cleavage product corresponding to either P1 or VP1 
appeared (Figure 3B). Still, calpains were able to release VP3 from P1-2A*, confirming that the sites 
between VP3-VP1 and VP3-VP0 can be processed by calpains (Figure 3B,E). These results suggest 
that calpains, similar to 3C, can cleave P1 polyprotein of enterovirus B species in vitro and can 
produce VP1 and VP3 as cleavage products.  

 
Figure 3. Processing of P1 and P1-2A* constructs by calpains and viral proteases in vitro: P1 and P1-
2A* constructs were incubated with purified calpain 1 (C1) or 2 (C2) at +25 °C for 2 h or with viral 
proteases 2A or 3C at 22 °C for 18 h. Negative controls where no proteases were added were also 



Viruses 2019, 11, 1106 8 of 15 

 

included: ctrl1 and ctrl2 for calpain and viral protease reactions, respectively. (A) Schematic image of 
P1 and P1-2A* constructs. (B) Representative image of P1, P1-2A*, VP1, and VP3 bands revealed by 
immunolabeling western blots with antibodies against VP1 and VP3. (C–E) Quantification of P1, P1-
2A*, VP1, and VP3 signal from Figure 3B. Data are presented as means ± SEM from three separate 
experiments. Significance was determined with one-way ANOVA with Bonferroni’s multiple 
comparisons test (**p < 0.01; ***p < 0.001; ****p < 0.0001; ns, non-significant). 

3.4. Calpain Activity is Concentration and Calcium Dependent and Can Be Prevented with Calpain Inhibitor 
In Vitro  

Next, we titrated the amount of calpain proteases in an in vitro assay with P1 construct and 2 
mM CaCl2. The results showed that VP1 was formed when 0.5 or 1 unit of calpain 1 or calpain 2 was 
used, respectively (Figure 4A). The processing was first seen as the appearance of a VP1+VP3 band, 
the intensity of which decreased as the amount of calpains was increased (Figure 4A). Interestingly, 
the VP1+VP3 band was already evident in the control sample, suggesting that host cell protease action 
in insect cell lysates could already promote the first cut within this in vitro reaction during 2 h at +25 
°C. The appearance of VP1+VP3 band in the control sample was dependent on Ca2+, since the band 
did not appear in the absence of Ca2+ (Figure 4A), suggesting that the cleavage was carried out by 
calcium-dependent calpain protease. In addition, the action of calpain 2 (1 U) was blocked when the 
reaction was either done without 2 mM CaCl2 or when the CaCl2 was chelated with 4 mM EGTA 
(Figure 4A). On the other hand, the cleavage action of calpain 1 was not affected when Ca2+ was not 
added, suggesting that the amount of Ca2+ in insect cell-derived P1 lysate was enough for the activity 
of this protease (Figure 4A). Also, surprisingly, the addition of EGTA did not prevent the cleavage 
action of calpain 1 leading to VP1 (Figure 4A). In contrast, EGTA addition led to the almost complete 
disappearance of the P1 band. What is behind this finding remains to be studied further. The 
difference of Ca2+ dependency for calpain 1 and 2 was further shown in an in vitro assay, where the 
amount of CaCl2 was titrated against 1 unit of calpain 1 or 2 (Figure 4B). The results showed that 
calpain 2 released VP1 from P1 only with Ca2+ concentrations higher than 0.2 mM while calpain 1 
released VP1 even without additional CaCl2. 

Since both calpains 1 and 2 cleaved the viral P1 region, we wanted to verify whether the cleavage 
action of calpains can be prevented by carrying out an in vitro reaction, where purified calpains were 
incubated with the P1 polypeptide in the presence of calpain inhibitor. As above, the calpains without 
the presence of inhibitor produced cleavage products corresponding to VP1 and VP3, whereas in the 
presence of inhibitor, these cleavage products were not formed (Figure 4C,D). Altogether, these 
results further confirmed that the appearance of the bands corresponding to VP1 and VP3 proteins 
was due to action of calpains. 
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Figure 4. Effect of calpain concentration, calcium, and calpain inhibitor on calpain activity in vitro: 
(A) Calpain 1 (C1) or 2 (C2) were incubated with P1 polyprotein at +25 °C for 2 h. The reactions 
included 2 mM CaCl2 and calpains with increasing catalytic activities: 0.01, 0.1, 0.5, or 1 unit. Also, 
samples without any proteases or CaCl2 or with 4 mM EGTA were included. (B) Titration of CaCl2 

against 1 unit of calpain 1 or 2. The reactions were carried out as in Figure 4A. (C) The effect of calpain 
inhibitor (ci) or elastatinal (ela) on calpain activity during P1 processing: P1 was treated with 1 unit 
of calpain 1 (C1) or 2 (C2) in the presence or absence of 200 μM calpain inhibitor (ci) or 250 μM 
elastatinal (ela) for 2 h at +25 °C. Representative images of P1, VP1, and VP3 bands. (D) Quantification 
of the VP1 and VP3 band intensities from Figure 4C: Data are presented as means ± SEM from three 
separate experiments. Significance was determined with one-way ANOVA with Bonferroni’s 
multiple comparisons test (*p < 0.05; ****p < 0.0001; ns, nonsignificant). 

3.5. Calpains Cleave Specifically at the VP1-VP3 Cleavage Site  

Since we observed that calpains cleave P1 and produce VP1 and VP3 proteins, we concluded 
that calpains can cleave at around the site between VP0-VP3 and VP3-VP1. Since the sequence motif 
that is cut by calpains may differ from the viral proteases, we used synthetic peptide covering the 
VP3-VP1 cleavage site to study the cleavage site of calpains in more detail. This 30-amino-acid 
peptide (NH2-MLKDTPFIRQDNFYQ*GPVEESVERAMVRVA-COOH) also included the putative 
cleavage site of viral protease 3C, indicated by asterisk. Unfortunately, a proper peptide 
corresponding to the cleavage site of VP0-VP3 could not be generated because of its low water 
solubility. 

The peptide was used in mass spectrometry analysis to reveal the exact cleavage site for calpains. 
The peptide was incubated with purified calpains or 3C, and the cleavage site was revealed by 
analyzing the cleavage products produced by the proteases using SWATH-MS (Figure 5A). Based on 
the cleavage products (sequences) with the highest intensities, the results showed that the synthetic 
peptide was cleaved by calpains 1 and 2 from (NH2–) 
MLKDTPFIRQDNF/YQGPVEESVERAMVRVA (–COOH), whereas 3C cleaved this peptide within 
its reported cleavage site (NH2–) MLKDTPFIRQDNFYQ/GPVEESVERAMVRVA (–COOH) (Figure 
5A). 
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Furthermore, we utilized this peptide in a competition assay to study whether the action of 
calpains and 3C can be inhibited in its excess. Purified calpains or 3C protease were incubated with 
P1 construct in the presence or absence of 100 μg of the competing peptide. Both calpains 1 and 2 as 
well as 3C protease produced more VP1 in the absence of the peptide compared to the experiment in 
the presence of the peptide (Figure 5B), which suggests that these proteases cleave P1 at the VP3-VP1 
cleavage site present in the competing peptide (Figure 5B). In conclusion, calpains 1 and 2 can 
specifically cleave between VP1 and VP3 and the cleavage site is two amino acids apart from the 
cleavage site used by 3C viral protease. 

 

Figure 5. Calpains cleave specifically between VP1 and VP3. A 30-amino-acid artificial peptide 
around the VP1-VP3 cleavage site was used to study the cleavage site of calpains in more detail. (A) 
The peptide was incubated with calpain 1 or calpain 2 for 2 h at +25 °C or with 3C for 20 h at RT. Also, 
a control reaction with no proteases was included. The cleavage products were analyzed with 
SWATH-MS. The peaks correspond to different cleavage products, of which the sequences are color 
coded in the schematic image of the peptide on the right. Numbers 1 and 2 indicate the cleavage sites 
of calpains and 3C, respectively. (B) P1 construct was incubated with calpain 1 (C1) or 2 (C2) for 2 h 
at +25 °C or with 750 ng of 3C protease for 17 h at 22 °C with or without 100 μg of the peptide. Also, 
controls with no proteases were included. Representative images of three experiments are shown. 

4. Discussion 

Earlier, we showed that calpain proteases of the host cell participate in enterovirus infection after 
entry and RNA release [8]. That study pinpointed the effect of calpains in the early 
translation/replication phase at 3 h p.i. when infection induces calpain activity, and it was the same 
time window during which the virus replication could be blocked with calpain inhibitors [8]. 
However, the molecular mechanism of calpain action during enterovirus infection remained unclear. 
Here, we show using in vitro assays that calcium-dependent neutral calpain proteases can cleave the 
P1 polyprotein of enterovirus B species and, as a result, produce VP1 and VP3 capsid proteins 
detected by western blotting. Moreover, the cleavage specificity of calpains at the VP3-VP1 interface 
was confirmed with mass spectrometry analysis and competition assay with a peptide, including the 
VP3-VP1 cleavage site. On the other hand, we show that calpains are not able to make the cleavage 
between P1 and 2A. Our results thus show that, in addition to viral proteases, the P1 can be cleaved 
by host cell calpain proteases and that this processing is specific for certain cleavage sites. 

According to the dogma, the proteolytic processing of enteroviral polyprotein is thought to be 
carried out by viral proteases 2A and 3C and the precursor 3CD protein [14,31]. 2A protease makes 
the first autocatalytic cleavage already during translation between VP1 and itself. The rest of the 
cleavages are then supposed to be carried out either by 3C or 3CD. Lawson and Semler (1992) showed 
in their earlier study in vitro that, as P1 precursor was visible already at 25 min during in vitro 
translation, there was a delay in the processing until 70 min, although 3CD was detected as early as 
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50 min [32]. In infected cells, according to their metabolic labeling, 3C and 3CD were more active 
when enriched in the membranous fraction while P1 precursor and its processing occurred very 
efficiently also in the soluble fraction [32]. Perhaps the P1, which is found close to the replication 
membranes, are processed by 3C or 3CD, but the P1 found in the soluble fraction may be 
preferentially processed by calpain proteases readily available in the same pool. Whether calpain 
proteases truly function in infected cells and take part in polyprotein processes remains to be shown. 

Viral proteases and calpains belong to the class of cysteine proteases and are both present in 
infected cells. Due to difficulties in differentiating calpain from viral protease action, the possible 
participation of calpains in polyprotein processing is difficult to demonstrate. The use of calpain 
inhibitors in virus infection assays is challenging due to cross-reactivity with viral proteases 2A and 
3C, as has been shown for 2A by others as well [30]. Therefore, we wanted to study the action of 
calpains separately from viral proteases and to study the direct effect of purified calpain proteases 
on viral polyprotein processing. We produced the P1 region of CVB1 polyprotein in baculovirus 
insect cell expression system and incubated it with the purified calpains 1 and 2 in vitro. These studies 
and the mass spectrometry analysis unequivocally demonstrated that calpains could cleave at the 
polyprotein between VP3 and VP1 using cleavage sites differing with only two amino acids to that 
utilized by enteroviral protease 3C. However, further studies are needed to verify if the capsid 
proteins produced by calpains could be used in the production of pentamers and subsequently in the 
assembly of infectious virions. Interestingly, it has been shown earlier with foot-and-mouth disease 
virus that even longer amino acid segments can be attached to VP1 without hindrance in capsid 
production [33]. They showed that empty capsids and infectious virions were produced even if the 
cleavage between VP1 and 2A was prevented. This further suggests that the two-amino-acid 
difference in the cleavage site of calpains compared to 3C does not hinder capsid production. 
However, this remains to be shown. 

Thus, as a proof of principle, we showed that calpains can process enterovirus polyprotein in 
vitro. Does this happen in cells as well? It has been shown earlier that enteroviruses affect the calcium 
homeostasis during infection by releasing calcium stores from ER and by increasing the permeability 
of plasma membrane, resulting in the increase of cytosolic calcium concentration [34,35]. Therefore, 
changes in calcium homeostasis due to virus infection may trigger calpain activation. Furthermore, 
Bozym et al. showed that the changes in calcium concentration during CVB3 infection occurred at 2–
3 h p.i. [24], and our earlier results showed that calpain activity increased at 3–4 h p.i. [8]. Altogether, 
these earlier studies supported the idea that calpains get activated after virus entry during the first 
steps of translation/replication. Furthermore, our earlier studies using calpain-specific siRNAs more 
specifically showed that calpains themselves were needed for infection [8]. Interestingly, Bozym et 
al. found less effect on CVB3 infection with calpain siRNAs, which could possibly be due to the 
ineffectiveness of the siRNAs, leading to only a partial silencing of calpain genes [24]. Also, in our 
earlier studies, calpain siRNAs decreased EV1 infection but did not block it completely [8]. In 
addition to calpains 1 and 2, there are 13 other calpains that possibly contribute to the proteolytic 
processing, thus making it difficult to completely get rid of calpain action in the cells using siRNAs.  

Calpain proteases are very abundant in cells, and their activation is controlled by calcium 
concentration, a process in which enteroviruses also contribute to. In vitro assays have shown that 
the calcium requirement of calpain 1 and 2 differ: calpain 1 needs micromolar whereas calpain 2 
needs millimolar concentrations of calcium [20]. The calpain activation, especially in vivo, is still 
under investigation to understand how the proteases are activated in cells, where such high calcium 
concentrations do not exist. However, couple different mechanisms have been suggested: 1) On one 
hand, increased calcium concentration in the cytoplasm may trigger an autolysis in the N-terminal 
region of both catalytic and regulatory subunits, resulting in conformational change and finally 
calpain activation [36,37]. The autolysis may then increase calpain turnover, sensitivity to calcium 
and substrate accessibility. 2) On the other hand, increased calcium concentration may promote the 
translocation of calpains to membranes, where the calpains are activated without autolysis in the 
presence of protein activators and other factors such as phospholipids [38–42]. The presence of 
activators may decrease the calcium requirement to physiological levels, and translocation to 
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membranes may especially promote membrane-associated proteins as substrates. Additionally, it has 
been suggested that calpain 1 activation in the presence of micromolar calcium concentration could 
trigger a cascade where also calpain 2 is activated even with micromolar calcium level [43]. In our in 
vitro assays, we saw that calpain 2 released more VP1 and VP3 proteins from enterovirus polyprotein 
compared to calpain 1. However, mass spectrometry analysis showed that both calpains were able to 
cleave at the VP1-VP3 cleavage site in the same location. The elevated calcium concentrations in cells, 
which trigger calpain activation, do not resemble the in vitro conditions, and hence, the assessment 
of calpain isoform preference for enterovirus polyprotein processing from in vitro assays is difficult. 

There are a few studies which connect calpain proteases to enterovirus infection after cell entry 
during trafficking of CVB3-containing vesicles into the perinuclear region [23] for CVB-induced 
necrosis [24] or for autophagy [25,44]. Most of these studies were carried out using calpain inhibitors, 
which, as we have shown, might be problematic due to the cross-reactivity with viral proteases. It is 
difficult to distinguish the effect of the inhibitor on calpains or viral proteases in infection assays, 
which may confound the outcomes in cellular responses and the interpretation of the results. In 
addition, there are differences between enterovirus serotypes: we have shown earlier that, in contrast 
to coxsackie B viruses, EV1 does not need autophagosomes in its infection [8,9]. This was shown 
using an autophagosomal marker LC3, of which the overexpression did not increase EV1 infection 
and the amount or size of the LC3 structures did not increase during EV1 infection [8,9]. Thus, our 
earlier study suggests that, at least during EV1 infection, the role of calpains is not related to 
autophagy. On the other hand, taking into account the abundancy of calpains in cells and that their 
activity is mainly regulated by calcium concentration, calpains may play a role in multiple steps 
during the infection. In addition to enteroviruses, calpains have also been associated with other virus 
infections, such as influenza, herpesvirus, chikungunya, and other picornaviruses [45–50]. 
Particularly, processing of a viral protein by calpains has been shown with another RNA virus, 
Hepatitis C virus [51]. Since calpain activity has been shown to be involved in the infections of several 
viruses, calpains have been suggested as potential targets for antiviral therapies. Our previous and 
current results suggest that calpain inhibition could also be targeted against enteroviral infections 
and diseases such as myocarditis, meningitis, or sepsis-like syndrome of infants [2–4,52–55]. It can be 
speculated that, during evolution, enteroviruses have adapted to using the readily available and 
active cellular proteases to promote their infection. It may well be that, along time, calpains have 
become an important backup system in polyprotein processing, while the viral proteases have 
promoted the infection also by other means, such as cleaving host cell factors related to apoptosis, 
immune responses, and cellular translation [10]. It has been shown that enteroviruses may stay silent 
or persistent in tissues for long periods without causing much damage or cell death [3,56,57]. In such 
circumstances, the viral proteases are likely to be downregulated not to promote apoptosis and cell 
death, while calpains may still help the polyprotein to be processed further.  

The extended P1 polyprotein containing mutated 2A suggested that 2A protease is needed in cis 
to execute the first cleavage between P2-P3 and P1. This action could not be executed by calpains or 
by 2A in trans. In addition, the action of 2A could not be inhibited by the specific 2A inhibitor 
elastatinal during infection of EV1, CVA9, or CVB1 although that inhibitor could inhibit 2A action 
against the cellular targets in trans. Probably, elastatinal was not able to bind to 2A before 2A was 
released from the polyprotein and, hence, could not prevent cis action of 2A and, further, the 
infection. The low inhibitory effect of elastatinal has also been shown with poliovirus earlier [30]. 
Whether calpains can cleave nonstructural proteins from other 3C/3CD specific cleavage sites at the 
P2-P3 region remains to be studied. 

5. Conclusions 

Our results demonstrate that calpain proteases can proteolytically process enterovirus 
polyprotein in vitro, resulting in the release of capsid proteins. Furthermore, the high cross-reactivity 
of calpain inhibitors with viral proteases observed in this study highlights their potential also as 
future antivirals. 
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