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Abstract: Plant receptor-like kinases (RLKs) exert an essential function in the transduction of signals
from the cell exterior to the cell interior, acting as important regulators of plant development and
responses to environmental conditions. A growing body of evidence suggests that RLKs may play
relevant roles in plant-virus interactions, although the details and diversity of effects and underlying
mechanisms remain elusive. The C4 protein from different geminiviruses has been found to interact
with RLKs in the CLAVATA 1 (CLV1) clade. However, whether C4 can interact with RLKs in other
subfamilies and, if so, what the biological impact of such interactions might be, is currently unknown.
In this work, we explore the interaction landscape of C4 from the geminivirus Tomato yellow leaf
curl virus within the Arabidopsis RLK family. Our results show that C4 can interact with RLKs
from different subfamilies including, but not restricted to, members of the CLV1 clade. Functional
analyses of the interaction of C4 with two well-characterized RLKs, FLAGELLIN SENSING 2 (FLS2)
and BRASSINOSTEROID INSENSITIVE 1 (BRI1), indicate that C4 might affect some, but not all,
RLK-derived outputs. The results presented here offer novel insight on the interface between RLK
signaling and the infection by geminiviruses, and point at C4 as a potential broad manipulator of
RLK-mediated signaling.
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1. Introduction

Receptor kinases (or receptor-like kinases (RLKs) in plants) are transmembrane proteins localized
at the surface of eukaryotic cells, containing an extracellular domain (ECD), a transmembrane domain
(TMD), and an intracellular kinase domain (KD). In plants, RLKs play a crucial role in the transduction
of signals from the cell exterior to the cell interior, regulating a plethora of different processes during
development, as well as during the interaction of plants with their environment [1–3]. This functional
diversity is enabled by the large expansion of the RLK family, which comprises more than 600 members
in Arabidopsis thaliana (hereafter referred to as Arabidopsis) and more than 1000 members in rice [4].
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The ECDs of RLKs are diverse and can contain different domains, including leucine-rich repeats
(LRR), extensin-like, lectin-like, epidermal-growth-factor-like repeats, and LysM, among others [4].
ECDs bind extracellular ligands of endogenous or exogenous origin, such as peptides, steroids, and
saccharides, and can mediate homo- or hetero-dimerization of RLKs [1–3,5]. Upon perception of the
corresponding ligand, the intracellular KD associates with interacting partners to initiate signal relay
inside the cell.

Given the multifaceted nature of plant-pathogen interactions, it is not surprising that RLKs
can influence this interface at multiple levels. First, and most evidently, some RLKs act as
pattern-recognition receptors (PRRs), mediating perception of molecular patterns from pathogens
(pathogen-associated molecular patterns (PAMPs)) or produced by the plant upon recognition of a
biotic threat (damage-associated molecular patterns (DAMPs)) [6]. PRRs then initiate a signaling
cascade that leads to the activation of pattern-triggered immunity (PTI). Non-PRR RLKs may also
regulate other aspects of plant defense, such as the intercellular movement of RNA silencing [7].
In addition, RLKs mediating growth and developmental processes, like the receptor of the plant
steroid hormone brassinosteroid (BR), BRASSINOSTEROID INSENSITIVE 1 (BRI1), could indirectly
affect defense outputs through molecular cross-talks [8] or influence pathogen performance in other
defense-independent ways.Although the relevance of RLKs, and in particular PRRs, in plant interactions
with extracellular pathogens such as bacteria and fungi is uncontested, their involvement in plant-virus
interactions is currently controversial (reviewed in [9,10]). PRR RLKs have been shown to influence
the outcome of viral infections at least in certain RNA virus-host combinations [11,12], although the
nature of the putative ligand(s) remains enigmatic. Other RLKs, not presently described as PRRs, have
also been found to play a role in anti-viral defense. This is the case of NSP-INTERACTING KINASE
(NIK1), which inhibits translation of viral genes in infections by the DNA viruses geminiviruses, and of
BARELY ANY MERISTEM 1 (BAM1), which promotes the intercellular spread of RNA silencing [7,13].
Interestingly, enhancing BR signaling, which depends on BRI1, dramatically alleviates symptom
development in tomato plants infected with a geminivirus [14].

In recent years, several cases of geminivirus-encoded proteins targeting RLKs have been
documented, underscoring the relevance of this family of receptors for the geminiviral infection.
The nuclear shuttle protein (NSP) of the bipartite geminiviruses Tomato golden mosaic virus (TGMV),
Tomato crinkle leaf yellow virus (TCrLYV), and Cabbage leaf curl virus (CaLCuV) interacts with
the intracellular domain of Arabidopsis NIK1 (and its homologues NIK2 and NIK3) [15], inhibiting
its function in anti-viral defense [13,16,17]. C4/AC4 from different geminiviruses has been found to
interact with RLKs in the CLAVATA 1 (CLV1) clade (reviewed in [10,18]): C4 from Mungbean yellow
mosaic virus (MYMV) interacts with Arabidopsis BARELY ANY MERISTEM 1 (AtBAM1) [19]; C4 from
Tomato yellow leaf curl virus (TYLCV) interacts with AtBAM1, its close homologue AtBAM2, and
with BAM1 orthologues in tomato and Nicotiana benthamiana [7]; and C4 from Beet severe curly top
virus (BSCTV) interacts with tomato CLV1 [20]. However, whether C4 can interact with RLKs outside
of the CLV1 clade and, if so, what the biological impact and relevance of such interactions would be,
remain open questions.

In this work, we explore the interaction landscape of C4 from TYLCV within the Arabidopsis
RLK family. For this purpose, we selected eight RLKs from Arabidopsis, spanning five different
subfamilies, and tested the interaction with C4 in a targeted manner through two independent methods
in planta, namely co-immunoprecipitation (co-IP) and Förster resonance energy transfer-fluorescence
lifetime imaging microscopy (FRET-FLIM). Our results indicate that C4 can broadly interact with
plant RLKs and that these interactions cannot be predicted by the subfamily classification of RLK
family members. Functional analyses of the interaction of C4 with two well-characterized RLKs, the
PRR FLAGELLIN SENSING 2 (FLS2) and the non-PRR BRI1, revealed that C4 might affect some, but
not all, RLK-derived outputs. Our results shed new light on the interface between RLK signaling
and the infection by geminiviruses and suggest C4 as a potential broad manipulator of plasma
membrane-transduced signaling.
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2. Materials and Methods

2.1. Plant Material

All transgenic Arabidopsis plants used in this work are in the Col-0 background. 35S:C4 (L5 and
L7) and 35S:GFP transgenic lines are described in [7]. T2 35S:C4 L5 plants were used in Figure 4A,B,E;
T3 35S:C4 L5 and L7 plants were used in Figure 4C,D,F.

2.2. Plasmids and Cloning

Constructs for co-IP and FRET-FLIM assays were generated using Gateway technology (Life
Technologies, Carlsbad, CA, USA). C4-GFP, BAM1-RFP, and NIK1-RFP constructs are already
described [7]. The CLV1, BRI1, BRL3, PSKR1, FLS2, BAK1, and PERK1 open reading frames (ORFs)
were amplified from Arabidopsis cDNA with primers listed in Supplemental Table S1. CLV1, BRL3,
FLS2, and BAK1 entry clones were generated by cloning into pENTR™ TOPO® (Invitrogen, Carlsbad,
CA, USA). BRI1, PSKR1, and PERK1 entry clones were generated by cloning into pENTR/pDONR207
(Invitrogen) vector by Gateway® BP clonase reaction (Invitrogen). All ORFs were subsequently
subcloned into the expression vector pB7WRG2.0 (-RFP) [21] by Gateway® LR Recombination reaction
(Invitrogen) following the manufacturer’s instructions.

2.3. Transient Expression in N. benthamiana

Transient co-expression was performed in three-week-old to four-week-old N. benthamiana leaves
through Agrobacterium infiltration (OD600 = 0.5). For both co-IP and FRET-FLIM assays, a clone to
express C4-GFP [7] was co-infiltrated with clones to express BAM1-, CLV1-, BRI1-, BRL3-, PSKR1-,
FLS2-, NIK1-, BAK1-, and PERK1-RFP (see “Plasmids and cloning”). Samples were taken two days
after infiltration.

2.4. Protein Extraction and Co-Immunoprecipitation

Two days after infiltration, 0.75–1 g of infiltrated N. benthamiana leaves were harvested.
Protein extraction, co-immunoprecipitation (co-IP), and western blot were performed as previously
described [22]. For western blot, the following primary and secondary antibodies were used: mouse
anti-green fluorescent protein (GFP) (M0802-3a, Abiocode, Agoura Hills, CA, USA) (1:10000), rat
anti-red fluorescent protein (RFP) (5F8, Chromotek, Planegg-Martinsried, Germany) (1:10000), goat
polyclonal anti-mouse coupled to horseradish peroxidase (Sigma, St. Louis, MO, USA) (1:15000), and
goat polyclonal anti-rat coupled to horseradish peroxidase (Abcam, Cambridge, UK) (1:15000).

2.5. FRET-FLIM

N. benthamiana leaf discs transiently co-expressing the proteins of interest were used to perform
FRET-FLIM experiments. C4–GFP was used as a donor protein whereas the different RLKs fused to
RFP were used as acceptor proteins. FRET-FLIM analysis was performed as described previously [7].

2.6. Hormone and Peptide Treatments

For gene expression analysis after flg22 and BL treatment, transgenic 35S:GFP or 35S:C4
Arabidopsis seedlings [7] were sown in half-strength Murashige and Skoog (MS) medium. After six
days, three technical replicates of four independent experimental sets (mock-flg22, flg22, mock-PPZ-BL,
and PPZ-BL) with four to six seedlings each were transferred to liquid half-strength MS medium. After
three days, the medium of PPZ-BL and mock-PPZ-BL sets was supplied with 2 µM Propiconazole (PPZ)
or 2 µM DMSO. Six days after transfer and one hour prior to harvesting, PPZ-BL and mock-PPZ-BL
were supplied with 1 µM epiBrassinolide (epiBL) and 1 µM 80% ethanol (v/v), respectively. At the same
time point, flg22 and mock-flg22 sets were treated with 1 µM flg22 and 1 µM distilled water, respectively.
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For seedling growth inhibition upon flg22 treatment, seedlings were sown in half-strength MS
medium supplied with 0.9% phytoagar. After four days, at least 12 seedlings per line were transferred
individually to each well of a 48-well plate containing 500 µL of half-strength MS supplied with 1%
sucrose and 100 nM flg22. Seedlings were grown in light for 10 days and weighed after blotted dry.

For BL root growth response assays, seedlings were sown in half-strength MS medium supplied
with 0.9% phytoagar. After six days, seedlings were transferred to new MS medium supplied with 2
µM propiconazole (PPZ) with or without epiBrassinolide (0.1 or 1 nM). Root length was measured six
days later.

2.7. RNA Extraction and qRT-PCR

To study gene expression after flg22 and BL treatment (see previous section for further details),
four to six frozen 12-day-old transgenic 35S:GFP or 35S:C4 Arabidopsis seedlings [7] were ground
and RNA purification was performed with the OMEGA BIOTEK kit (OMEGA BIOTEK, Norcross,
GA, USA) following the manufacturer’s instructions. DNAase treatment and cDNA synthesis were
done with the iSript gDNA clear cDNA synthesis kit (BIO-RAD, Hercules, CA, USA). Quantitative
reverse transcription-polymerase chain reaction (RT-PCR) was done as previously described [23] using
primers listed in Supplementary Table S1. ACTIN (ACT2) was used as normalizer.

2.8. Detection of Reactive Oxygen Species (ROS)

Four-week-old to five-week-old wild-type and 35S:C4 Arabidopsis plants grown in short day
conditions (10 h light/14 h dark cycle) were used to detect the ROS burst upon flg22 treatment as
previously described [24]. Three leaf disks of at least eight plants per genotype were individually
collected on a white 96-well plate (OptiPlateTM-96, PerkinElmer, Waltham, MA, USA) filled with
100 µl of distilled water and incubated for 14–16 h in light. Water was carefully removed from each
well and replaced by 100 µL of elicitor mix containing 100 nM flg22, 100 µM luminol, and 20 µg/mL
HRP. ROS production was monitored over 60 min using a microplate reader (Thermo Varioskan Flash,
ThermoFisher, Waltham, MA, USA).

2.9. Phylogeny and Protein Sequence Alignment

Protein sequences were retrieved from the NCBI database. Phylogenetic analysis and protein
sequence alignment were performed using CLC Workbench 10. A Clustal W multiple alignment of
amino acid sequences was performed with a BLOSUM cost matrix with a gap open cost of 10 and
a gap extend cost of 0.1. Protein alignment was used as base for building the tree in which genetic
distances were analyzed under the Jukes-Canto model with a Neighbor-Joining method without using
an outgroup.

3. Results and Discussion

A growing body of evidence has made it clear that the geminivirus-encoded C4 protein can
interact in planta with RLKs from the CLV1 clade, which has been associated with the promotion of
virulence and symptom development [7,19,20]. However, whether C4 can associate with RLKs from
other subfamilies with more divergent intracellular domains and if this could have an impact on the
outcome of the viral infection is currently unknown.

With the aim to explore the ability of C4 to interact with other members of the RLK family, we
selected eight RLKs spanning five families: BAK1 and NIK1 from LRR II; BRI1, BRI1-LIKE 3 (BRL3),
and PHYTOSULFOKIN RECEPTOR 1 (PSKR1) from LRR X; CLV1 from LRR XI; FLS2 from LRR
XII; and PROLINE-RICH EXTENSIN-LIKE RECEPTOR KINASE 1 (PERK1) from PERKL (Figure 1).
This list comprises both RLKs described as PRRs (BAK1, FLS2) and not described as PRRs (others).
These selected RLKs were cloned, and their accumulation and plasma membrane localization upon
transient expression in N. benthamiana were confirmed.
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Figure 1. Phylogeny of representative members of the Arabidopsis receptor-like kinase (RLK) family.
(A) Cladogram of representative Arabidopsis RLKs based on the full protein alignment. (B) Cladogram
of representative Arabidopsis RLKs based exclusively on the intracellular domain. Green squares
highlight RLKs used in this study. Families are indicated on the right. The phylogenetic analysis was
performed using CLC Workbench 10.
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Co-IP identifies proteins associated with the immunopurified protein of interest, whether this
interaction is direct or indirect. The selected RLKs fused to RFP at their C-terminus were transiently
co-expressed with C4 fused to GFP in N. benthamiana leaves and subjected to co-IP assays. As shown
in Figure 2A,B, CLV1-, BRI1-, BRL3-, PSRK1-, FLS2-, and NIK1-RFP were detected as associated with
C4, while BAK1- and PERK1-RFP were not.Viruses 2019, 11, x FOR PEER REVIEW 7 of 12 
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following transient expression in N. benthamiana. (B) Co-immunoprecipitation of BAM1-, PSKR1- 
and PERK1-RFP with C4-GFP following transient expression in N. benthamiana. IP: 
immunopurification, IB: immunoblotting. Three independent biological replicates were performed 
with similar results; one replicate is shown. (C) Fӧrster resonance energy transfer-fluorescence 
lifetime imaging microscopy (FRET-FLIM) analysis of the RLKs-RFP/C4-GFP interaction following 
transient expression in N. benthamiana leaves. Box plots denote distribution of eight measurements 
± SD. FE: FRET Efficiency. Asterisks indicate a statistically significant difference according to 
Student’s t-test (****p value < 0.0001; *** p value < 0,005; *p value < 0.05; n.d, no difference). Colored 
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(Figure S2). It has to be considered, however, that TYLCV is a phloem-restricted virus. Therefore, 
during the natural infection, C4 will only have access to those RLKs that are expressed in this tissue. 
In order to identify potentially C4 targeted-RLKs relevant in the context of the viral infection, we 
analyzed the expression of the genes encoding the selected RLKs in the phloem according to two 
published datasets [26,27] (Figure 3). Although there are differences in gene expression between the 
two datasets analyzed, as shown in Figure 3, all tested RLKs were expressed in the phloem in both 
cases, and therefore their coexistence with C4 in the cell is likely. Considering this, it is plausible that 
the positive interactions identified in this work have biological significance, although this possibility 
needs to be experimentally investigated. 

Figure 2. C4 interacts with several leucine-rich repeat (LRR)-RLKs in vivo. (A) Co-immunoprecipitation
of BAM1-, CLV1-, BRI1-, BRL3-, NIK1-, FLS2-, and BAK1-RFP with C4-GFP following transient
expression in N. benthamiana. (B) Co-immunoprecipitation of BAM1-, PSKR1- and PERK1-RFP with
C4-GFP following transient expression in N. benthamiana. IP: immunopurification, IB: immunoblotting.
Three independent biological replicates were performed with similar results; one replicate is shown.
(C) Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) analysis
of the RLKs-RFP/C4-GFP interaction following transient expression in N. benthamiana leaves. Box
plots denote distribution of eight measurements ± SD. FE: FRET Efficiency. Asterisks indicate a
statistically significant difference according to Student’s t-test (**** p value < 0.0001; *** p value < 0,005;
* p value < 0.05; n.d, no difference). Colored markers above and below whiskers indicate outliers.
Three independent biological replicates were performed with similar results. One replicate is shown.

As opposed to co-IP, the measurable energy transfer in FRET-FLIM requires close proximity [25],
therefore detecting interactions that are mostly direct. Consistently with the co-IP results, BAK1-RFP
and PERK1-RFP did not show an interaction with C4-GFP in FRET-FLIM assays, as reflected by the lack
of reduction in the GFP lifetime. Co-expression of CLV1-, BRI1-, BRL3-, PSKR1-, FLS2-, or NIK1-RFP,
however, produced a statistically significant reduction in the lifetime of C4-GFP (Figure 2C), indicative
of a positive interaction. Therefore, C4 can interact with CLV1, BRI1, BRL3, PSKR1, FLS2, and NIK1
in vivo, as indicated by co-IP and FRET-FLIM, and this interaction is likely to be direct.
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Interestingly, the behavior of the selected RLKs in their association with C4 does not follow their
phylogenetic distribution (Figures 1 and 2). With the aim of identifying features that may determine
the ability of a given RLK to interact with this viral protein, we aligned the cytoplasmic domains of the
selected RLKs, separating those which interact from those which do not. This comparison, however,
did not provide any clear conclusion, since no residue could be identified as differential and conserved
between and within interactors and non-interactors (Figure S1), suggesting that the binding may rely
more on tertiary rather than primary structure.

Our results indicate that C4 from TYLCV can interact broadly with members of the RLK family
(Figure S2). It has to be considered, however, that TYLCV is a phloem-restricted virus. Therefore,
during the natural infection, C4 will only have access to those RLKs that are expressed in this tissue.
In order to identify potentially C4 targeted-RLKs relevant in the context of the viral infection, we
analyzed the expression of the genes encoding the selected RLKs in the phloem according to two
published datasets [26,27] (Figure 3). Although there are differences in gene expression between the
two datasets analyzed, as shown in Figure 3, all tested RLKs were expressed in the phloem in both
cases, and therefore their coexistence with C4 in the cell is likely. Considering this, it is plausible that
the positive interactions identified in this work have biological significance, although this possibility
needs to be experimentally investigated.
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Figure 3. C4-interacting RLKs are expressed in phloem companion cells. Expression of selected
RLKs according to publicly available transcriptome datasets [26,27]. For (a), mean expression values
were selected from the SUC2:GFP-marked cell population dataset, in which companion cells are
overrepresented [26]; for (b), mean expression values were selected from companion cells read counts
in mock conditions [27]. All values are normalized to ACT2 expression in the same experiment.
Expression of the pollen-specific RECEPTOR-LIKE SERINE/THREONINE KINASE 2 (RKF2) is shown
as negative control.

The interaction between C4 and BAM1 has been previously proposed to likely affect some, but
not all, BAM1-mediated functions. This is based on the observation that C4-expressing plants display
a reduced intercellular movement of RNAi, which requires BAM1 and BAM2, but responds normally
to CLV3 peptide in root growth assays, a response that depends on BAM1 [7]. With the aim to
investigate whether C4 affects the functionality of other interacting RLKs, we decided to test whether
FLS2- and BRI1-dependent responses to the immunogenic bacterial peptide flg22 or to the steroid
hormone epibrassinolide (epiBL), for which they are the respective receptors, are altered in transgenic
C4-expressing Arabidopsis lines. For this purpose, we selected well-known readouts of each of these
pathways: gene expression (FRK1, CYP8IF2), production of an apoplastic burst of ROS, inhibition of
seedling growth upon flg22 treatment to evaluate FLS2 function; gene expression (EXP8) and root
growth following exogenous epiBL treatments to evaluate BRI1 function. The results of these functional
analyses are shown in Figure 4. Although the early apoplastic ROS burst following flg22 perception
was reduced by the presence of C4, the intermediate activation of marker gene expression or the late
inhibition of growth occurred normally in the C4-expressing plants (Figure 4A–C). Strikingly, the
expression of the marker gene EXP8, which is activated upon BL perception, remained at basal levels in
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epiBL-treated C4-expressing plants, in contrast to the marked induction in control plants (Figure 4D).
Despite the dramatic effect on the expression of this marker gene, C4 did not affect root growth
responses to epiBL (Figure 4E). Although it has to be noted that indirect effects of C4 on the FLS2-
and BRI1-dependent pathways, not associated to its physical interaction with the respective RLKs,
cannot be ruled out, our results indicate that C4 may affect some, but not all, readouts downstream
of RLK function, directly or indirectly. Since C4 interacts with the kinase domain of BAM1 [7], one
possibility would be that the viral protein exerts a negative impact on the kinase activity of the RLKs.
However, such an inhibition of the enzymatic activity would be expected to abolish downstream
events following perception of the extracellular ligand, which is not the case for all outputs tested
following interaction of C4 with BAM1 [7], FLS2, or BRI1. We therefore hypothesize that a more likely
mechanism of action would be the displacement of endogenous interactors by C4, although this idea
awaits experimental testing.

Two different scenarios can be envisioned to justify the broad capacity of C4 to interact with
different, unrelated RLKs. One possibility is that these RLKs play a role in the interaction between
plant and virus and are therefore bona fide targets that C4 has evolved to bind and manipulate. The
alternative possibility is that only one or some RLKs are bona fide targets, while the interaction with
the others is merely a side effect of the evolved capacity of C4 to bind the former. The identification of
the structural features that determine the interaction with C4 might shed light on this issue. Although
all identified interacting RLKs are expressed in the phloem and hence have the potential to impact the
infection by TYLCV, their functional relevance during this process remains unexplored.

Mounting evidence suggests that PRRs might play a role also in plant-virus interactions. Although
this has not been proven for geminiviruses yet, TYLCV infection can activate plant defense responses [28,
29], and activation of PTI by flg22 treatment can trigger the release of C4 from the plasma membrane
and its translocation to the chloroplast, suggesting that this viral protein is somehow associated with
and responsive to the activation of the FLS2 receptor complex (Medina-Puche et al., unpublished). To
date, however, NIK1 is the only RLK shown to have a prominent role in the geminivirus infection. The
finding that C4 can physically interact with NIK1 raises the enticing idea that C4 might be exerting, in
monopartite geminiviruses, the function of the NSP of bipartite viruses in suppressing the anti-viral
translational inhibition [13], although further experiments will be required to determine whether this
is the case.
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Figure 4. C4 affects some, but not all, BRI1 and FLS2 downstream readouts. Relative expression
of the BL responsive gene EXP8 (A) or of the flg22 responsive genes FRK1 and CYP8IF2 (B). Bars
represent mean expression in 10-day-old T3 35S:GFP and T2 35S:C4 (L5) transgenic Arabidopsis
seedlings treated with 1 µM epiBL (A) or 1 µM flg22 (B) one hour prior sample harvesting ± SD, n = 3
(technical replicates), as measured by quantitative real-time-polymerase chain reaction (qRT-PCR).
Three independent biological replicates were performed, and results from one representative replicate
are shown. (C,D) Production of reactive oxygen species (ROS) in four-week-old wild-type (WT) and T3
35S:C4 transgenic Arabidopsis (L5, L7) plants upon 100 nM flg22 treatment measured as total photon
counts during 60 min (C) (bars represent averages values ± SE, n = 12) or as relative luminescence units
(RLU) along 40 min (D). Three independent biological replicates were performed; values correspond
to one representative replicate ± SE, n = 12 (leaf discs from independent leaves). (E) Normalized
root length of 12-day-old T3 35S:GFP and T2 35S:C4 (L5) transgenic Arabidopsis seedlings following
depletion of (2 µM Propiconazol (PPZ)) and exogenous addition of brassinosteroids (0.1 and 1 nM epiBL)
for six days, ±SD, n = 12–16. Three independent biological replicates were performed with similar
results; results from one replicate are shown. (F) Relative seedling growth inhibition of 10-day-old WT
and T3 35S:C4 transgenic Arabidopsis (L7, L5) seedlings upon 100 nM flg22 treatment ± SE, n = 14–16.
Three independent biological replicates were performed with similar results; results from one replicate
are shown.
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Author Contributions: Conceptualization, B.G.G., A.P.M. and R.L-D.; formal analysis, B.G.G., D.Z. and
R.L-D.; resources, B.G.G., D.Z., T.R-D. and Y.W.; investigation, B.G.G. and D.Z.; project administration, R.L-D.;
writing—original draft preparation, R.L-D.; writing—review and editing, B.G.G., A.P.M. and R.L-D.; visualization,
B.G.G.; supervision, A.P.M. and R.L-D.; funding acquisition, A.P.M. and R.L-D.

Funding: This research was funded by the Shanghai Center for Plant Stress Biology from the Chinese Academy
of Sciences, and the National Science Foundation China (grant numbers 31671994 and 31870250). BGG is the
recipient of a Talent-Introduction Grant (Chinese Postdoctoral International Exchange Program).

Acknowledgments: The authors thank Xinyu Jian and Aurora Luque for excellent technical assistance, and all
members in the Lozano-Duran lab for stimulating discussions and useful suggestions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Breiden, M.; Simon, R. Q&A: How does peptide signaling direct plant development? BMC Biol. 2016, 14, 1–7.
2. Ye, Y.; Ding, Y.; Jiang, Q.; Wang, F.; Sun, J.; Zhu, C. The role of receptor-like protein kinases (RLKs) in abiotic

stress response in plants. Plant Cell Rep. 2017, 36, 235–242. [CrossRef] [PubMed]
3. He, Y.; Zhou, J.; Shan, L.; Meng, X. Plant cell surface receptor-mediated signaling—A common theme amid

diversity. J. Cell Sci. 2018, 131, jcs209353. [CrossRef] [PubMed]
4. Gish, L.A.; Clark, S.E. The RLK/Pelle family of kinases. Plant. J. 2011, 66, 117–127. [CrossRef]
5. Smakowska-luzan, E.; Mott, G.A.; Parys, K.; Stegmann, M.; Howton, T.C.; Layeghifard, M.; Neuhold, J.;

Lehner, A.; Kong, J.; Grünwald, K.; et al. An extracellular network of Arabidopsis leucine-rich repeat receptor
kinases. Nature 2018, 553, 342–346. [CrossRef]

6. Tang, D.; Wang, G.; Zhou, J.M. Receptor kinases in plant-pathogen interactions: More than pattern recognition.
Plant Cell 2017, 29, 618–637. [CrossRef]

7. Rosas-Diaz, T.; Zhang, D.; Fan, P.; Wang, L.; Ding, X.; Jiang, Y.; Jimenez-Gongora, T.; Medina-Puche, L.;
Zhao, X.; Feng, Z.; et al. A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi.
Proc. Natl. Acad. Sci. USA 2018, 115, 1388–1393. [CrossRef]

8. Lozano-Durán, R.; Zipfel, C. Trade-off between growth and immunity: Role of brassinosteroids.
Trends Plant Sci. 2015, 20, 12–19. [CrossRef]

9. Teixeira, R.M.; Ferreira, M.A.; Raimundo, G.A.S.; Loriato, V.A.P.; Reis, P.A.B.; Fontes, E.P.B. Virus perception
at the cell surface: Revisiting the roles of receptor-like kinases as viral pattern recognition receptors. Mol. Plant
Pathol. 2019, 20, 1196–1202. [CrossRef]

10. Macho, A.P.; Lozano-Duran, R. Molecular dialogues between viruses and receptor-like kinases in plants.
Mol. Plant Pathol. 2019, 20, 1191–1195. [CrossRef]

11. Julie Kørner, C.; Klauser, D.; Niehl, A.; Domínguez-Ferreras, A.; Chinchilla, D.; Boller, T.; Heinlein, M.;
Hann, D.R. The immunity regulator BAK1 contributes to resistance against diverse RNA viruses.
Mol. Plant-Microbe Interact. 2013, 26, 1271–1280. [CrossRef] [PubMed]

12. Niehl, A.; Wyrsch, I.; Boller, T.; Heinlein, M. Double-stranded RNAs induce a pattern-triggered immune
signaling pathway in plants. New Phytol. 2016, 211, 1008–1019. [CrossRef] [PubMed]

13. Zorzatto, C.; Machado, J.P.B.; Lopes, K.V.G.; Nascimento, K.J.T.; Pereira, W.A.; Brustolini, O.J.B.; Reis, P.A.B.;
Calil, I.P.; Deguchi, M.; Sachetto-Martins, G.; et al. NIK1-mediated translation suppression functions as a
plant antiviral immunity mechanism. Nature 2015, 520, 679–682. [CrossRef] [PubMed]

14. Seo, J.K.; Kim, M.K.; Kwak, H.R.; Choi, H.S.; Nam, M.; Choe, J.; Choi, B.; Han, S.J.; Kang, J.H.; Jung, C.
Molecular dissection of distinct symptoms induced by tomato chlorosis virus and tomato yellow leaf curl
virus based on comparative transcriptome analysis. Virology 2018, 516, 1–20. [CrossRef] [PubMed]

15. Fontes, E.P.B.; Santos, A.A.; Luz, D.F.; Waclawovsky, A.J.; Chory, J. The geminivirus nuclear shuttle protein is
a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev. 2004, 18, 2545–2556.
[CrossRef]

http://www.mdpi.com/1999-4915/11/11/1009/s1
http://dx.doi.org/10.1007/s00299-016-2084-x
http://www.ncbi.nlm.nih.gov/pubmed/27933379
http://dx.doi.org/10.1242/jcs.209353
http://www.ncbi.nlm.nih.gov/pubmed/29378836
http://dx.doi.org/10.1111/j.1365-313X.2011.04518.x
http://dx.doi.org/10.1038/nature25184
http://dx.doi.org/10.1105/tpc.16.00891
http://dx.doi.org/10.1073/pnas.1715556115
http://dx.doi.org/10.1016/j.tplants.2014.09.003
http://dx.doi.org/10.1111/mpp.12816
http://dx.doi.org/10.1111/mpp.12812
http://dx.doi.org/10.1094/MPMI-06-13-0179-R
http://www.ncbi.nlm.nih.gov/pubmed/23902263
http://dx.doi.org/10.1111/nph.13944
http://www.ncbi.nlm.nih.gov/pubmed/27030513
http://dx.doi.org/10.1038/nature14171
http://www.ncbi.nlm.nih.gov/pubmed/25707794
http://dx.doi.org/10.1016/j.virol.2018.01.001
http://www.ncbi.nlm.nih.gov/pubmed/29316505
http://dx.doi.org/10.1101/gad.1245904


Viruses 2019, 11, 1009 11 of 11

16. Carvalho, C.M.; Santos, A.A.; Pires, S.R.; Rocha, C.S.; Saraiva, D.I.; Machado, J.P.B.; Mattos, E.C.; Fietto, L.G.;
Fontes, E.P.B. Regulated nuclear trafficking of rpL10A mediated by NIK1 represents a defense strategy of
plant cells against virus. PLoS Pathog. 2008, 4, e1000247. [CrossRef]

17. Rocha, C.S.; Santos, A.A.; Machado, J.P.B.; Fontes, E.P.B. The ribosomal protein L10/QM-like protein is a
component of the NIK-mediated antiviral signaling. Virology 2008, 380, 165–169. [CrossRef]

18. Zeng, R.; Liu, X.; Yang, C.; Lai, J. Geminivirus C4: Interplaying with Receptor-like Kinases. Trends Plant Sci.
2018, 23, 1044–1046. [CrossRef]

19. Carluccio, A.V.; Prigigallo, M.I.; Rosas-Diaz, T.; Lozano-Duran, R.; Stavolone, L. S-acylation mediates
Mungbean yellow mosaic virus AC4 localization to the plasma membrane and in turns gene silencing
suppression. PLoS Pathog. 2018, 14, 1–26. [CrossRef]

20. Li, H.; Zeng, R.; Chen, Z.; Liu, X.; Cao, Z.; Xie, Q.; Yang, C.; Lai, J. S-acylation of a geminivirus C4 protein is
essential for regulating the CLAVATA pathway in symptom determination. J. Exp. Bot. 2018, 69, 4459–4468.
[CrossRef]

21. Karimi, M.; Inzé, D.; Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation.
Trends Plant Sci. 2002, 7, 193–195. [CrossRef]

22. Holzwart, E.; Ignacio, A.; Glöckner, N.; Garnelo Gómez, B.; Wanke, F.; Augustin, S.; Askani, J.C.;
Schürholz, A.-K.; Harter, K.; Wolf, S. BRI1 controls vascular cell fate in the Arabidopsis root through
RLP44 and phytosulfokine signaling. Proc. Natl. Acad. Sci. 2018, 115, 11838–11843. [CrossRef] [PubMed]

23. Lozano-Durán, R.; Macho, A.P.; Boutrot, F.; Segonzac, C.; Somssich, I.E.; Zipfel, C. The transcriptional
regulator BZR1 mediates trade-off between plant innate immunity and growth. Elife 2013, 2, e00983.
[CrossRef] [PubMed]

24. Sang, Y.; Macho, A.P. Analysis of PAMP-triggered ROS burst in plant immunity. Methods Mol. Biol. 2017,
1578, 13–23.

25. Noomnarm, U.; Clegg, R.M. Fluorescence lifetimes: Fundamentals and interpretations. Photosynth. Res.
2009, 101, 181–194. [CrossRef] [PubMed]

26. Brady, S.M.; Orlando, D.A.; Lee, J.-Y.; Wang, J.Y.; Koch, J.; Dinneny, J.R.; Mace, D.; Ohler, U.; Benfey, P.N.
A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns. Science. 2007, 318,
801–806. [CrossRef]

27. You, Y.; Sawikowska, A.; Lee, J.E.; Benstein, R.M.; Neumann, M.; Krajewski, P.; Schmid, M. Phloem
Companion Cell-specific Transcriptomic and Epigenomic Analyses Identify MRF1, a Regulator of Flowering.
Plant Cell 2019, 31, 325–345. [CrossRef]

28. Ding, X.; Jimenez-Gongora, T.; Krenz, B.; Lozano-Durán, R. Chloroplast clustering around the nucleus is a
general response to pathogen perception in Nicotiana benthamiana. Mol. Plant Pathol. 2019, 20, 1298–1306.
[CrossRef]

29. Wu, M.; Ding, X.; Fu, X.; Lozano-Durán, R. Transcriptional reprogramming caused by the geminivirus
Tomato yellow leaf curl virus in local or systemic infections in Nicotiana benthamiana. BMC Genomics 2019,
20, 1–17. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.ppat.1000247
http://dx.doi.org/10.1016/j.virol.2008.08.005
http://dx.doi.org/10.1016/j.tplants.2018.09.003
http://dx.doi.org/10.1371/journal.ppat.1007207
http://dx.doi.org/10.1093/jxb/ery228
http://dx.doi.org/10.1016/S1360-1385(02)02251-3
http://dx.doi.org/10.1073/pnas.1814434115
http://www.ncbi.nlm.nih.gov/pubmed/30377268
http://dx.doi.org/10.7554/eLife.00983
http://www.ncbi.nlm.nih.gov/pubmed/24381244
http://dx.doi.org/10.1007/s11120-009-9457-8
http://www.ncbi.nlm.nih.gov/pubmed/19568954
http://dx.doi.org/10.1126/science.1146265
http://dx.doi.org/10.1105/tpc.17.00714
http://dx.doi.org/10.1111/mpp.12840
http://dx.doi.org/10.1186/s12864-019-5842-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Plant Material 
	Plasmids and Cloning 
	Transient Expression in N. benthamiana 
	Protein Extraction and Co-Immunoprecipitation 
	FRET-FLIM 
	Hormone and Peptide Treatments 
	RNA Extraction and qRT-PCR 
	Detection of Reactive Oxygen Species (ROS) 
	Phylogeny and Protein Sequence Alignment 

	Results and Discussion 
	References

