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Abstract: More than 350 million people worldwide have been persistently infected with the hepatitis 
B virus (HBV). Chronic HBV infection could advance toward liver cirrhosis and hepatocellular 
carcinoma. The intervention with prophylactic vaccine and conventional treatment could suppress 
HBV, but could not completely eradicate it. The major obstacle for investigating curative antiviral 
drugs are the incompetence of hepatocyte models that should have closely imitated natural human 
infection. Here, we demonstrated that an immortalized hepatocyte-like cell line (imHC) could 
accommodate for over 30 days the entire life cycle of HBV prepared from either established cultured 
cells or clinically-derived fresh isolates. Normally, imHCs had intact interferon signaling with anti-
viral action. Infected imHCs responded to treatments with direct-acting antiviral drugs (DAAs)  
and interferons (IFNs) by diminishing HBV DNA, the covalently closed circular DNA (cccDNA)  
surface antigen of HBV (HBsAg, aka the Australia antigen) and the hepatitis B viral protein 
(HBeAg). Notably, we could observe and quantify HBV spreading from infected cells to naïve cells 
using an imHC co-culture model. In summary, this study constructed a convenient HBV culture 
model that allows the screening for novel anti-HBV agents with versatile targets, either HBV entry, 
replication or cccDNA formation. Combinations of agents aiming at different targets should achieve 
a complete HBV eradication. 

Keywords: hepatitis B; viral spreading; cccDNA; hepatocyte; NTCP; HBV; cell culture 
 

1. Introduction 

Hepatitis B virus (HBV) infection is a worldwide threat with more than 2 billion infected 
individuals that would give rise to 350 million chronic HBV carriers. Chronic HBV infection risks the 
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development of liver cirrhosis and hepatocellular carcinoma with approximately 620,000 HBV-
related deaths annually [1,2]. 

Current approved treatment comprises only nucleoside analogs (NAs) and interferon-α (IFN-
α). These treatments significantly reduced the HBV viral load in patients. NAs, including entecavir 
(ETV), lamivudine, telbivudine and tenofovir, suppress HBV replication by targeting viral reverse 
transcriptase. IFN-α indirectly suppresses HBV through modulating the host immune response and 
directly interferes with HBV replication in hepatocytes [3,4]. Although IFN-α treatment could be 
effective in certain circumstances, the viral response rate remains unsatisfied, with unbearable side 
effects [5,6]. Either NA, IFN-α or PegIFN-α cannot completely eliminate viral infection. Therefore, 
chronic HBV infection requires life-long supportive treatment with a possibility of ensuing drug 
resistance. 

HBV is a member of the hepadnaviridae family belonging to the genus Orthohepadnavirus. Viral 
particles are composed of partially double-stranded 3.2 kb genomic DNA or relaxed circular DNA 
(rcDNA) [7]. HBV entry relies on the bile acid transporter, sodium taurocholate cotransporting 
polypeptide (NTCP) found particularly in hepatocytes [8,9]. Binding of HBV surface antigen (HBsAg) 
with NTCP triggers a viral entry via NTCP mediated-endocytosis [10]. After releasing from the 
nucleocapsid, HBV rcDNA is transported into the nucleus. The rcDNA contains various DNA lesions 
that solicit host cell DNA repair machinery to construct a stable HBV DNA structure, called 
covalently closed circular DNA (cccDNA) [11,12]. HBV cccDNA is a chromatin-like structure or mini 
chromosome that serves as the template for all HBV transcripts that would be translated as envelope 
(S, M and L), core antigen (HBVcAg) and viral polymerase. The HBV transcript also serves as pre-
genomic RNA (pgRNA). The 3.5 kb pgRNA is encapsidated and reversed transcribed into rcDNA. 
Capsids contained rcDNA are then either enclosed with envelope and released from infected 
hepatocytes as progeny virions, or they are returned to nuclease for conserving cccDNA pool 
replication [9,10]. 

The persistency of cccDNA in hepatocyte initiates chronic HBV infection with ensuing severe 
liver diseases (i.e., cirrhosis and hepatocellular carcinoma (HCC)). To prevent HCC, targeting 
cccDNA for silencing is necessary to completely eradicate chronic HBV infection [13]. However, the 
understanding of how cccDNA is formed, transcribed and maintained is still unclear [14]. 
Contemporary treatment of chronic HBV infection relies on NAs and IFN-α that could at best lessen 
the viral load. The proposed efficacious therapeutic agent targeting the upstream cccDNA has not 
yet been developed [15]. Curative therapies has been hindered by the availability of infectible hosts, 
either a hepatocyte culture or animal model that mimics the chronic phase of infection [16]. HBV 
infection is limited to hepatocytes with narrow host species. The productive infection takes place 
exclusively in chimpanzee and human hepatocytes that challenges the study of chronic infection and 
the cccDNA elimination model [17,18]. 

The establishment of hepatocyte cell lines that could host HBV started after the identification of 
NTCP or the solute carrier family 10 member 1 (SLC10A1, a sodium/bile acid cotransporter) as a 
functional receptor for HBV and HDV [19,20]. Especially, increasing human NTCP level through 
ectopic expression rendered various hepatocyte cell lines to allow HBV infection [19,21]. Stable 
transfection of the plasmid-encoding HBV genome into HepG2.2.15, a hepatoma cell line, allowed 
HBV production with certain features of the HBV life cycle [22,23]. However, the HBV plasmid 
system could not fully imitate natural HBV infection. Some essential steps (i.e., viral entry and 
cccDNA formation) were not achieved. The contemporary HBV infection model was established on 
HepaRG, HepG2.2.15, HepG2-NTCP and HepAD38 as host cells. Although these hepatoma cell lines 
offered feasibility and reproducibility, they carried abnormal proliferation/gene regulation and a 
deficit in interferon signaling that made them far from perfect for HBV study [24]. Primary human 
hepatocytes (PHHs) have been regarded as the gold standard for this HBV infection model [25]. 

PHHs from both fetal and adult sources could host HBV infection [26,27]. However, PHHs 
carried several limitations, e.g., short life span, dedifferentiation, rapid loss of hepatic functions, poor 
viability and batch to bath variations [28]. The application of PHHs for chronic HBV infection or other 
long-term host-pathogen studies, such as malarial, HCV and dengue infections, are not feasible. 
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Therefore, the investigation for HBV and hepatocyte interaction was limited to a few days after 
infection, representing only acute and subacute infections. It is not suitable for any chronic HBV 
infection and cccDNA stability assay. To circumvent this limitation, the micropatterned co-culture 
(MPCC) model, in which PHHs were co-cultured with supportive stroma cells (3T3-J2), extended 
hepatic functions up to 4–6 weeks [29], supporting HCV [30], HBV [24], and malarial studies [31]. 
However, this MPCC model required extensive steps, and suffered batch to bath variations of PHH 
preparation. 

Recently, human hepatocyte-like cells (HLCs), derived from either human embryonic stem cells 
(hES) or induced pluripotent stem cells (iPSCs), had obtained more attention owing to their 
applications in regenerative medicine, drug biotransformation and in vitro pathogenic infections [32–
34]. Several investigators have reported the applications of HLC for HBV maintenance [2,35–37]. 
HLCs could serve as precursor cells for hepatocytes due to the unlimited proliferation potential of ES 
and iPS cells. However, hepatocytes derived from pluripotent stem cells carried mixed populations 
of mature and fetal hepatocytes that expressed α-fetoprotein with a minimal level of NTCP protein 
[34]. HBV infection and cccDNA formation required mature hepatocyte in a quiescent state to 
maintain cccDNA stability [38]. During HLC proliferation, cccDNA would be degraded and therefore 
immature HLCs could not sustain long-term HBV infection. We previously developed immortalized 
hepatocyte-like cells (imHCs) derived from human mesenchymal stem cells (hMSCs) [39]. These 
imHCs maintained the production of hepatocyte-related markers, such as albumin (ALB), α-
fetoprotein (AFP), urea, glycogen, tyrosine aminotransferase (TAT), hepatocyte nuclear factor-4α 
(HNF-4α), glucose-6-phosphase dehydrogenase, NTCP and all major cytochrome P450 that closely 
mimicked those of primary human hepatocytes. Moreover, these imHCs could host the human 
malarial parasite in liver-stage (Plasmodium vivax) [40] and dengue virus infection [41]. 

In these studies, we evaluated the potential of imHCs for their hosting of wild-type HBV 
infection up to 28 d. This infection model is required for drug screening. This condition entails viral 
replication, cccDNA stability, viral spreading and the cellular response involving interferon-
stimulated genes (ISGs). The imHC was effectively infected by HBV derived from both HBVcc and 
clinical isolates that allowed the entire HBV life cycle, starting from viral entry to virion release. HBV 
particles produced from this model can infect naïve hepatocytes, spread to lateral cells and establish 
a 2nd generation HBV progeny. The treatment of HBV-infected imHCs with nucleot(s)ide analogs or 
antiviral cytokines decreased the HBV viral load, HBsAg, HBeAg and cccDNA levels. Moreover, the 
incubation of cccDNA positive imHC with interferon-γ (IFN-γ) significantly diminished the cccDNA 
pool in hepatocytes. These findings strongly indicated that imHCs would be an excellent platform to 
study the HBV persistency of clinical isolates and for efficacy evaluations of host-targeting antivirals. 

2. Materials and Methods 

2.1. Cell Culture 

An immortalized hepatocyte-like cell line (imHC) [39,40], HepG2 cell line (ATCC, Manassas, 
VA, USA) and HepaRG (Thermo Fisher Scientific, Waltham, MA, USA) were used. All cell lines were 
cultured in DMEM/F12 (Hyclone), 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin at 37 °C, 
5% CO2. Prior to hepatitis B virus (HBV) infection, 1 × 106 cells were seeded onto each well of a 6-well 
plate overnight. The quiescent stage was achieved in differentiated medium [42] (Williams’ E 
medium, 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin, 5 µg/mL insulin, 50 µM 
hydrocotisone, 2 mM L-glutamine (GlutaMax, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) 
and 2% DMSO (Sigma Corporation of American, Ronkonkoma, NY, USA) for 2 weeks. 

2.2. Detection of sodium taurocholate cotransporting polypeptide (NTCP) in Hepatocytes 

For mRNA expression, total RNA was extracted by illustra RNAspin Mini RNA isolation kits 
(GE Healthcare, Chicago, IL, USA). The total RNA (2 µg) was immediately converted to cDNA using 
ImProm-II™ Reverse Transcription System (Promega, Fitchburg, WI, USA) with the specified primer 
pairs (Table S1). The qPCR was carried out by KAPA SYBR® FAST qPCR Kits (Kapa Biosystems, 
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Wilmington, MA, USA) at 95 °C for 3 min; 40 cycles of 95 °C for 10 s, 60 °C for 20 s, using Mx3000P 
QPCR System (Agilent, Santa Clara, CA, USA). For protein analysis, total protein was extracted with 
RIPA buffer with protease inhibitor. Samples were separated on 10% (w/v) polyacrylamide gels and 
transferred to a PVDF membrane. The membrane was incubated with anti-sodium taurocholate 
cotransporting polypeptide (anti-NTCP) (1:100 dilution, ab131084, Abcam, Cambridge, UK) followed 
by HRP-conjugated goat anti-rabbit antibody (1:10,000), and detected by Luminata crescendo 
Western HRP substrate (Millipore, Burlington, MA, USA) and visualized under Omega Lum™ G 
Imaging System (Aplegen, San Francisco, CA, USA). For loading control, the blot was stripped and 
probed with mouse anti-GAPDH antibody (AM4300; 1:200,000 dilution) and HRP goat anti-mouse 
secondary antibody (1:10,000). 

2.3. Production of HBV from Cultured Cells 

Cell culture based hepatitis B virus (HBVcc subtype adw2) was prepared from freshly collected 
supernatants of the HBV stably transfected HepG2 cell line, clone 2.2.15 [22]. HepG2.2.15 cells were 
maintained in DMEM (Hyclone, GE Healthcare), 10% FBS, 100 U/mL penicillin, 100 µg/mL 
streptomycin. The supernatant was collected at 7 d after adding 380 µg/mL G418 and concentrated 
100-fold. The collected supernatants were filtered through 0.45 µm and viral particles were 
concentrated by Lenti-X™ Concentrator (Clonetech, Takara Bio, Mountain View, CA, USA). The 
mixtures were incubated at 4 °C at least 30 min before centrifugation at 1500× g for 45 min at 4 °C 
following the manufacturer’s instructions. The supernatants were removed and the pellet was gently 
resuspended with FBS at dilution 1:100 of original volume of supernatant. 100× HBV was aliquoted 
and stored at −80 °C until use. The HBV titer was about 6.28 × 108 HBV genome equivalents/mL using 
the serial dilutions of a known amount of plasmid HBV 1.3-mer WT replicon (Addgene plasmid # 
65459) as a standard curve. 

2.4. The Infection to Hepatocytes Using HBV Derived from HepG2.2.15 or Clinical Isolate 

HBV positive plasma from patients (>106 IU/mL HBV genotype C, 50 µL) was added to host cells 
in 1 mL Williams’ E serum-free medium, 4% PEG 8000 (89510, Sigma, St. Louis, MO, USA) for 24 h at 
37 °C. For HBVcc infection, 10 µL of 108 HBV genome equivalents was added at MOI 100. At the end 
of incubation, infected cells were vigorously washed thrice with PBS before being cultured in 
complete Williams’ E medium without DMSO. 

2.5. Evaluating HBV Progeny Produced from Infected imHC and HepaRG 

Differentiated HepaRG and imHC were infected with HBV derived from HepG2.2.15 for 7 d. 
The conditioned medium was centrifuged and passed through a 0.45 µm syringe filter to remove cell 
debris. PEG 8000 (8%) in Williams’ E media (0.5 mL) was added to the differentiated naïve HepaRG 
and imHC. The naïve hepatocytes were infected with 0.5 mL of 2 × 105 IU/mL HBV supernatants for 
24 h at 37 °C on 6-well plates. HBV-infected cells were vigorously washed thrice with PBS and 
maintained in complete Williams’ E medium without DMSO. Conditioned medium was collected 
and renewed on day 3. Cells were harvested on day 7 post-infection. Cell pellets and supernatants 
from a secondary HBV infection were further quantified for HBV DNA. 

2.6. Measuring the HBsAg and HBeAg in Supernatant Using ELISA 

Differentiated HepaRG and imHCs were cultured on 6-well plate until confluence. Both cell lines 
were infected with HBV derived from HepG2.2.15 or HBV+ plasma. The inoculum was removed 
followed by vigorous washing, and conditioned medium was harvested every 3 d during days 7–28 
post-infection. Hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) were 
measured using an ELISA kit (KA0286 and KA0290, Abnova, Taiwan). The quantitative analysis of 
HBsAg and HBeAg were calculated using a standard curve plotted from HBV recombinant proteins. 

2.7. Immunofluorescent Staining 
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The imHCs were cultured onto 96-well CellCarrier-96 optic black plates (PerkinElmer, Waltham, 
MA, USA) and stained with antibodies against hepatocyte markers: Albumin (ALB) (1:100 dilution, 
ab10241, Abcam), α-fetoprotein (AFP) (1:100 dilution, SC8399, Santa Cruz Biotech, Dallas, TX, USA), 
LDLR (1:100 dilution, SC373830, Santa Cruz Biotechnology), sodium taurocholate cotransporting 
polypeptide (NTCP) (1:100 dilution, ab131084, Abcam), MRP2 (1:100, AB3373, Abcam) and 
hepatocyte nuclear factor-4α (HNF-4α) (1:100 dilution, SC6556, Santa Cruz Biotech). For detecting 
HBV infectivity, infected hepatocytes were stained with antibodies against HBV proteins: HBcAg 
(1:100 dilution, ab8637, Abcam), HBsAg (1:100 dilution, ab20758, Abcam). Hepatocytes were then 
incubated with goat anti-mouse Alexa Fluor® 488-conjugated (1:500 dilution, Invitrogen, Thermo 
Fisher Scientific, Waltham, MA, USA), goat anti-rabbit Alexa Fluor® 488-conjugated (1:500 dilution, 
Invitrogen), or donkey anti-goat Cy3-conjugated secondary antibody (1:500 dilution, BioLegend, San 
Diego, CA, USA). Hepatocyte nuclei were stained with 2 µM Hoechst 33342 (Thermo Fisher Scientific, 
MA). Mouse IgG2a, mouse IgG1, rabbit IgG and goat IgG were used as negative control for staining. 
Fluorescence images were captured by an Operetta High-Content Imaging System (PerkinElmer, 
MA) with a 40× objective lens. 

2.8. Detection of Intracellular HBV DNA and Viral Load Using Quantitative Real-Time PCR 

Intracellular HBV DNA was extracted from infected hepatocytes using NucleoSpin tissue DNA 
extraction kit (MN, Düren, Germany). The HBV viral load was measured in conditioned medium. 
HBV DNA was extracted from 200 µL of conditioned medium using a NucleoSpin blood DNA 
extraction kit (MN, Düren, Germany). The HBV-specific primers were designed using Vector NTI 
version 11.5 (Invitrogen, MA). The primer pairs for HBV DNA are 5′-
GTTGCCCGTTTGTCCTCTAATTC-3′ and 5′-GGAGGGATACATAGAGGTTCCTTGA-3′. The PCR 
reaction mix was composed of 50 ng of total DNA, 0.4 µM HBV primers and 10 µL of KAPA SYBR® 
FAST qPCR Kits (Kapa Biosystems, UK) in 20 µL total volume. HBV DNA was amplified by Mx3000P 
QPCR System (Agilent Technologies, Santa Clara, CA, USA) with the following condition: 95 °C for 
10 s, 60 °C for 20 s and 70 °C for 30 s. The quantitative analysis of the intracellular HBV DNA or viral 
load was measured by absolute real-time qPCR using HBV plasmid HBV 1.3-mer WT replicon as a 
calibrator to plot standard curve. HBV 1.3-mer WT replicon was a gift from Wang-Shick Ryu 
(Addgene plasmid # 65459). 

2.9. Detection of HBV cccDNA in Infected Hepatocytes Using Quantitative Real-Time PCR 

To exclude relaxed circular DNA (rcDNA) from the isolated HBV DNA, covalently closed 
circular DNA (cccDNA) was extracted from infected hepatocytes using the NucleoSpin plasmid DNA 
extraction kit (MN, Düren, Germany). The total DNA was incubated with exonuclease to digest 
contaminating non-cccDNA forms. cccDNA was amplified by specific primers [43] to detect HBV 
cccDNA with a PCR product of 580-bp fragment, which spans the gap and the nick in the rc form of 
the HBV genome [44]. The optimized PCR condition consisted of 95 °C for 5 s, 45 cycles at 95 °C for 
15 s, 60 °C for 4 s, 72 °C for 25 s and detection at 88 °C for 2 s after each cycle. The specificity to amplify 
cccDNA over rcDNA appeared to be 104 to 1. 

2.10. Treatment of HBV Infected Hepatocyte with Entry Inhibitor, Nucleos(t)ide Analogs and Antiviral 
Cytokines 

The naïve imHCs and HepaRG were cultured onto 6-well plates for two weeks in differentiated 
medium. For HBV entry inhibitor, hepatocytes were pre-treated with 4 µM cyclosporine A for 2 h 
prior to infection, with HBV particles derived from HBVcc or HBV+ plasma. Cyclosporine A was 
maintained at 4 µM in culture medium for 15 days. For treatment with nucleos(t)ide analogs and 
antiviral cytokines, imHCs and HepaRG were infected with HBV for 24 h. Infected hepatocyte was 
treated with 1 µM lamivudine, 1 µM entecavir (ETV), 10 ng/mL TNF-α, 100 IU/mL interferon-α (IFN-
α) or 100 IU/mL interferon-γ (IFN-γ) for 15 days. The conditioned medium from infected hepatocytes, 
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mock infection and drug treated group were collected for viral load determination. On day 15, 
infected imHCs and HepaRG were measured for intracellular HBV DNA. 

2.11. Determination of Viral Spreading Using Flow Cytometry 

Differentiated imHC and HepaRG seeded on 6-well plate were infected with HBV derived from 
HBVcc or HBV+ plasma at MOI 100 in Williams’ E Medium. After 24 h, infected hepatocytes were 
washed thrice with 1 mL PBS and maintained in Williams’ E Medium, 10% FBS (ES-009-B, Merck, 
Darmstadt, Germany) for 7 d. Naïve imHCs and HepaRG were stained with 1 µM CellTracker™ 
Green CMFDA Dye (Thermo Fisher Scientific, MA) for 30 min. For HBV spreading, 5 × 105 infected 
hepatocytes and 5 × 105 CMFDA-stained naïve hepatocytes were co-cultured on 6 well-plate and 
maintained in Williams’ E Medium, 10% FBS, 4 µM cyclosporine A and 25 U/mL heparin for 7 d with 
every other day having a medium change. On day 7, co-culture cells were harvested and fixed with 
BD perm/wash (BD Biosciences, San Jose, CA, USA) for 20 min. The co-cultured hepatocyte was 
strained with anti-HBcAg antibody [C1] (ab8637, Abcam, MA) at 4 °C for 30 min, washed thrice with 
BD wash buffer, stained with Goat anti-Mouse IgG (H + L) secondary antibody conjugated to Alexa 
fluor 568 at 4 °C for 30 min, and washed thrice with BD wash buffer. The stained cells were analyzed 
using a BD FACSVerse flow cytometer. The HBV spreading was observed using double positive 
staining with CMFDA and anti-HBcAg. 

2.12. Ethics Statement 

HBV-positive plasma was collected from consenting patients with chronic HBV infection at 
Ramathibodi Hospital, Mahidol University. The protocol was approved by the Ethics Committee on 
Research Involving Human Subjects (2556/250) (date of approval: 06/04/2013). All human subjects 
were adults > 18 years old, and provided written, informed consent. 

2.13. Statistical Analysis 

All results of experiments were performed in triplicate. Data were expressed as means ± SD, and 
the statistical analyses were performed using GraphPad Prism 7 software. For comparison between 
two mean values, a two-tailed unpaired students’ t test was used to calculate statistical significance. 
One-way Analysis of Variance (ANOVA) was used with Dunnett for multiple comparisons to 
compare multiple values to a single value or Tukey’s HSD to compare multiple values to each other. 
A p-value less than 0.05 was considered statistically significant. 

3. Results 

3.1. Expression of Hepatic Phenotypes and NTCP an Entry Receptor for HBV in imHC 

The precursor cells of immortalized human hepatocyte (imHC) came from hMSC that had been 
immortalized with human telomerase reverse transcriptase (hTERT) and Bmi-1 prior to the 
differentiation [45]. After maturation, imHCs were characterized for (1) hepatic markers; (2) 
continuous cell line phenotype (population-doubling level, PDL); (3) liver architecture (cord-like 
structure and polygonal-shaped morphology) (Figure 1A); and (4) basic hepatocyte-specific markers 
(i.e., ALB, AFP, HNF-4α, LDLR, MRP2) through immunofluorescence staining. 

Moreover, the sodium-taurocholate cotransporting polypeptide (NTCP), an entry receptor for 
HBV, was highly expressed in imHCs (Figure 1E). More than 80% of imHC population contained 
ALB, MRP2, HNF-4α, and especially 90% of imHC carried NTCP (Figures 1B–G). The expression 
level of LDLR in imHC was comparable to that of the human hepatocellular carcinoma cell line 
(HepG2) [40]. The expression of the hepatic maturation marker (HNF-4α) together with the 
canalicular multi-specific organic anion transporter (MRP2) indicated that the imHCs had fully 
developed into functional hepatocytes. These evidences confirmed that the hepatic phenotypes of 
imHCs were comparable to those of primary hepatocytes [39]. 
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Figure 1. Identification of hepatic markers and the hepatitis B virus (HBV) entry receptor (NTCP) in 
immortalized human hepatocyte-like cell (imHC). imHCs were maintained in DMEM/F12, 10% fetal 
bovine serum. After reaching confluence, cells exhibited a usual hepatocyte morphology, including a 
polygonal shape, binucleated and cord-like structure (A). Hepatic phenotypes were examined using 
immunofluorescence staining for the following major hepatocyte markers: Albumin (ALB) (B), α-
fetoprotein (AFP) (C), low-density lipoprotein receptor (LDLR) (D), Na+-taurocholate cotransporting 
polypeptide (NTCP) (E), multidrug resistance-associated protein 2 (MRP2) (F), hepatocyte nuclear 
factor-4-alpha (HNF-4α) (G) and an isotype control (H). Cell nuclei were visualized using Hoechst 
33342 DNA dye. Fluorescence images were captured and analyzed using an Operetta High-Content 
Imaging System (PerkinElmer, Waltham, MA, USA) with a ×40 objective lens. Scale bar = 50 µm. The 
presence of hepatic marker in imHCs was quantified from 15 randomly selected image fields (total 
number of analyzed cells > 2000). 

3.2. Presenting of Hepatic Maturation Features and Upregulating of NTCP Receptor Expression in imHC 
after Hepatic Maturation Induction 

The imHCs, HepG2 and HepaRG that had been seeded onto a 6-well plate at a density 3 × 106 
cell/well in Williams’ medium E with GlutaMAX-I and 10% FBS, exhibited epithelial-like morphology 
at 100% confluency (Figure 2A). After having been incubated with hepatic maturation medium 
supplemented with 2% DMSO (v/v) for 2 weeks, only imHC showed hepatic maturation features, the 
cord-like structure with bile canaliculi. The imHCs have bi-nucleated cells in the cell population that 
are usually found in primary human hepatocyte. After exposure to the maturation medium, HepG2 
did not exhibit hepatic maturation features, but continued to form multiple layers without contact 
inhibition. These characteristics typically presented in hepatocytes derived from cancer tissues [46]. 
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Increasing cell density in monolayer was observed in the HepaRG cell. However, the morphology of 
HepaRG, similar to that of the untreated group, did not progress toward the hepatic maturation 
feature (Figure 2A). The NTCP, an essential HBV entry receptor, was measured in differentiated 
hepatocytes. The significant increase in NTCP transcription was detected in HepaRG and imHC at 
17-fold and 40-fold, respectively, over that of the untreated conditions. HepG2, after a differentiation 
attempt, could not drive the NTCP expression (Figure 2B). The Western blot analysis in HepaRG and 
imHC after maturation induction revealed the increase in NTCP (>50 kDa) by 1.2- and 2.8-folds, 
respectively (Figure 2C and Figure S1). The upregulation of NTCP after maturation, in agreement 
with the increasing glycosylated form of NTCP, might confer the susceptibility to HBV entry. 

 
Figure 2. Induction of hepatic maturation of imHC and NTCP characterization in mature cells. The 
imHC, HepaRG and HepG2 were maintained in hepatic maturation medium for two weeks. Hepatic 
architectures, such as a cord-like structure, bi-nucleated and polygonal-shaped morphology, signified 
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exclusively the differentiated stage of imHCs (A). The scale bars represented 50 µm. After maturation 
induction, NTCP expression was significantly increased in both imHC and HepaRG (B). The level of 
NTCP protein after normalization with GAPDH was higher in imHC than in HepaRG (C). Data are 
presented as mean ± SD. *, **, *** and **** represented statistical different data with a p-value < 0.05, < 
0.01, < 0.001 and < 0.0001 respectively. 

3.3. The imHCs were Susceptible to HBV Infection, Sustained Viral DNA Replication and Generated Viral 
Particles after Infection with either HepG2.2.15 Derived HBV or the Clinical Isolates 

To investigate whether imHCs can host an entire HBV lifecycle, HepaRG and imHC were 
maintained in maturation medium with 2% DMSO for two weeks prior to the infection. The sources 
of HBV came from either HepG2.2.15 or the clinical isolate genotype C (HBV+ plasma). HepG2.2.15 
could continually generate HBV (HBVcc) from its transfected genome. The HBV load of at least 106 

IU/mL was selected to infect naïve hepatocytes. Differentiated hepatocytes were infected with HBV 
100 genome equivalences per cell (GEQ/cell) in William’s E medium, 10% FBS, 4% PEG 8000. After 
24 h of infection, infected cells were vigorously washed five times with 1 mL PBS to remove leftover 
virus and PEG, and maintained in complete William’s E medium throughout the experiment. The 
phase contrast microscopic of differentiated imHCs in mock infection (−) or infected (+) with HBV on 
day 7-post infection did not exhibit CPE or cytotoxicity (Figure 3A). Immunostaining analysis 
revealed that infected imHCs were positive for the hepatitis B core antigen (HBcAg) and hepatitis B 
surface antigen (HBsAg) (Figure 3A). Less than imHCs, infected HepaRG population was positive 
for HBsAg and HBcAg staining. These results indicated that imHCs were superior to the classical 
hepatocellular carcinoma cell line, HepaRG, as the host cells for HBV (Figure 3A). 

The genomic DNA from days 3 and 7 post-infection was extracted using a DNA isolation kit 
(NucleoSpin Tissue, MN). The total HBV DNA was amplified using the HBV specific primers. The 
authenticity of PCR products was confirmed through gel electrophoresis. The HBV DNA was initially 
observed on day 3 with the corresponding expression observed on day 7 in both infected imHCs and 
HepaRG. These observations correlated with the appearance of HBV proteins in infected hepatocytes. 
On the contrary, HBV DNA was undetectable in infected HepG2 that indicated ineffective HBV 
infection (Figure 3B). Quantitative real-time PCR was performed to measure the intracellular HBV 
DNA and secreted HBV particles. To detect intracellular HBV DNA, total genomic DNA from 
infected hepatocytes on days 3, 6, 9, 12 and 15 served as templates. To detect HBV viral load, 200 µL 
of conditioned medium from infected hepatocytes on days 3, 6, 9, 12, 15 and 23 post-infection was 
extracted for DNA using the NucleoSpin® Blood genomic DNA isolation kit and amplified using HBV 
specific primers. Intracellular and HBV viral load were calculated using HBV 1.3-mer WT replicon in 
the HBV standard curve. For HepG2.2.15-derived HBV, intracellular HBV DNA levels on day 3 were 
2.5 × 105 and 1.5 × 105 copies/106 cells in imHCs and HepaRG, respectively. On day 6 to day 9 post-
infection, the level was raised to 2.6–3.2 × 105 copies/106 cells in imHCs (Figure 3C). In HepaRG, the 
intracellular HBV DNA was sustained at 1.5 × 105 copies/106 cells during day 6 to day 12. No CPE nor 
cell detachment was observed in HepaRG and imHCs. The intracellular HBV DNA level in imHCs 
was maintained at 105 copies/106 cells for more than a month (Figure 3C). For HBVcc infection, the 
HBV viral load on day 3 after infecting a naïve cell with HBVcc were 1.5 × 105 and 1.4 × 105 copies/mL 
in imHCs and HepaRG, respectively. The HBV viral load in the supernatant of infected imHC was 3 
× 105 copies/mL on day 6, and maintained at 4.3–6.5 × 105 copies/mL until day 23. In comparison, that 
of infected HepaRG was steadily maintained at 2.5 × 105 copies/mL (Figure 3C). 

To examine whether imHCs could host plasma-derived HBV, both imHCs and HepaRG were 
infected with HBV+ plasma. The intracellular HBV DNA levels in imHCs and HepaRG on day 3 were 
8.84 × 104 and 8.83 × 104 copies/106 cells, respectively, and increased to 1.4 × 105 copies/106 cells on day 
9. These imHCs could maintain HBV DNA at 1.36 × 105 copies/106 cells, while those from HepaRG 
were 0.76 × 105 copies/106 cells (Figure 3D). HBV viral loads in infected imHCs and HepaRG were 7.1 
× 104 and 6.6 × 104 copies /mL, respectively. In imHCs, the viral load was raised from 1.3–5.2 × 105 

copies /mL and maintained at 5 × 105 copies/mL until day 23 (Figure 3D). Both infected, differentiated 
HepaRG and imHCs could sustain the intracellular and HBV viral load at 105 copies/106 cells and 105 



Viruses 2019, 11, 952 10 of 23 

 

copies/ mL over a month. The intracellular HBV DNA in infected HepaRG and imHCs was 
normalized using GAPDH (Figure S2). 

 
Figure 3. Mature imHCs supported the entire HBV life cycle of both HBVcc and the clinically isolated 
HBV. The phase contrast microscope with 50-µm scale bars demonstrated the morphology of imHC 
and HepaRG on day 7 post-infection. The (−) and (+) indicated the mock and HBV infection, 
respectively. The hepatitis B core antigen (HBcAg) and the hepatitis B surface antigen (HBsAg) were 
detected only in HBV-infected imHC and HepaRG using an immunofluorescence assay (A). The scale 
bars represented 50 µm. HBV DNA was detected on day 3 and day 7 post-infection in infected imHC 
and HepaRG, respectively. Infected HepG2, HBV plasmid and NTC were used as infected, positive 
and negative controls, respectively (B). The imHC infected with either HBVcc (C) or HBV+ plasma (D) 
produced more intracellular HBV DNA and released new HBV particles to the supernatant. HBsAg 
was highly detected in supernatant on days 7–13 post-infection and persisted until day 28 (E). The 
hepatitis B viral protein (HBeAg) was detected on day 3 post-infection and maintained at 1–2 ng/mL 
during the experimental period (F). Data are presented as mean ± SD. Here, *, **, *** and **** 
represented statistically different data with a p-values < 0.05, < 0.01, < 0.001 and < 0.0001, respectively. 
ND represented undetectable.  
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3.4. Infected imHCs Released HBsAg and HBeAg into the Surrounding Medium 

The start of circulatory HBsAg indicated an acute infection that continued through chronic 
infection. Circulatory HBeAg indicated active HBV replication and spreading. The intracellular 
immunostaining of infected imHCs alluded to the production/secretion of HBeAg and HBsAg. To 
measure the levels of secretory HBsAg and HBeAg, conditioned media (50 µL) from day 3 to day 28 
were evaluated with an ELISA kit (Abnova, Taiwan). HBsAg levels were 18.94 and 14.97 IU/mL on 
day 3 post-infection with HBVcc and HBV+ plasma, respectively. The HBsAg level increased to 20–
30 IU/mL on day 10–13, and was sustained for several weeks (Figure 3E). The secreted HBeAg was 
first detected (0.83 and 0.10 ng/mL) on day 3 post-infection with HBVcc and HBV+ plasma, 
respectively. HBeAg levels were increased to 2.40–2.80 ng/mL on days 10–21 and sustained at 1.4–2.5 
ng/mL until the end of the experiment (Figure 3F). 

3.5. imHCs Allowed the Production of Secondary HBV Progeny, cccDNA and Viral DNA Replication 

To examine whether the host cells infected with the first generation of the HBV particle could 
yield the second generation of infectious HBV particles, naïve imHC or HepaRG were incubated with 
the conditioned medium derived from infected imHCs or infected HepaRG. Three days post-
infection, the viral loads generated from the infected naïve imHCs and HepaRG were 4.71 × 105 and 
2.38 × 105 genome equivalents/mL, respectively (Figure 4A). Changing the HBV source to infected 
HepaRG yielded the viral loads of 1.11 × 105 and 0.45 × 105 genome equivalents/mL from infected 
naïve imHC and HepaRG, respectively. On day 7, the viral load from imHC and HepaRG decreased 
to less than 1 × 105 genome equivalents/mL (Figure. 4A). However, the level of intracellular HBV 
DNA was markedly high (2.32 × 106 copies number/106 cells) in infected naïve imHC with imHC-
conditioned medium, while the infected naïve HepaRG condition achieved only 0.94 × 106 copies 
number/106 cells (Figure. 4B). Switching to the conditioned medium from infected HepaRG lessened 
the intracellular HBV DNA level to below 3 × 105 copies number/106 cells from both imHC and 
HepaRG (Figure 4B). These results revealed that infected imHC could effectively generate the second 
generation of HBV particles that promptly infected naïve imHC. The observation of HBcAg positive 
imHCs after the exposure to the conditioned media of pre-washed infected cells substantiated the 
production of infectious virions from infected cells (Figure S3). 

After binding NTCP, HBV particles fused with the plasma membrane through receptor-
mediated endocytosis. The relaxed circular DNA (rcDNA)-containing capsids were released into the 
cytoplasm that allowed rcDNA to enter the nucleus. To ensure that imHCs supported entire HBV life 
cycle, infected cells were determined for the presence of HBV cccDNA in infected hepatocytes using 
a genomic DNA extraction kit. The isolated DNA was treated with exonuclease V to remove linear 
DNA before being amplified with cccDNA specific primers. Gel electrophoresis on days 6, 9 and 23 
post-infection revealed the presence of cccDNA DNA PCR products in imHCs and HepaRG (Figure 
4C). The copy numbers of cccDNA on days 3, 6, 9, 12, 15 and 23 were measured using absolute real-
time qPCR. On day 3 after infection with either HBV source, cccDNA was detected at 3.64 × 104 and 
1.97 × 104 copies/106 cells in imHCs and HepaRG, respectively. The levels of cccDNA increased up to 
7.14 and 2.47 × 104 copies/105 cells on day 6; 5.09 × 104 and 2.13 × 104 copies/105 cells on day 9 (Figures 
4D,E). HBV cccDNA in imHCs sustained at 2 × 104 copies/105 cells until day 23. More than 71% of 
imHCs population carried cccDNA after being infected with HBVcc, while 25% of imHCs population 
carried cccDNA after HBV+ plasma infection. The cccDNA pool in HepaRG varies from 7–27% 
depending on HBV sources and time post-infection. However, cccDNA in HepaRG was decreased to 
0.5 × 104 copies/105 after day 9. HBV cccDNA pool sustained in both infected imHCs and HepaRG, 
serving as a template for HBV replication over a month of experiment. 
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Figure 4. The imHCs infected with either HBVcc or HBV+ plasma produced the second HBV progeny 
and accumulated a covalently closed circular DNA (cccDNA) pool. Naïve imHC and HepaRG were 
infected with conditioned medium collected from HBVcc infected hepatocytes and monitored for 
extracellular HBV (viral load) on days 3 and 7 (A), as well as intracellular HBV DNA on day 7 (B). 
The cccDNA PCR products were analyzed using agarose gel electrophoresis on day 9 and day 23 
post-infection (C). The cccDNA pool in either imHCs (D) or HepaRG (E) after being infected with 
HBVcc or HBV+ plasma was expressed as copies number /106 cells. Data are presented as mean ± SD. 
*, **, *** and **** represented statistical different data with a p-value < 0.05, < 0.01, < 0.001 and < 0.0001, 
respectively. ND represented undetectable. 

3.6. Treatment of Infected imHCs with Entry Inhibitor, Nucleos(t)ide Analogs and Antiviral Cytokines 
Decreased Intracellular HBV DNA and HBV Viral Load 

Lessening HBV replication or HBV viral load resulting from the treatment with entry inhibitor, 
nucleos(t)ide analogs or antiviral cytokines would be a favorable outcome. To verify the applicability 
of imHCs for HBV drug screening, imHCs and HepaRG were infected with HBVcc or HBV+ plasma. 
One day post-infection, nucleos(t)ide analogs or antiviral cytokines were added to the flesh medium 
and incubated for 15 d. For entry inhibitor, hepatocytes were pre-treated with 4 µM cyclosporine A 
for 2 h prior to HBV infection and maintained for 15 d. 

Entecavir or lamivudine at 1 µM lessened intracellular HBV DNA in HBVcc-infected imHC by 
81% or 80%; HBVcc-infected HepaRG by 72% or 74%, respectively. Cyclosporine A decreased 
intracellular HBV DNA by 54% of in imHC (Figure S4) and 56% in HepaRG. IFN-γ (100 IU/mL) 
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decreased intracellular HBV DNA by 25% in imHC and 8.84% in HepaRG. TNF-α (10 ng /mL) slightly 
decreased intracellular HBV DNA by 16.62% in imHC and 13.27% in HepaRG (Figure 5A). To 
evaluate the lessening HBVcc viral load in response to antiviral treatments, infected hepatocytes were 
treated with antiviral agents for 15 d. HBV DNA was extracted from the conditioned medium. 
Entecavir, lamivudine, cyclosporine A, IFN-γ and TNF-α decreased the viral load by 75.33%, 73.73%, 
41.79%, 38% and 64.15% in imHC; by 49.79%, 53.36%, 73.69%, 48.08% and 56% in HepaRG, 
respectively (Figure 5B). 

 
Figure 5. The response to direct-acting antiviral drugs (DAAs) and antiviral cytokines in infected host 
cells. Both the imHC and HepaRG were infected with either HBVcc (A, B) or HBV+ plasma (C, D) and 
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treated with DAAs such as entecavir, lamivudine, lamivudine, CyA including antiviral cytokines 
(IFN-γ, TNF-α). The alteration in intracellular HBV DNA in response to antiviral agents was 
presented as copies number /106 cells (A, C). The extracellular HBV (viral load) was measured in 
conditioned medium using quantitative real-time PCR (B, D). Infected host cells after being treated 
with antiviral agents IFN-γ or TNF-α could lessen intracellular HBV DNA derived from HBV+ plasma 
(C) and also suppressed HBV viral load in the conditioned medium (D). Data are presented as mean 
± SD. *, **, *** and **** represented statistical different data with a p-value < 0.05, < 0.01, < 0.001 and < 
0.0001 respectively. 

For HBV+ plasma-infected cells, the treatment with entecavir (1 µM), lamivudine (1 µM), 
cyclosporine A (4 µM), IFN-γ (100 IU/mL), TNF-α (10 ng /mL), or IFN-γ plus TNF-α decreased 
intracellular HBV DNA by 74.53%, 77.32%, 54.30%, 16.27%, 39.33%, 61.95% in imHC; 76.11%, 73.25%, 
65.11%, 6.46%, 57.12%, 68.21% in HepaRG, respectively (Figure 5C). The reduction viral load derived 
from HBV+ plasma-infected hepatocyte was evaluated after being treated with antiviral agents until 
day 15. The antiviral agents, such 1 µM entecavir, 1 µM lamivudine, 4 µM cyclosporine A, 100 IU/mL 
IFN-γ, 10 ng /mL TNF-α and IFN-γ, plus TNF-α, lessened the HBV viral load 86.03%, 84.72%, 54.70%, 
36%, 49.83 and 51.58% in imHC, and lessened the HBV viral load 76.47%, 72.77%, 29.34%, 13.08%, 
28.87% and 32.36% in the HepaRG supernatant, respectively (Figure 5D). The combination of IFN-γ 
and TNF-α provided no synergistic effect toward decreasing the viral load (Figure 5D). 

3.7. IFN-γ Treatment Lessened the HBV cccDNA Level in Infected Hepatocyte 

Interferon gamma (IFN-γ) is critical for innate and adaptive immunity against HBV infection by 
targeting cccDNA. For the cccDNA reduction assay, lamivudine, entecavir or IFN-γ were added to 
the culture medium on days 3–7 post-infection and the cccDNA level was normalized with PRNP. 
The quantitative real-time PCR revealed that nucleos(t)ide analogs (lamivudine and entecavir) could 
not decrease this cccDNA level (Figure 6A,B). IFN-γ decreased the cccDNA level by 60% in imHC 
and 58% in HepaRG, respectively (Figure 6A,B). 

3.8. IFN-α Enhanced Antiviral Genes Expression and Innate Immune Response in Infected imHCs 

HBV infection could trigger the type I interferon-signaling pathway including interferon-
stimulated genes (ISGs). These ISGs exert numerous antiviral effector functions. To investigate the 
expression of ISGs in imHCs in response to HBV infection and IFN-α treatment, both HepaRG and 
imHCs were infected with HBV for 7 d and treated with IFN-α on day 3. The expression of interferon-
stimulated gene 15 (ISG15), human myxovirus resistance protein 1 (MxA) and protein kinase R (PKR) 
in response to IFN-α treatment were evaluated in infected hepatocytes. IFN-α increased ISG15 by 
1.99 and 3.65 folds; increased MxA by 1.43 and 3.65 folds; increased protein kinase R (PKR) by 3.17 
and 2.34 folds in HepaRG and imHCs, respectively (Figure 6C,D). 
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Figure 6. The reduction of HBV cccDNA and the upregulation of antiviral signaling in infected 
hepatocytes after the treatment with interferon-γ (IFN-γ) and interferon-α (IFN-α), respectively. 
Mature imHC and HepaRG were infected with HBV and treated with DAAs as well as IFN-γ. The 
relative cccDNA level in imHC in response to DAAs and IFN-γ was measured and normalized with 
PRNP in imHC (A) and in HepaRG (B). The upregulation of antiviral signaling genes (interferon-
stimulated gene 15 (ISG15), human myxovirus resistance protein 1 (MxA) and protein kinase R (PKR)) 
in response to IFN-α treatment were monitored in imHC (C) and HepaRG (D). Data are represented 
as mean ± SD. *, **, *** and **** represented statistical different data with a p-value < 0.05, < 0.01, < 
0.001 and < 0.0001 respectively. 

3.9. HBV from Infected imHCs Spread and Secondarily Infected Naïve Hepatocytes in Co-Culture Model 

HBV enters naïve hepatocytes via NTCP and spreads via intercellular infection. HepaRG and 
imHCs were examined for hosting lateral HBV infection or spreading. Seven-day post-infection, 
HepaRG or imHCs were co-cultured with naïve hepatocytes pre-strained with 1 µM CellTracker™ 
Green CMFDA Dye for 7 d. Naïve and infected cells were treated with 4 µM cyclosporine A to block 
HBV infection from the supernatant via NTCP. One week after the co-culture, hepatocytes were 
harvested and strained with anti-HBV core antigen (HBcAg) monoclonal antibody. The stained 
hepatocytes were analyzed using a flow cytometer and the double positive staining with HBcAg and 
CMFDA were designated as HBV spreading. The procedure of spreading experiment was illustrated 
(Figure 7A and Figure S5). The infectivity of HBV in imHCs and HepaRG was evaluated by staining 
with anti-HBcAg and analyzing by a flow cytometer. The imHCs and HepaRG carrying HBcAg were 
designated as P2 population (Figure 7B). Infection of imHC and HepaRG with HBVcc yielded 18.64% 
and 6.48%, infectivity respectively. Changing the HBV source to HBV+ plasma (n = 3) yielded 16.78% 
and 5.93% infectivity in imHC and HepaRG, respectively. The HBV infectivity revealed that imHC 
supported HBV infection approximately 3-fold higher than HepaRG (Figure 7C). To assess the 
potential of HBV spreading from infected hepatocytes to naïve cells, infected imHC or HepaRG was 
co-cultured with non-infected CMFDA-strained imHC or HepaRG. After being co-cultured for 7 d, 
almost 17.25 ± 1.88% of CMFDA-stained imHCs were positive for HBcAg staining. For HepaRG, 
nearly 13.31 ± 1.81% CMFDA-stained cells were positive for HBcAg staining. Incubating imHC or 
HepaRG with HBV+ plasma and co-cultured with non-infected CMFDA-stained imHC or HepaRG 
for 7 d, more than 7 ± 1.21% CMFDA-stained imHCs were positive for HBcAg staining. However, at 
least 3.15 ± 0.46% of CMFDA-stained HepaRG were positive for HBcAg straining 2-fold lesser than 
that of imHC (Figure 7D). The co-culture of uninfected hepatocytes with non-infected CMFDA-
stained cells were used as the negative control, where positivity for HBcAg straining was 0.13% and 
0.04% in imHCs and HepaRG, respectively. These results demonstrated that imHCs and HepaRG 
infected with either HBVcc or HBV+ plasma supported viral spreading as demonstrated through the 
co-culture system. 
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Figure 7. HBV spreading from infected hepatocytes to non-infected cells. Infected hepatocytes were 
co-cultured with non-infected cells pre-strained with CMFDA. The viral spreading was identified by 
double positive strained with CMFDA and HBsAg, using a flow cytometer. The diagram of the imHC 
co-culture model and HBV spreading were illustrated (A) with 50 µm scale bars. Population of 
infected hepatocyte before the co-culture was demonstrated in imHC and HepaRG (B) and the percent 
of infection was analyzed (C). Flow cytometry data revealed HBV spreading from infected 
hepatocytes as CMFDA and HBcAg-Alexa flour 568 double positive cells (D). Quantitative analysis 
of HBV spreading was reported as a percentage from triplicated data (E). Data are presented as mean 
± SD. *, **, *** and **** represented statistical different data with a p-value < 0.05, < 0.01, < 0.001 and < 
0.0001, respectively. 

4. Discussion 
Study of human hepatotropic pathogens has been hampered in the past due to the shortage of 

experimental models that sufficiently mimic natural pathogenesis to replace clinical samples or 
animal models. The first HBV culture model system came from hepatoma cell lines stably transfected 
with HBV genomic DNA [47]. Another model received the viral genome through adenovirus or 
baculoviral vectors, followed by productive HBV replication and the production of infectious 
progeny [48,49]. These models were flawed, due to the lack of viral replication, cccDNA formation, 
viral entry and other critical steps of the HBV life cycle [18]. The establishment of HepaRG, a 
hepatoma progenitor cell line, which supports the entire HBV life cycle, offers an essential tool for 
HBV in vitro studies [50]. However, sustainable HBV infection in HepaRG required at least one 
month of differentiation prior to infection, and expressed non-glycosylated NTCP protein with 
karyotype aberrations [51,52]. 

The primary human hepatocyte (PHH) served as the gold standard for hepatotopic pathogens 
study for several years [53]. PHH and immortalized PHH were susceptible to HBVcc and patient-
derived HBV [26,27,54]. However, the preparation of PHHs from clinical biopsy faced rapid 
dedifferentiation in culture [55–57], triggered by a proliferative response to a pro-inflammatory 
signal [58]. This compromised their hepatocyte functions and susceptibility to HBV. Proteomic 
analysis in PHHs revealed lessening in crucial factors for HBV infection, e.g., HNF-4α, RXR and 
NTCP. The discovery of NTCP as a receptor for HBV entry has paved the way to investigate the 
complete HBV life cycle using NTCP-expressing hepatocyte cell lines [59,60]. Nevertheless, the 
transformed hepatoma cells have impaired metabolic activities, intracellular signaling and 
physiological response [61]. The downregulation of innate immune responses in this hepatoma cell 
line restricts the study of pathogen–host interactions and diseases progression [62,63]. Using 2D PHH 
cultures could provide only short-term study, because PHHs are difficult to maintain and rapidly 
dedifferentiate within several days [55]. The dedifferentiation was minimized in HLCs with 
sustenance of host factors’ expression for more than a month that favors a long-term HBV infection 
study. 

Recent variations of PHHs still relied upon cell sources with batch to batch variations [64–66]. 
PHHs had limited life-span and rapidly lost HBV infectivity [20,67]. The co-cultures of PHHs with 
non-parenchymal cells to maintain the hepatic phenotypes were attempted [68,69]. MPCCs model 
was PHHs donor dependent and required a JAK inhibitor that sustained HBV infection for only 14–
19 days [24]. The self-assembling PHHs co-culture (SACC) model extended hepatic function and HBV 
infection over 30 days, but relied on PHHs sources and the co-culture with the 3T3 J-2 cell line [53,70]. 
Both MPCCs and SACC PHHs could not support viral spreading to neighboring uninfected 
hepatocytes [53]. We demonstrated for the first time that imHC infected with fresh clinical isolates 
allowed lateral spreading of viral progeny. This imHC could effectively serve as a natural host for 
wild-type HBV and generated infectious viral progeny. 

The classical HLCs derived from iPS cells could support HBV infection [35,36] but required 20 
days for differentiation and 14 days for maturation, with a low efficiency of HBV infection [2]. We 
established imHCs [39] that supported the entire HBV life cycle. These imHCs permitted in vitro liver 
stage development of the human malarial parasite Plasmodium vivax [40]. The imHCs were 
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characterized for hepatic markers expression, i.e., albumin (ALB), hepatocyte nuclear factor 4 alpha 
(HNF-4α), tyrosine aminotransferase (TAT) and drug metabolism enzymes (CYPs). 

In this study, imHC could express high levels of ALB, AFP, LDLR, MRP2, HNF-4α and NTCP. 
After maturation, both mRNA and protein levels of NTCP were significantly increased compared to 
undifferentiated imHCs. HBcAg, HBV DNA, cccDNA, HBsAg and HBeAg were observed after 
infection with HBVcc or HBV+ plasma, demonstrating the rising of HBV infectivity in imHC. The 
monitoring of HBV cccDNA level in cells infected with fresh clinical isolate could have made imHC 
as a robust model to screening for HBV drug sensitivity in clinical practice. 

The imHC also established proof-of-work for utilized this model for antiviral drug screening by 
DAAs and antiviral cytokines. Inhibition of HBV NTCP-mediated entry is examined as a therapeutic 
strategy to prevent HBV infection, such as after liver transplantation, and could restrict HBV spread 
in chronically-infected patients. Most current DAAs are effective to reduce intracellular HBV DNA 
and viral load in HBV-infected imHC. Furthermore, treating infected imHC with IFN-γ reduced 50% 
of the HBV cccDNA level, while lamivudine and entecavir did not reduce cccDNA. This finding 
revealed that reduction of cccDNA in imHC could be effected by activation-induced cytidine 
deaminase (AID) deamination activity [71,72], which activates the lymphotoxin-β receptor via IFN-γ 
signaling [73]. We also discovered the increasing of interferon-inducible antiviral effectors such as 
ISG15, MxA and PKR genes, increasing 2.5–3.8 folds after HBV infection and treated with IFN-α. The 
upregulating of ISG15, MxA and PKR during HBV infection revealed the effective of innate immune 
responses in imHC. 

The effective and rapid innate immune response to pathogens is regulated via IFN (44). The 
inhibition of IFN activation could induce HBV replication in PHHs [74], and we found HBV-activated 
IFN response in imHCs comparable to other infected hepatic cells [75,76]. Our results suggest that 
active IFN signaling could efficiently block viral replication. Moreover, we observed IFN-γ-induced 
cccDNA degradation in infected imHC. These observations demonstrate that the imHCs sustained 
innate immune responses similar to the PHHs model. 

In theory, an individual HBV particle is adequate for establishing an infection and spreading to 
all hepatocytes in-patient [77]. Particularly, virus spreading, which appears efficiently in vivo, could 
not be investigated with the cell culture models [78]. Recent publications identified the HBV 
spreading from infected hepatocytes to adjacent cells [36]. To investigate whether imHC could 
support HBV spreading, we stained non-infected imHCs with CMFDA, co-cultured with HBV-
infected imHC and lastly stained with anti-HBcAg. The imHCs support HBV transmitted directly 
from cell to cell or via infection of CMFDA-stained imHCs by an extracellular progeny virus released 
from infected cells. This result was similar to previous publications using stem cell-derived 
hepatocyte and HepG2-NTCP [59]. 

Taken together, using imHCs as an HBV culture model is highly recommended for antiviral 
screening and testing. In our current study, we were successful to established the hepatocyte model 
to detect the candidate chemicals which could inhibit both HBV replication and cccDNA elimination, 
in order to find the complete cure of chronic HBV infection. For instance, targeting NTCP receptors 
could inhibit viral entry, while targeting HBV polymerase could reduce viral load, and targeting HBV 
cccDNA could reduce overall HBV markers. Even though single treatment may not achieve HBV 
eradication, combination of antivirals targeting various steps of HBV life cycle may lead to a complete 
cure. The imHCs model provides a highly functional hepatocyte system to gain our understanding 
of virus-host integration including HBV entry, replication and immune response, as well as offering 
new opportunities for antiviral agent screening and development to achieve a complete cure in the 
near future. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1. Western blot 
analysis of NTCP, Figure S2. The abundance of intracellular HBV DNA after infection, Figure S3. Second HBV 
progeny could infect naïve imHC, Figure S4. The frequencies of HBcAg positive cells declined after the treatment 
with CyA, an entry inhibitor, Figure S5. HBV spread from infected hepatocytes to naïve cells, Table S1. Primer 
sets and conditions used in quantitative real-time PCR. 
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