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Abstract: Intensive efforts are being made to eliminate the raccoon variant of rabies virus (RABV) from
the eastern United States and Canada. The United States Department of Agriculture (USDA) Wildlife
Services National Rabies Management Program has implemented enhanced rabies surveillance (ERS)
to improve case detection across the extent of the raccoon oral rabies vaccination (ORV) management
area. We evaluated ERS and public health surveillance data from 2006 to 2017 in three northeastern
USA states using a dynamic occupancy modeling approach. Our objectives were to examine potential
risk corridors for RABV incursion from the U.S. into Canada, evaluate the effectiveness of ORV
management strategies, and identify surveillance gaps. ORV management has resulted in a decrease
in RABV cases over time within vaccination zones (from occupancy (ψ) of 0.60 standard error (SE)
= 0.03 in the spring of 2006 to ψ of 0.33 SE = 0.10 in the spring 2017). RABV cases also reduced in
the enzootic area (from ψ of 0.60 SE = 0.03 in the spring of 2006 to ψ of 0.45 SE = 0.05 in the spring
2017). Although RABV occurrence was related to habitat type, greater impacts were associated
with ORV and trap–vaccinate–release (TVR) campaigns, in addition to seasonal and yearly trends.
Reductions in RABV occupancy were more pronounced in areas treated with Ontario Rabies Vaccine
Bait (ONRAB) compared to RABORAL V-RG®. Our approach tracked changes in RABV occurrence
across space and time, identified risk corridors for potential incursions into Canada, and highlighted
surveillance gaps, while evaluating the impacts of management actions. Using this approach, we are
able to provide guidance for future RABV management.

Keywords: dynamic occupancy; multi-method occupancy; ORV; rabies virus; raccoon; surveillance;
wildlife disease; USA

1. Introduction

Intensive rabies management programs are implemented in the eastern United States and Canada
to minimize the spread and eventually eliminate the raccoon variant of rabies virus. The primary
method to manage the rabies virus (RABV) in wild carnivore populations is the use of oral vaccination
at a landscape scale to reduce the susceptible portion of the population and consequently reduce
transmission. Modeling studies focused on raccoons estimate that population immunity levels of
60%–90% may be necessary to control and eliminate raccoon RABV circulation, but ultimately levels

Viruses 2019, 11, 1006; doi:10.3390/v11111006 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0002-4962-9753
http://www.mdpi.com/1999-4915/11/11/1006?type=check_update&version=1
http://dx.doi.org/10.3390/v11111006
http://www.mdpi.com/journal/viruses


Viruses 2019, 11, 1006 2 of 13

of population immunity are sensitive to variation in host density and contact across a rural-urban
continuum [1–3]. To vaccinate wild carnivore populations, vaccine baits are distributed in target areas
defined by the host epizootiology and landscape barriers where relevant, a process referred to as oral
rabies vaccination (ORV). Wildlife rabies management using ORV has been employed for close to two
decades in northeastern U.S., particularly along the U.S.–Canada border [4], and occurs at a landscape
scale comprising a range of habitats and raccoon densities. It is well documented that higher densities
of raccoons occur in suburban and urban areas compared to rural areas [5], and the intensity of ORV
targeting raccoons is scaled accordingly to raccoon density index estimates [6–8]. These factors may
impact the effectiveness of ORV programs to control and eliminate circulation of RABV occurrence in
target raccoon populations.

Two metrics are primarily used to evaluate the effectiveness of raccoon rabies management
strategies. Post-baiting vaccine monitoring is conducted annually at the state level by the collection and
testing of raccoon serum samples within ORV-treated areas to assess the proportion of sampled animals
that have developed rabies antibodies. Enhanced Rabies Surveillance (ERS) sampling is conducted
to document changes in the incidence of RABV infection in target populations. Both activities are
coordinated by the United States Department of Agriculture, Animal and Plant Health Inspection
Service, Wildlife Services (WS), National Rabies Management Program (NRMP) in cooperation with
other agencies as described in the North American Rabies Management Plan [9]. Field trials involving
animal captures both pre- and post-baiting are also conducted to document changes in the population
prevalence of RABV antibodies and biomarkers, e.g., [10–12], but these studies are labor intensive and
are usually limited in duration and spatial coverage. The NRMP utilizes information from active ERS
in addition to public health surveillance data to monitor RABV incidence within and in proximity
to areas managed with ORV. These data provide insight into the risk of RABV transmission across
space and can determine management impacts on RABV occurrence [13,14]. There is particular
interest in moving the ORV management area towards the Atlantic coast to work to eliminate raccoon
RABV. These surveillance data can help identify risk corridors, or areas with higher RABV occurrence,
which may provide avenues for RABV to breach the ORV barrier and where additional management
or surveillance effort should be focused.

Our objectives are to examine ERS and public health surveillance data across three states in
northeastern U.S. to (1) determine the dynamic occurrence of raccoon RABV over time, (2) evaluate
the relationship between habitat type and raccoon RABV occurrence, (3) evaluate the impacts of the
duration of ORV baiting, bait density, and bait type on raccoon RABV occurrence, and (4) evaluate the
relative contributions of different surveillance methods for detecting raccoon RABV.

2. Materials and Methods

2.1. Study Area

Our study area encompasses northern counties in New York, Vermont, and New Hampshire that
are north of 43.40 degrees latitude (Figure 1). We focused on counties that included or were adjacent to
ORV areas from 2006 to 2017. There is particular interest in assessing risk corridors for new incursions
of raccoon RABV into Canada [12,15]. Our study area has been intensively managed with oral rabies
vaccine since 1995 and borders Quebec, Canada, making it a useful study area to examine impacts
of management actions and identify risk corridors. This region (51,714 km2) is primarily deciduous
and mixed forest (~43%), 12% evergreen forests, 6% cultivated crop cover, 13% pastureland, and 5%
developed (ranging from open space to high density development) based on the 2011 National Land
Cover Database [16]. The study area also includes Lake Champlain and the northern part of the
Adirondack Mountains.
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3.2. Data and Data Processing 

Raccoons that were sampled for RABV as a part of ERS by the NRMP from 2006 to 2017 within 

the northern counties of New York, Vermont, and New Hampshire were included in our analysis. 

The data collected for each sampled raccoon include the location where the raccoon was sampled, 

date, the agency that collected the sample, how the raccoon was encountered (e.g., roadkill, 

surveillance trapped, and nuisance animal), and field comments. Brain tissue from each raccoon was 
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Figure 1. Map of the study area in northern New York, Vermont and New Hampshire. Locations of
raccoons that were sampled from 2006 to 2017 are shown—the black circles were negative for raccoon
variant of rabies virus (RABV) and the red triangles were positive for RABV. The oral rabies vaccination
(ORV) zone for 2017 is shown as the light grey area.

2.2. Data and Data Processing

Raccoons that were sampled for RABV as a part of ERS by the NRMP from 2006 to 2017 within
the northern counties of New York, Vermont, and New Hampshire were included in our analysis.
The data collected for each sampled raccoon include the location where the raccoon was sampled, date,
the agency that collected the sample, how the raccoon was encountered (e.g., roadkill, surveillance
trapped, and nuisance animal), and field comments. Brain tissue from each raccoon was tested for
RABV using either the direct rapid immunohistochemical test (dRIT) [17] or the direct florescent
antibody assay (DFA) [18]. All positive samples from WS were typed to identify the RABV variant
infecting the raccoon [19]. In addition to ERS samples, we used public health surveillance data from
potential human or pet exposure cases that were collected by state and local health departments,
which are reported annually to the Centers for Disease Control and Prevention (CDC). State public
health and veterinary laboratories all use the standard DFA test to inform recommendations for
post-exposure prophylaxis [20,21].

ERS data are categorized based on the circumstances of how the raccoon was sampled.
The categories are: (1) raccoons that are sick or strange acting upon sampling, (2) raccoons that
were found dead by WS personnel, (3) roadkill raccoons collected by WS personnel, (4) raccoons
trapped by WS specifically for RABV surveillance, (5) raccoons that were reported as nuisances by the
public, and (6) sampling from any other method within ERS [22]. These classifications were formalized
in the data collection process in 2016. Prior to 2016, samples were categorised post-collection based on
information in the sample record, including the fate, the agency collecting the data, and comments taken
during collection. Samples collected as part of public health surveillance were categorized as a separate
surveillance method. We created a 10 km by 10 km grid across the study area to evaluate RABV
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occupancy within each grid cell. We examined data by season (calendar seasons) to accommodate
both the incubation and infectious periods. Individual raccoons that were sampled by ERS and public
health were either determined to be positive or negative for RABV. When a positive raccoon was
sampled, the grid cell in which the raccoon was sampled (and the season it was found) was determined
to be positive for RABV. Grid cells with only negative surveillance (e.g., where only negative raccoons
were sampled) may have been positive for RABV and RABV was just not detected or the grid cell may
have been RABV free.

2.3. Occupancy Analysis

Dynamic occupancy models simultaneously estimate RABV occupancy and detection [23,24].
When an area is positive for RABV, not all raccoons sampled will be positive for RABV. By comparing the
proportion of samples that are positive for RABV when the area is known to be positive for RABV (i.e.,
at least one sample is positive for RABV across all surveillance methods), we can evaluate the probability
of detecting RABV by the surveillance method using occupancy analysis [23]. When detection is not
perfect (not equal to 1), we know that RABV may have been missed in some areas where it was present.
By using the estimated detection probabilities, we can estimate the probability that grid cells with
only negative samples were actually positive for RABV. We implemented the dynamic occupancy
model using a Bayesian hierarchical model custom coded in program R [25]; for full details, see Davis
et al. [26]. We used a multi-detection method approach [26,27] to estimate detection probabilities
separately for each surveillance method and to account for seasonal variability in detection probabilities.
Detection probabilities were estimated for each method by spring and summer separately from fall
and winter to address our fourth objective. Dynamic occupancy models estimate occupancy (ψit)
over space “i” and time “t” by starting with estimating the initial RABV occupancy (ψi1) for the
first time period. Then occupancy estimate for each subsequent time period are based on the initial
occupancy and whether the occupancy status at a site changed from one time period to the next
(calculated by transition rates). The transition rates are colonization (γ, grid cells that are unoccupied
with RABV becoming occupied in the next time step) and extinction (ε, grid cells that are occupied
with RABV becoming unoccupied in the next time step). As part of dynamic occupancy, we used
logistic regression to model colonization probability as a function of covariates. We examined temporal
covariates (seasonal effects and a linear time trend), spatial covariates (habitat effects and elevation) and
management covariates (ORV and trap–vaccinate–release (TVR) management at grid cells). The habitat
effect included the percent coverage of deciduous forest cover, evergreen forest cover, cultivated crop,
hay pastures, medium or high development areas, and open or low development areas based on Land
Cover Database classifications from 2011 [16]. Models were validated using an area under the curve
(AUC) statistic modified to accommodate the lack of detection issues as per Zipkin et al. [28].

To address our first three objectives, we used the occupancy estimates to examine the relationship
between RABV occupancy probability and time, habitat composition, and management actions more
explicitly in a post-hoc regression analysis. In particular, we examined how occupancy probabilities
change with the duration of baiting in a given area to help provide guidance on how long baiting
programs should be sustained. We used basis functions to examine non-linear relationships with bait
duration [29]. Two types of bait were used in the study area during our study, RABORAL V-RG® (V-RG;
Boehringer Ingelheim, Athens, GA, USA), and Ontario Rabies Vaccine Bait (ONRAB; Ultralite baits,
Artemis Technologies, Inc., Guelph, Ontario, Canada). There was also variability in the density of baits
applied across the ORV zone ranging from 35 baits/km2 up to 150 baits/km2. In addition to ORV baiting
from 2007 to 2012, localized TVR efforts were conducted within our study area. We included the log
number of vaccinated raccoons from TVR efforts by grid cell and season as an additional explanatory
variable for RABV occupancy. We examined the relationship between occupancy probability and
habitat, seasonality, TVR management, and the ORV bait type, duration, and density using a beta
regression analysis implemented using program betareg [30]. We also compared the impacts of two
bait types (V-RG and ONRAB) directly using t-tests on the occupancy probabilities in sites prior to
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baiting and after one year of baiting in order to reduce complicating factors of variable bait histories.
We tested whether baiting reduced occupancy for each method independently. We also compared the
magnitude of occupancy reduction by bait type. These tests were conducted in program R [25].

3. Results

From 2006 to 2017, we sampled a total of 3984 raccoons in the study area. There were 503
RABV-positive samples (13% of all samples). Addressing our first objective, the occupancy analyses
showed that the probability of RABV occupancy varied across seasons and generally declined over
time (Figure 2). The trend across time in areas managed by ORV had lower RABV occupancy and
declined more prominently than areas not managed by ORV (Figure 2, objective 3). We used t-tests on
the posterior mean RABV occupancy estimates to compare the magnitude of occupancy reduction by
bait type. The RABV occupancy in areas not managed by ORV reduced by 0.15 from the spring of 2006
to the spring of 2017 and reduced by 0.27 from the spring of 2006 to the spring of 2017 in areas managed
by ORV (p-value < 0.001). During 1995–2011, only V-RG baits were used in the study area, whereas
both V-RG and ONRAB were used from 2012 to 2017. Both V-RG and ONRAB showed significant
reductions in RABV occupancy after 1 year of baiting (p-value < 0.001 for both bait types). ONRAB
showed a greater reduction in RABV occupancy after one year of baiting compared to V-RG (a reduction
of 0.12 in RABV occupancy for ONRAB compared to a reduction of 0.07 for V-RG, p-value = 0.001).
These comparisons accounted for the fact that the average RABV occupancy prior to baiting in areas
baited with ONRAB was slightly lower than for areas baited with V-RG (0.60 SE = 0.07 and 0.67
SE = 0.08 respectively). Our post-hoc beta regression analysis showed that the probability of RABV
occupancy decreased as the number of years an area was baited increased (Table 1). Bait density also
impacted RABV occupancy (Table 1). RABV occupancy decreased with increased bait density for V-RG
but remained relatively constant for increased ONRAB bait densities (Figure 3). The TVR management
strongly impacted the probability of RABV occupancy, with the occupancy decreasing with increasing
numbers of raccoons vaccinated. Specifically, 50 individuals vaccinated (compared to none) related to
a reduction in RABV occupancy of 0.22 (95% CI: 0.18, 0.27).
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Figure 2. The Probability of RABV occupancy from 2006 to 2017 in the northern counties of New York,
Vermont and New Hampshire. The estimates are shown by season and by status of areas within the
ORV management zone (red) and those south of the ORV management zone in the enzootic area (black).
The shaded regions by color show the 95% confidence intervals.
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Table 1. Covariate estimates for the beta regression model on RABV occupancy. Factors are sorted
in descending order from the absolute magnitude of the effect. The duration of baiting by V-RG and
Ontario Rabies Vaccine Bait (ONRAB) were modeled with basis functions (BS) to allow for non-linear
effects. Their factors are grouped together and sorted based on the largest magnitude effect.

Factor Estimate Std. Error z Value Pr(>|z|)

(Intercept) 1.15 0.02 57.13 0.00
Bait density by bait type interaction 1.28 0.07 18.43 0.00

Bait density −1.18 0.06 −20.46 0.00
Year −0.79 0.01 −63.25 0.00

Medium to high development 0.62 0.25 2.52 0.01
ONRAB duration BS-1 −0.08 0.11 −0.73 0.46
ONRAB duration BS-2 −0.13 0.04 −3.36 0.00
ONRAB duration BS-3 −0.43 0.05 −8.00 0.00

Open to low development −0.41 0.16 −2.61 0.01
Bait type −0.41 0.05 −8.32 0.00

V-RG duration BS-1 0.20 0.05 3.86 0.00
V-RG duration BS-2 0.32 0.05 5.93 0.00
V-RG duration BS-3 −0.40 0.06 −6.37 0.00

Deciduous forest −0.36 0.02 −17.05 0.02
Spring −0.34 0.01 −45.09 0.00

Summer −0.29 0.01 −37.89 0.00
Hay/pasture 0.26 0.04 6.61 0.00

log(# raccoons vaccinated with
trap–vaccinate–release management) −0.25 0.00 −69.24 0.00

Cultivated crops 0.15 0.07 2.33 0.02
Wetlands 0.14 0.04 3.39 0.00

Winter −0.13 0.01 −16.53 0.00
Years of total baiting −0.08 0.02 −3.98 0.00

Mean elevation −0.08 0.01 −8.30 0.00
Evergreen forest 0.06 0.04 1.79 0.07
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Figure 3. Boxplots of the probability of RABV occupancy estimates by bait density and bait type.

The probability of RABV occupancy varied not only by season, year and management actions,
but also spatially. Habitat covariates did influence RABV occupancy, but the effects were not as
strong as management actions and temporal variability (Table 1, objective 2). The strongest habitat
effect was a positive relationship between the probability of RABV occupancy and the percentage
of medium or high developed area (β = 1.10, SE = 0.18, Table 1). RABV occupancy declined with
increased elevation (Table 1). The probability surface of the last time point can be used to identify risk
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corridors (Figure 4a) and identify areas with data needs (Figure 4b). Risk corridors were identified
as areas with higher RABV occupancy probabilities that may provide access from the enzootic areas
to Canada. Risk corridors may be areas with higher RABV probabilities or areas with lower RABV
occupancy but have high uncertainty. The highest probabilities of RABV occupancy were south of the
ORV management zone and tended to be associated with cities and areas of low elevation (Figure 4a).
Occupancy probability in the ORV zone was lower but more variable than outside the zone and
corresponded to higher uncertainty (Figure 4b).
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Figure 4. (a) The probability of RABV occupancy surface within the study area in the fall of 2017.
The inset in this figure shows the county boundaries and the ORV boundaries for 2017 (light grey).
(b) The standard error around RABV occupancy estimates by grid cell for the fall of 2017.
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Public health samples comprised the largest percent of all samples tested (30.75%, Table 2).
Found dead and surveillance trapped were the smallest percentages of all samples (1.51% and 7.03%
respectively, Table 2). The other surveillance methods ranged from 12% to 18% of all samples.
Over three-quarters of the samples were collected in the spring and summer compared to the fall and
winter (Table 2). Over half of all RABV-positive samples were from the public health data (59.84%).
Fewer than 10% of all positive samples came from either found dead, roadkill, surveillance trapped,
or nuisance collection methods. Detection probability is conditioned on RABV being present, therefore
detection probabilities can be very different from raw prevalence rates. Addressing our fourth objective,
we found that found dead and other samples in spring to summer, and public health and nuisance
samples in fall to winter had the highest detection probabilities (Figure 5). Roadkill and surveillance
trapped methods had low detection probabilities but were both higher in fall to winter compared to
spring to summer (Figure 5).

Table 2. Number of negative and positive RABV samples and total raccoon samples from 2006 to 2017
in northeastern U.S. by the surveillance method.

Fall to Winter Spring to Summer

Method Negative Positive Total Negative Positive Total

Strange acting 99 12 111 388 50 438
Found dead 13 0 13 36 11 47

Roadkill 138 12 150 517 30 547
Surveillance trapped 70 1 71 608 9 617

Nuisance 25 2 27 251 2 253
Other 147 13 160 265 60 325

Public health 229 104 333 695 197 892
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Figure 5. The probability of RABV detection by the surveillance method allowing for within year
variability (spring to summer—solid colors; fall to winter—hashed bars). The colors correspond to
surveillance method: strange acting in red, found dead in orange, roadkill in light green, surveillance
trapped method in dark green, nuisance samples in yellow, other samples in violet, and public health
samples in blue. The 95% credible intervals are shown per estimate.
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We had a good model fit using the Zipkin et al. [28] AUC statistic for occupancy models
(AUC = 0.97), suggesting our model adequately recaptures our estimated RABV occurrence patterns.

4. Discussion

One of our primary objectives was to evaluate the effectiveness of ORV as a wildlife rabies
management strategy in northeastern U.S. Raccoon RABV occupancy declined (corresponding to case
reduction) over time in areas within ORV management zones more substantially than in raccoon RABV
enzootic areas without management. However, occupancy in the raccoon RABV enzootic areas also
declined during our twelve-year study period. This may suggest a natural waning of raccoon RABV
circulation in the raccoon populations of northeastern U.S. in recent years or a post-epizootic rebound
effect (lower susceptible populations). It could also possibly be an added benefit of nearby intensive
ORV management. Raccoons exposed to vaccination baits within management areas may migrate and
intermix with populations not being actively managed. These individuals may be helping to reduce
the transmission of raccoon RABV even in the absence of direct management.

Considerable effort and research have been applied to developing strategies to manage raccoon
RABV. Previous studies have suggested that both the duration of baiting and the bait density influence
the seroprevalence in raccoons [8,31]. Our results support the importance of these vaccination strategies.
Additionally, we found support for differences in RABV occupancy based on the type of oral rabies
vaccine distributed in our study area. Consistent with comparative studies based on serology [12,32,33],
we found that ONRAB outperformed V-RG in reducing RABV occupancy (reducing RABV occupancy
after one year of baiting in an unbaited area by 0.12 for ONRAB compared to 0.07 for V-RG). The study
area was baited with V-RG exclusively for over a decade before ONRAB was applied. Furthermore,
as we have determined, the baiting history in an area and the bait density are also important indicators
of RABV occurrence. However, even when we look at areas with similar baiting histories and
bait densities, we did find that areas treated with ONRAB had lower occupancy than areas treated
with V-RG.

Serology studies on raccoons have shown variability in seroprevalence responses to baiting
strategies even when using similar vaccine bait types and similar bait densities [8,34,35], suggesting
that other factors may influence the effectiveness of baiting strategies. Potential complicating factors
may include significant variation in raccoon densities, variation in opportunities for target species to
encounter vaccine bait by habitat type, and the potential for bait competition by non-target species [36].
These variations in seroconversion response may help explain the variability in occupancy we observed.
For example, we found higher RABV occupancy in areas with increased medium and high-density
developed habitats. These higher occupancy rates might relate to higher densities of raccoons associated
with urban areas [37,38], despite rates of bait application that are approximately doubled in urban
areas compared to rural areas. Based on the results of our study, the additional optimization of baiting
strategies in suburban and urban areas appears warranted.

In addition to ORV management, from 2007 to 2012 several intensive TVR management actions
were conducted within our study area. TVR efforts have been shown to be effective in helping to
reduce RABV cases [33,39]. Due to the intense effort associated with TVR programs, they are usually
localized and conducted over short periods of time [40] and thus TVR is often used in conjunction
with other approaches (e.g., population reduction or ORV) to help have a broader impact [36,40].
TVR programs in our study area were conducted primarily along the U.S.–Canada border in Vermont,
along the Vermont–New York and Vermont–New Hampshire borders, and along the St. Lawrence
River in New York. We found a strong impact of TVR programs on RABV occupancy, with larger
numbers of raccoons vaccinated corresponding to lower RABV occupancy rates. These impacts were
pronounced even though the majority of TVR activities occurred within active ORV management zones.
This supports the idea that combined approaches can be more effective at reducing RABV cases [4,41].

Our study identifies areas with high probabilities of RABV occupancy which may indicate potential
risk corridors for raccoon RABV transmission north into Canada. Using the spatial and temporal
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patterns we observed in raccoon RABV occurrence (our first two objectives), we identified two potential
risk corridors, one in northern Franklin County, NY, and one on the New York–Vermont border in
Grand Isle County, Vermont. These are paths from the enzootic area that are in the ORV management
area and have higher RABV occupancy. The area in Franklin County, New York, had a brief outbreak
of RABV in the spring of 2015, but has not been intensively sampled since then and thus remains
an area of concern. The higher risk is related both to the previous history in the area and to the
lack of sufficient sampling to be confident of RABV elimination. The risk corridor along the New
York–Vermont border is an area of low elevation and low elevation areas generally are associated with
higher raccoon densities and RABV occupancy. Raccoon densities have been reported to be lower in
areas with high elevation [7,42]. If RABV transmission and spread is principally influenced by raccoon
density [2,43], this may relate to the higher risk in this area.

To be able to evaluate RABV occurrence patterns, we need to understand how different surveillance
methods influence our ability to detect raccoon RABV on the landscape (our fourth objective). Without
accounting for the lack of detection issues, we would have biased estimates of RABV occupancy [23]
and therefore may not have estimated spatial, temporal, and management relationships with occupancy
adequately. Detection probabilities varied by the surveillance method, similar to previous work in
Ohio, West Virginia, and Pennsylvania [26]. Public health data, which largely come from animals tested
due to human, livestock, or pet exposures, had the highest detection rates in our study, as expected.
Public health samples formed a disproportionately larger composition of samples from the enzootic
area compared to areas being managed with ORV in our study, which may relate to the higher detection
rates. Overall, we found some similar patterns in detection probabilities compared to the study in Ohio,
West Virginia, and Pennsylvania (e.g., strange acting, found dead, and public health samples had higher
detection rates and surveillance trapped samples had very low detection probabilities). However,
this study showed higher detection in the unknown/other method of detection as well as a higher
proportion of samples from this method. The classification of samples to the designated surveillance
methods was not implemented in the field until 2016 [22]. The post-sampling categorization that
was necessary prior to 2016 used details in the sample records (such as animal fate, collection agency,
and comments) to make post-hoc assignments to the defined methods. Differences between state
agency collection protocols may contribute to the higher proportion of uncategorized samples in this
study compared to the study in Ohio, West Virginia, and Pennsylvania. The downside of having
a larger percentage of uncategorized samples means that there is greater uncertainty in the detection
probabilities where these samples should have been categorized. Detection rates across our surveillance
methods in our study were higher than in our previous study during the same time period in Ohio,
West Virginia, and Pennsylvania, despite only collecting approximately one-fifth of the samples relative
to our previous study (3984 compared to 23,635). Variations in detection probabilities may be related
to factors such as habitat, which may be useful to examine in future research.

5. Conclusions

Our retrospective analysis linked patterns of RABV occupancy over time to management actions
at the landscape scale. We demonstrated a decrease in RABV occupancy with the duration of baiting
for two bait types, and across a wide range of bait densities. However, our study design did not include
data from paired vaccinated and unvaccinated sites with similar incidence and ecology, which limits
our ability to infer causation. Nonetheless, our RABV data span a large spatial area that include
vaccinated and unvaccinated areas. There was a much stronger rate of RABV decline in the vaccinated
areas relative to the unvaccinated areas, suggesting that this result is robust. Experimental studies
that measure incidence and seroprevalence pre- and post-vaccination would be a useful compliment
for quantifying the magnitude of vaccination impacts and the levels of vaccination that lead to herd
immunity under different ecological and RABV incidence conditions.



Viruses 2019, 11, 1006 11 of 13

Author Contributions: Conceptualization: A.J.D., A.T.G., R.B.C., and K.M.P. Methodology: A.J.D. Formal
analysis: A.J.D. Resources: K.M.N., R.B.C., J.D.K., X.M., and R.W. Data curation: K.M.N., J.D.K., X.M., and R.W.
Writing—original draft preparation: A.J.D., A.T.G., and R.B.C. Writing—review and editing: A.J.D., A.T.G., R.B.C.,
K.M.N., J.D.K., K.M.P., X.M., and R.W. Supervision: A.T.G. and R.B.C.

Acknowledgments: We thank state program Wildlife Services field personnel and cooperators for sample
collection. We thank all laboratory personnel who performed diagnostic testing. This research was supported by
the U.S. Department of Agriculture, Wildlife Services, National Rabies Management Program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Reynolds, J.J.H.; Hirsch, B.T.; Gehrt, S.D.; Craft, M.E. Raccoon contact networks predict seasonal susceptibility
to rabies outbreaks and limitations of vaccination. J. Anim. Ecol. 2015, 84, 1720–1731. [CrossRef] [PubMed]

2. Coyne, M.; Smith, G.; McAllister, F. Mathematic model for the population biology of rabies in raccoons in the
mid-atlantic states. Am. J. Vet. Res. 1989, 50, 2148–2154. [PubMed]

3. Rees, E.E.; Pond, B.A.; Tinline, R.R.; Bélanger, D. Modelling the effect of landscape heterogeneity on the
efficacy of vaccination for wildlife infectious disease control. J. Appl. Ecol. 2013, 50, 881–891. [CrossRef]

4. Slate, D.; Algeo, T.P.; Nelson, K.M.; Chipman, R.B.; Donovan, D.; Blanton, J.D.; Niezgoda, M.; Rupprecht, C.E.
Oral rabies vaccination in north america: Opportunities, complexities, and challenges. PLoS Negl. Trop. Dis.
2009, 3, e549. [CrossRef] [PubMed]

5. Hadidian, J.; Prange, S.; Rosatte, R.C.; Riley, S.P.; Gehrt, S.D. Raccoons (procyon lotor). In Urban Carnivores:
Ecology, Conflict, and Conservation; Gehrt, S.D., Riley, S.P., Cypher, B.L., Eds.; The Johns Hopkins University
Press: Baltimore, MD, USA, 2010; pp. 35–47.

6. Blackwell, B.F.; Seamans, T.W.; White, R.J.; Patton, Z.J.; Bush, R.M.; Cepek, J.D. Exposure time of oral rabies
vaccine baits relative to baiting density and raccoon population density. J. Wildl. Dis. 2004, 40, 222–229.
[CrossRef]

7. Slate, D.; Saidy, B.D.; Simmons, A.; Nelson, K.M.; Davis, A.J.; Algeo, T.; Elmore, S.A.; Chipman, R.B. Raccoon
population density indexes in the eastern united states: Implimcations for rabies management. J. Wildl.
Manag. 2019. under review.

8. Sattler, A.C.; Krogwold, R.A.; Wittum, T.E.; Rupprecht, C.E.; Algeo, T.P.; Slate, D.; Smith, K.A.; Hale, R.L.;
Nohrenberg, G.A.; Lovell, C.D. Influence of oral rabies vaccine bait density on rabies seroprevalence in wild
raccoons. Vaccine 2009, 27, 7187–7193. [CrossRef]

9. USDA. North American Rabies Management Plan; U.S. Departement of Agriculture: Concord, NH, USA, 2008.
10. Slate, D.; Chipman, R.B.; Algeo, T.P.; Mills, S.A.; Nelson, K.M.; Croson, C.K.; Dubovi, E.J.; Vercauteren, K.;

Renshaw, R.W.; Atwood, T. Safety and immunogenicity of ontario rabies vaccine bait (onrab) in the first us
field trial in raccoons (procyon lotor). J. Wildl. Dis. 2014, 50, 582–595. [CrossRef]

11. Gilbert, A.T.; Johnson, S.R.; Nelson, K.M.; Chipman, R.B.; VerCauteren, K.C.; Algeo, T.P.; Rupprecht, C.E.;
Slate, D. Field trials of ontario rabies vaccine bait in the northeastern usa, 2012–2014. J. Wildl. Dis. 2018, 54,
790–801. [CrossRef]

12. Pedersen, K.; Gilbert, A.T.; Nelson, K.M.; Morgan, D.P.; Davis, A.J.; VerCauteren, K.C.; Slate, D.; Chipman, R.B.
Raccoon (procyon lotor) response to ontario rabies vaccine baits (onrab) in st. Lawrence county, new york,
USA. J. Wildl. Dis. 2019, 55. [CrossRef]

13. Ma, X.; Blanton, J.D.; Rathbun, S.R.; Rupprecht, C.E. Time series analysis of the impact of oral vaccination on
raccoon rabies in west virginia, 1990–2007. Vector-Borne Zoonotic Dis. 2010, 10, 801–809. [CrossRef]

14. Recuenco, S.; Blanton, J.D.; Rupprecht, C.E. A spatial model to forecast raccoon rabies emergence. Vector-Borne
Zoonotic Dis. 2012, 12, 126–137. [CrossRef] [PubMed]

15. Cullingham, C.I.; Kyle, C.J.; Pond, B.A.; Rees, E.E.; White, B.N. Differential permeability of rivers to raccoon
gene flow corresponds to rabies incidence in ontario, canada. Mol. Ecol. 2009, 18, 43–53. [CrossRef] [PubMed]

16. Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K.
Completion of the 2011 national land cover database for the conterminous united states–representing a decade
of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354.

17. Patrick, E.M.; Bjorklund, B.M.; Kirby, J.D.; Chipman, R.; Rupprecht, C. Enhanced rabies surveillance using
a direct rapid immunohistochemical test. J. Vis. Exp. 2019, 146, 1–7. [CrossRef]

http://dx.doi.org/10.1111/1365-2656.12422
http://www.ncbi.nlm.nih.gov/pubmed/26172427
http://www.ncbi.nlm.nih.gov/pubmed/2610445
http://dx.doi.org/10.1111/1365-2664.12101
http://dx.doi.org/10.1371/journal.pntd.0000549
http://www.ncbi.nlm.nih.gov/pubmed/20027214
http://dx.doi.org/10.7589/0090-3558-40.2.222
http://dx.doi.org/10.1016/j.vaccine.2009.09.035
http://dx.doi.org/10.7589/2013-08-207
http://dx.doi.org/10.7589/2017-09-242
http://dx.doi.org/10.7589/2018-09-216
http://dx.doi.org/10.1089/vbz.2009.0089
http://dx.doi.org/10.1089/vbz.2010.0053
http://www.ncbi.nlm.nih.gov/pubmed/21995266
http://dx.doi.org/10.1111/j.1365-294X.2008.03989.x
http://www.ncbi.nlm.nih.gov/pubmed/19140963
http://dx.doi.org/10.3791/59416


Viruses 2019, 11, 1006 12 of 13

18. Centers for Disease Control and Prevention. Protocol for Postmortem Diagnosis of Rabies in Animals by Direct
Fluorescent Antibody Testing; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2018.

19. Szanto, A.G.; Nadin-Davis, S.A.; Rosatte, R.C.; White, B.N. Re-assessment of direct fluorescent antibody
negative brain tissues with a real-time pcr assay to detect the presence of raccoon rabies virus rna. J. Virol.
Methods 2011, 174, 110–116. [CrossRef]

20. Brown, C.M.; Slavinski, S.; Ettestad, P.; Sidwa, T.J.; Sorhage, F.E. Compendium of animal rabies prevention
and control, 2016. J. Am. Vet. Med. Assoc. 2016, 248, 505–517.

21. Manning, S.E.; Rupprecht, C.E.; Fishbein, D.; Hanlon, C.A.; Lumlertdacha, B.; Guerra, M.; Meltzer, M.I.;
Dhankhar, P.; Vaidya, S.A.; Jenkins, S.R. Human rabies prevention-united states, 2008. Mmwr. Recomm. Rep.
2008, 57, 1–28.

22. Kirby, J.D.; Chipman, R.B.; Nelson, K.M.; Rupprecht, C.E.; Blanton, J.D.; Algeo, T.P.; Slate, D. Enhanced
rabies surveillance to support effective oral rabies vaccination of raccoons in the eastern united states. Trop.
Med. Infect. Dis. 2017, 2, 34. [CrossRef]

23. MacKenzie, D.I.; Nichols, J.D.; Royle, J.A.; Pollock, K.H.; Bailey, L.L.; Hines, J.E. Occupancy Estimation and
Modeling—Inferring Patterns and Dynamics of Species Occurrence; Academic Press: San Diego, CA, USA, 2006.

24. Bled, F.; Nichols, J.D.; Altwegg, R. Dynamic occupancy models for analyzing species’ range dynamics across
large geographic scales. Ecol. Evol. 2013, 3, 4896–4909. [CrossRef]

25. R Core Team. R: A Language and Environment for Statistical Computing; R foundation for statistical computing:
Vienna, Austria, 2017.

26. Davis, A.J.; Kirby, J.D.; Chipman, R.B.; Nelson, K.M.; Xifara, T.; Webb, C.T.; Wallace, R.; Gilbert, A.T.;
Pepin, K.M. Not all surveillance data are created equal—A multi-method dynamic occupancy approach to
determine rabies elimination from wildlife. J. Appl. Ecol. 2019. [CrossRef]

27. Nichols, J.D.; Bailey, L.L.; Talancy, N.W.; Campbell Grant, E.H.; Gilbert, A.T.; Annand, E.M.; Husband, T.P.;
Hines, J.E. Multi-scale occupancy estimation and modelling using multiple detection methods. J. Appl. Ecol.
2008, 45, 1321–1329. [CrossRef]

28. Zipkin, E.F.; Grant, E.H.C.; Fagan, W.F. Evaluating the predictive abilities of community occupancy models
using auc while accounting for imperfect detection. Ecol. Appl. 2012, 22, 1962–1972. [CrossRef] [PubMed]

29. Hefley, T.J.; Broms, K.M.; Brost, B.M.; Buderman, F.E.; Kay, S.L.; Scharf, H.R.; Tipton, J.R.; Williams, P.J.;
Hooten, M.B. The basis function approach for modeling autocorrelation in ecological data. Ecology 2017, 98,
632–646. [CrossRef]

30. Gruen, B.; Kosmidis, I.; Zeileis, A. Extended beta regression in r: Shaken, stirred, mixed, and partitioned. J.
Stat. Softw. 2012, 48, 1–25. [CrossRef]

31. Mainguy, J.; Rees, E.E.; Canac-Marquis, P.; Bélanger, D.; Fehlner-Gardiner, C.; Séguin, G.; Larrat, S.; Lair, S.;
Landry, F.; Côté, N. Oral rabies vaccination of raccoons and striped skunks with onrab®baits: Multiple
factors influence field immunogenicity. J. Wildl. Dis. 2012, 48, 979–990. [CrossRef]

32. Mainguy, J.; Fehlner-Gardiner, C.; Slate, D.; Rudd, R.J. Oral rabies vaccination in raccoons: Comparison of
onrab®and raboral v-rg®vaccine-bait field performance in québec, canada and vermont, USA. J. Wildl. Dis.
2013, 49, 190–193. [CrossRef]

33. Fehlner-Gardiner, C.; Rudd, R.; Donovan, D.; Slate, D.; Kempf, L.; Badcock, J. Comparing onrab®and
raboral v-rg®oral rabies vaccine field performance in raccoons and striped skunks, new brunswick, canada,
and maine, USA. J. Wildl. Dis. 2012, 48, 157–167. [CrossRef]

34. Pedersen, K.; Gilbert, A.T.; Wilhelm, E.S.; Nelson, K.M.; Davis, A.J.; Kirby, J.D.; VerCauteren, K.C.;
Johnson, S.R.; Chipman, R.B. Effect of high-density oral rabies vaccine baiting on rabies virus neutralizing
antibody response in raccoons (procyon lotor). J. Wildl. Dis. 2018, 55. [CrossRef]

35. Wandeler, A.; Capt, S.; Kappeler, A.; Hauser, R. Oral immunization of wildlife against rabies: Concept and
first field experiments. Rev. Infect. Dis. 1988, 10, S649–S653. [CrossRef]

36. Slate, D.; Rupprecht, C.E.; Rooney, J.A.; Donovan, D.; Lein, D.H.; Chipman, R.B. Status of oral rabies
vaccination in wild carnivores in the united states. Virus Res. 2005, 111, 68–76. [CrossRef] [PubMed]

37. Bozek, C.K.; Prange, S.; Gehrt, S.D. The influence of anthropogenic resources on multi-scale habitat selection
by raccoons. Urban Ecosyst. 2007, 10, 413–425. [CrossRef]

38. Prange, S.; Gehrt, S.D.; Wiggers, E.P. Demographic factors contributing to high raccoon densities in urban
landscapes. J. Wildl. Manag. 2003, 67, 324–333. [CrossRef]

http://dx.doi.org/10.1016/j.jviromet.2011.04.009
http://dx.doi.org/10.3390/tropicalmed2030034
http://dx.doi.org/10.1002/ece3.858
http://dx.doi.org/10.1111/1365-2664.13477
http://dx.doi.org/10.1111/j.1365-2664.2008.01509.x
http://dx.doi.org/10.1890/11-1936.1
http://www.ncbi.nlm.nih.gov/pubmed/23210312
http://dx.doi.org/10.1002/ecy.1674
http://dx.doi.org/10.18637/jss.v048.i11
http://dx.doi.org/10.7589/2011-12-316
http://dx.doi.org/10.7589/2011-11-342
http://dx.doi.org/10.7589/0090-3558-48.1.157
http://dx.doi.org/10.7589/2018-05-138
http://dx.doi.org/10.1093/clinids/10.Supplement_4.S649
http://dx.doi.org/10.1016/j.virusres.2005.03.012
http://www.ncbi.nlm.nih.gov/pubmed/15896404
http://dx.doi.org/10.1007/s11252-007-0033-8
http://dx.doi.org/10.2307/3802774


Viruses 2019, 11, 1006 13 of 13

39. Rosatte, R.; Donovan, D.; Allan, M.; Bruce, L.; Buchanan, T.; Sobey, K.; Stevenson, B.; Gibson, M.;
MacDonald, T.; Whalen, M. The control of raccoon rabies in ontario canada: Proactive and reactive
tactics, 1994–2007. J. Wildl. Dis. 2009, 45, 772–784. [CrossRef] [PubMed]

40. Rosatte, R.C.; Power, M.J.; Machines, C.D.; Campbell, J.B. Trap-vaccinate-release and oral vaccination for
rabies control in urban skunks, raccoons and foxes. J. Wildl. Dis. 1992, 28, 562–571. [CrossRef]

41. Rosatte, R.C. Evoluation of wildlife rabies control tactics. In Rabies, 3rd ed.; Jackson, A.C., Ed.; Academic
Press: London, UK, 2011; pp. 617–670.

42. Zeveloff, S.I.; Dewitte, E. Raccoons: A Natural History; UBC Press: Vancouver, BC, Canada, 2002.
43. Elmore, S.A.; Chipman, R.B.; Slate, D.; Huyvaert, K.P.; VerCauteren, K.C.; Gilbert, A.T. Management and

modeling approaches for controlling raccoon rabies: The road to elimination. PLoS Negl. Trop. Dis. 2017, 11,
e0005249. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.7589/0090-3558-45.3.772
http://www.ncbi.nlm.nih.gov/pubmed/19617488
http://dx.doi.org/10.7589/0090-3558-28.4.562
http://dx.doi.org/10.1371/journal.pntd.0005249
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data and Data Processing 
	Occupancy Analysis 

	Results 
	Discussion 
	Conclusions 
	References

