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Abstract: Vaccination remains the most effective approach for preventing and controlling equine
influenza virus (EIV) in horses. However, the ongoing evolution of EIV has increased the genetic
and antigenic differences between currently available vaccines and circulating strains, resulting
in suboptimal vaccine efficacy. As recommended by the World Organization for Animal Health
(OIE), the inclusion of representative strains from clade 1 and clade 2 Florida sublineages of
EIV in vaccines may maximize the protection against presently circulating viral strains. In this
study, we used reverse genetics technologies to generate a bivalent EIV live-attenuated influenza
vaccine (LAIV). We combined our previously described clade 1 EIV LAIV A/equine/Ohio/2003 H3N§
(Ohio/03 LAIV) with a newly generated clade 2 EIV LAIV that contains the six internal genes of
Ohio/03 LAIV and the HA and NA of A/equine/Richmond/1/2007 H3N8 (Rich/07 LAIV). The safety
profile, immunogenicity, and protection efficacy of this bivalent EIV LAIV was tested in the natural
host, horses. Vaccination of horses with the bivalent EIV LAIV, following a prime-boost regimen, was
safe and able to confer protection against challenge with clade 1 (A/equine/Kentucky/2014 H3N8) and
clade 2 (A/equine/Richmond/2007) wild-type (WT) EIVs, as evidenced by a reduction of clinical signs,
fever, and virus excretion. This is the first description of a bivalent LAIV for the prevention of EIV in
horses that follows OIE recommendations. In addition, since our bivalent EIV LAIV is based on the
use of reverse genetics approaches, our results demonstrate the feasibility of using the backbone of
clade 1 Ohio/03 LAIV as a master donor virus (MDV) for the production and rapid update of LAIVs
for the control and protection against other EIV strains of epidemiological relevance to horses.

Keywords: equine influenza virus; live-attenuated influenza vaccine; master donor virus; reverse
genetics techniques; recombinant virus

1. Introduction

Equine influenza is an upper respiratory disease characterized by fever, lethargy, coughing,
dyspnea, and nasal discharge that affects horses and other equids and has a severe impact on the equine
industry [1]. The causative agent, equine influenza virus (EIV), is a member of the Orthomyxoviridae
family of negative-stranded RNA viruses with a segmented genome [2]. The first EIV isolated in
Europe in 1956 (A/equine/Prague/1956) was an influenza A virus (IAV) H7N7 subtype that is believed
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to have disappeared from the equine population [3]. H3N8 EIV was initially isolated in 1963 in the
United States (US) and became widely spread causing major outbreaks around the world, which persist
today [2,4-6]. At the end of the 1980s and as a result of antigenic drift, H3N8 EIV diverged into two
antigenically distinct Eurasian and American lineages, named according to the geographic origin of the
isolates [7,8]. EIVs from the Eurasian lineage have not been detected since 2005 [9,10]. The American
lineage subsequently evolved into South-American, Kentucky, and Florida sublineages [11]. Further
evolution of the Florida sublineage resulted in the emergence of two groups of EIVs classified on the
basis of the HA sequence: Clade 1 and clade 2 [12-14]. Currently, clade 1 EIVs are predominantly
found in the US whereas clade 2 EIVs are primarily circulating in Europe and Asia [2,15-19]. EIVs
from the clade 1 Florida sublineage have caused outbreaks in other parts of the world [5,20-25] and a
clade 2 EIV was detected in a horse in California that was newly imported from Europe [26]. Therefore,
both clades of the Florida sublineage of EIVs are currently co-circulating and co-evolving worldwide.
Because of this phenomenon, and due to the frequent international transport of horses, the World
Organization for Animal Health (OIE, Office International des Epizooties) recommends including
representative viruses from both clade 1 and clade 2 of the Florida sublineage in the composition of
H3N8 EIV vaccines [27].

Prevention and control of H3N8 EIV in the equine population rely on hygiene [28], quarantine [29],
and vaccination programs [30] to reduce infection and spread between horses. A large number of
vaccine strategies to control H3N8 EIV in horses are available [31,32]: (1) Inactivated influenza
vaccines (IIV), (2) subunit vaccines, (3) DNA vaccines, (4) viral-vector vaccines, and (5) a live attenuated
influenza vaccine (LAIV) [33-38]. However, only few IIVs include both clade 1 and clade 2 strains of
the Florida sublineage in their composition [27,39], as recommended by the OIE. Numerous reports
have evaluated the efficacy of one or more EIV vaccines in horses [34,35,40-46]. In general, protective
immunity induced by intramuscular IIV relies on the induction of neutralizing antibodies with a weak
induction of cellular responses, limiting cross-protection [31,46—48]. On the other hand, intranasal
LAIV administration mimics the natural route of infection and is able to induce long-lasting immune
adaptive humoral and cellular responses. Therefore, LAIVs provide better protection than their IIV
counterparts [49-51]. Only one LAIV is currently commercialized for the prevention of H3N8 EIV and is
sold under the name of Flu Avert LN. (Merck). Flu Avert LN. contains an attenuated (att), cold-adapted
(ca), and temperature-sensitive (ts) A/equine/Kentucky/1/1991 H3N8 generated by serial passage in
embryonated chicken eggs at gradually reduced temperatures [52,53]. Flu Avert I.N. has shown an
excellent safety profile characterized by low transmission rates to unvaccinated horses and the absence
of side-effects after immunization, including in immunocompromised animals [53,54]. In addition,
Flu Avert .N. has been shown to induce protection against homologous and heterologous H3N8 EIVs,
probably due to the induction of cross-protective T cell responses [54,55]. Some comparative studies
showed that Flu Avert LN. offers better protection against EIVs than IIVs [4,27,33]. Even though
previous studies highlight the benefits of using LAIV to prevent and control EIV infections, the current
concern is that Flu Avert L.N. has not been updated since its original commercialization. The mismatch
between the H3N8 EIV in Flu Avert LN. (A/equine/Kentucky/1/1991) and contemporary strains probably
explains the reduced vaccine efficacy and the only partial protection against currently circulating
viruses among horses vaccinated with Flu Avert IN. [4,31,56,57]. This is further evidenced by the
2018-2019 outbreaks of EIV in both the US and Europe, involving vaccinated horses [58-60]. Moreover,
the amino acid changes responsible for the att, ca, and ts phenotype of Flu Avert LN. have not yet been
mapped or characterized.

We have recently described the generation, using reverse genetics techniques, of an EIV LAIV
derived from the clade 1 A/equine/Ohio/1/2003 H3N8 (Ohio/03) for the control of EIV infections [61].
This Ohio/03 LAIV was obtained by introducing the mutations responsible for the ts, ca, and att
phenotype of the master donor virus (MDV) A/Ann Arbor/6/60 H2N2, an LAIV commercialized in the
US for the control of human infections (FluMist, Medimmune) [62]. Importantly, our Ohio/03 LAIV was
safe and able to induce protective immune responses in a mouse model of influenza infection against
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challenge with clade 1 H3N8 wild-type (WT) EIV [61]. Its safety, immunogenicity, and protective
profile was also shown in horses, its natural host, suggesting the feasibility of implementing this new
EIV LAIV for the control of EIV in the horse population [61]. However, since this new LAIV only
contains the clade 1 EIV Ohio/03, it does not follow the current recommendation of the OIE for a
vaccine to control EIV in horses [63]. Here, we developed a bivalent EIV LAIV for the protection against
clade 1 and clade 2 EIVs of the Florida sublineage. We generated a recombinant virus containing the
internal genes of Ohio/03 LAIV (clade 1) [61] and the HA and NA of A/equine/Richmond/1/2007 H3N8
(Rich/07 LAIV) as representative of clade 2. Importantly, we demonstrate the safety and protection
efficacy of our bivalent EIV LAIV based on a blend of clade 1 and clade 2 attenuated viruses for its
implementation for the protection from EIV in horses.

2. Material and Methods

2.1. Cells and Viruses

Human embryonic kidney 293T (HEK293T; ATCC CRL-11268) and Madin-Darby canine kidney
(MDCK, ATCC CCL-34) cells were cultured at 37 °C with 5% CO, in Dulbecco’s modified Eagle’s
medium (DMEM; Mediatech, Inc., Manassas, VA, USA), supplemented with 10% fetal bovine serum
(FBS), and 1% PSG (penicillin, 100 units/mL; streptomycin, 100 pg/mL; L-glutamine, 2 mM) [61,64].

Recombinant WT (Ohio/03 WT) and LAIV (Ohio/03 LAIV) EIVs derived from A/equine/Ohio/1/2003
H3N8 were generated by plasmid-based reverse techniques as previously described [61].
The recombinant Rich/07 LAIV was generated by reverse genetics techniques using plasmids encoding
the six internal genes (PB2, PB1, PA, NP, M, and NS) of Ohio/03 LAIV [61] and the HA and NA
viral segments of A/equine/Richmond/1/2007 H3N8 (Rich/07). WT A/equine/Kentucky/2014 H3N8
(KY/14 WT) and Rich/07 (kindly provided by Dr. Debra Elton at the Animal Health Trust, United
Kingdom) were used for challenge experiments. KY/14 WT is a Florida clade 1 heterologous strain
yet antigenically similar to our EIV LAIV. We used KY/14 WT instead of Ohio/03 WT for challenge
experiments to directly assess protection against a heterologous virus strain. EIVs used in horse
challenge experiments were grown in chicken embryonated eggs at 35 °C. Virus titers were determined
by 50% egg infectious dose (EIDs5). For viral infections in horses, virus preparations were diluted
in phosphate buffered saline (PBS) containing 0.3% bovine serum albumin (BSA) and 1% penicillin
and streptomycin (PBS/BSA/PS) to prevent potential bacterial contamination. Stocks of LAIVs were
produced in MDCK cells as previously described [61]. Briefly, MDCK cells were infected (MOI 0.01)
with the EIV LAIVs. Viral adsorption was carried out at room temperature (RT) for 1 h and cells were
subsequently maintained in post-infection DMEM supplemented with 0.3% BSA, 1% PSG, and 1 ug/mL
N-tosyl-L-phenylalanine chloromethyl ketone (TPCK)-treated trypsin (Sigma, St. Louis, MO, USA).
Viruses were propagated in MDCK cells at 33 °C [65] and viral titers were determined by immunofocus
assay (focus forming units/mL, FFU/mL) using the monoclonal antibody (MAb) HB-65 against the
viral nucleoprotein (NP) (ATCC HB-65, HL16-L10-4R5) as previously described [66].

2.2. Virus Rescue

The Ohio/03 WT and LAIV were generated as previously described [61,66]. For the rescue of
Ohio/03 LAIV, ambisense pDZ PB2 and PB1 plasmids containing the LAIV mutations (PB2 N2655;
and PB1 K391E, E581G, and A661T) were used along with the remaining pDZ plasmids encoding
Ohio/03 WT genes (PA, HA, NP, NA, M, and NS). For the generation of Rich/07 LAIV, the HA (GenBank
Accession number: FJ195395.3) and NA (GenBank Accession number: KF559336.1) genes of Rich/07
WT were synthesized de novo and cloned in a pUC57 plasmid (Bio Basic, Amherst, NY, USA). The HA
and NA viral segments were then subcloned into the ambisense pDZ plasmid for viral rescue [65-67].
For rescue of Rich/07 LAIV, a co-culture (1:1) of HEK293T and MDCK cells (6-well plate format,
1 x 10° cells/well, triplicates) were co-transfected with 1 pug of ambisense pDZ plasmids encoding
the six internal genes of Ohio/03 LAIV (pDZ-PB2 LAILV, -PB1 LAIV, -PA, -NP, -M, and -NS) along
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with the pDZ plasmids encoding the HA and NA (pDZ-HA and -NA) genes of Rich/07 WT. At 12
h post-transfection, the medium was replaced with DMEM supplemented with 0.3% BSA, 1% PSG,
and 0.5 pg/mL TPCK-treated trypsin, and incubated at 33 °C. At 34 days post-infection (p.i.), viruses
present in the tissue culture supernatant (TCS) were collected and used to infect fresh monolayers
of MDCK cells (12-well plate format, 5 x 10° cells/well) that were incubated at 33 °C until complete
cytopathic effect was observed. Recombinant viruses were plaque-purified and propagated in MDCK
cells at 33 °C [68].

2.3. RNA Isolation, RT-PCR, and cDNA Digestions

MDCK cells (6-well plate format, 1 x 106 cells/well, triplicates) were infected with Ohio/03 or Rich/07
LAIVs at a multiplicity of infection (MOI) of 0.1 and incubated at 33 °C. At48 h p.i., total RNA was isolated
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s specifications.
SuperScript® Il Reverse Transcriptase (Invitrogen) was used to synthesize complementary (c)DNA that was
subsequently used as a template in the PCR. The HA and NA segments of Ohio/03 and Rich/07 LAIVs were
amplified using specific primers for HA (Forward5’-AGCAAAAGCAGGGGATATTTCTGTC-3’; Reverse 5'-
AGTAGAAACAAGGGTGTTTTTAAC-3") and NA (Forward5’-AGCAAAAGCAGGAGTTTAAAATG-3;
Reverse 5'-AGTAGAAACAAGGAGTTTTTTCGTAAATTAC-3"). PCR amplified HA segments were
digested with Sac I or Aat II and NA segments with Bgl II or Hind III for 1 h at 37 °C. Undigested
and digested products were separated by electrophoresis in an agarose gel (1% w/v) and visualized
using an ultraviolet (UV) transilluminator. RT-PCR amplified HA and NA cDNA were confirmed by
sequencing (ACGT).

2.4. Virus Growth Kinetics

Multicycle growth kinetics were performed by infecting confluent monolayers of MDCK cells
(12-well plate format, 5 x 10° cells/well, triplicates) with Ohio/03 WT, Ohio/03 LAIV, or Rich/07 LAIV
at a MOI of 0.001. After 1 h viral adsorption at RT, fresh post-infection media was added and cells
were incubated at the indicated temperatures (33 °C, 37 °C, or 39 °C). At the specified times p.i., viral
titers in TCS were determined by immunofocus assay (FFU/mL) in MDCK cells [66]. The mean values
and standard deviations (SDs) were calculated using Microsoft Excel software.

2.5. Plague Assays

Confluent MDCK cell monolayers (6-well plate format, 1 x 10° cells/well) were infected with
Ohio/03 WT, Ohio/03 LAILV, or Rich/07 LAIV. After 1 h viral adsorption at RT, cells were overlaid with
agar (0.6 % w/v) and incubated at 33 °C, 37 °C, or 39 °C. At three days p.i., cells were fixed for 1 h at RT
with 4% paraformaldehyde (PFA) in PBS and overlays were carefully removed. Fixed cells were then
permeabilized (0.5% Triton X-100 in PBS for 15 min at RT) and subjected to a blocking step (2.5% BSA
in PBS for 1 h at RT). For immunostaining, the anti-NP MAb HB-65 and vector kits (Vectastain ABC
vector kits and DAB HRP substrate kit; Vector, Burlingame, CA, USA) were used according to the
manufacturer’s specifications [64,69].

2.6. Horse Experiments

Seronegative EIV H3N8 horses (n = 18) of mixed sex, aged 1-2 years were used. They were
raised at the University of Kentucky’s Maine Chance Farm as part of a dedicated research herd.
Horse experiments were approved by the University of Kentucky’s Institutional Animal Care and Use
Committee (IACUC, Protocol no. 2007-0153). Horses were assigned into group 1 (n = 6) and group 2
(n = 6), each containing 3 males and 3 females (pastured separately). They were vaccinated (V1) by
aerosol inhalation of a virus preparation containing 3 x 108 FFU of each component of the bivalent
EIV LAIV (Ohio/03 and Rich/07 LAIVs) using the Flexineb II portable equine nebulizer/facemask
(Flexineb® North America, Union City TN). A booster vaccination (V2) was performed using the
same dose and method 29 days after priming. Vaccinations of Groups 1 and 2 were staggered by
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2 weeks to avoid cross-contamination and facilitate their separate experimental challenges at 28 days
following V2. Additional influenza seronegative horses (n = 6, 3 males and 3 females) were used as
unvaccinated controls and pastured separately from the vaccinated horses to avoid viral transmission.
To evaluate the safety profile of the bivalent EIV LAIV, vaccinated horses were closely monitored from
the day of vaccination (day 0) to day 7 post-inoculation of V1 and V2. Clinical signs (recorded by
the same observer), rectal temperatures, and virus titers in nasopharyngeal swabs were determined
as previously described [61,70]. To evaluate the immunogenicity of the bivalent EIV LAIV, blood
samples were collected on the days of vaccination (both V1 and V2) and the day of challenge (day 57).
Presence of serum antibodies was measured by hemagglutination inhibition (HAI) assay. Additionally,
for group 1 only, 2 additional influenza-seronegative horses (1 male, 1 female) were co-pastured with
the vaccinated starting the day after V1, to assess transmission of the LAIV to unvaccinated contacts.

For challenge experiments, vaccinated horses in group 1 and, 2 weeks later, group 2 (n = 6) were
brought into a BSL-2 isolation barn to be challenged with the heterologous Florida clade 1 KY/14 WT
or a homologous Florida clade 2 Rich/07 WT, respectively. Unvaccinated control horses (1 = 3 for each
challenge) were challenged alongside the vaccinated, and the 2 sentinels were challenged alongside
group 1. Challenge viruses were administered by aerosol inhalation using the Flexineb II device, with
a delivered dose of 5 x 107 EIDs units per horse [61,71,72]. This challenge dose was similar to that
used in our previous, and other authors’, studies [55,61,73]. To evaluate the protection efficacy of the
bivalent EIV LAIV, both vaccinated and unvaccinated control horses were observed daily for clinical
signs and rectal temperatures and nasopharyngeal swabs were collected and evaluated from the day
of challenge (day 0) through day 8 post-challenge. Swabs were initially tested for non-quantitative
viral presence by injection into embryonated eggs (100 pL/egg; triplicate) as previously described [54].
Viral content in nasopharyngeal swabs was determined by immunofocus assay (FFU/mL) in MDCK
cells [66]. Virus content was also measured in day + 2 swabs by EIDs titration. At 3 days after egg
inoculation, allantoic fluid was harvested and the presence of virus was assessed by hemagglutination
assay (HA). Samples were considered positive when infection occurred in at least one out of three eggs.

2.7. Hemagglutination Inhibition (HAI) Assay

Humoral responses were evaluated pre- (day 0) and post-vaccination (day 28) and pre- (day 0)
and post-challenge (7, 14, and 21 days) by HAI assay using Ohio/03, KY/14 and Rich/07 WT viruses as
previously described [74]. Sera samples were pre-treated with trypsin/periodate as described [74] to
avoid non-specific inhibitors of hemagglutination.

2.8. Clinical Monitoring

For assessment of the safety profile of the bivalent EIV LAIV, horses received physical examinations
on days 0, 2, 3, and 7 after both prime and boost doses. Likewise, challenged horses received daily
physical examinations for 10 days after virus challenge. Clinical examinations included measurement
of rectal temperature, heart rate, respiratory rate, auscultation of lung and gut sounds, palpation of
submandibular and parotid lymph nodes, presence of nasal discharge, spontaneous coughing, and
signs of depression or anorexia. Clinical scoring was calculated based on those clinical signs in which
significant changes were observed, as previously described [38] (Table 1). In accordance with the
IACUC protocol, horses exhibiting clinical signs were examined by an independent veterinarian who
made all decisions regarding treatment and also administered those treatments. This veterinarian was
kept blinded regarding the vaccination status of the horses. Clinically affected horses continued to be
monitored until clinical signs disappeared. All horses returned to pasture at day + 14 post challenge.
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Table 1. Clinical signs scoring index.

Clinical Sign Degree Score
Respiration Rate Normal < 36/min 0
Abnormal (dyspnea/tachypnea) > 36/min 1
Nasal discharge No discharge 0
Abnormal serous 1
Abnormal mucopurulent 2
Coughing No coughing 0
Coughed once 1
Coughed twice 2
Anorexia Non 0
Yes 1

2.9. Statistical Analysis

Statistical analysis was performed using the statistical package SPSS version 20.0. In vivo and
in vitro studies were analyzed using two-tailed Student’s test. Correlation between HAI and clinical
score was analyzed by Pearson correlation test. p-values < 0.05 were considered statistically significant.

3. Results

3.1. Generation and Characterization of Rich/07 LAIV

During the last 10 years, the OIE has recommended that commercial EIV vaccines should include
representative strains from both the clade 1 and clade 2 Florida sublineage EIVs [9]. A LAIV for
the treatment of EIV based on A/equine/Kentucky/1/1991 H3NS8 has been commercially available for
the treatment of EIV infections in horses but does not fulfill the OIE recommendations. We have
recently described an EIV LAIV based on a clade 1 EIV LAIV Ohio/03 [61]. In order to follow the OIE
recommendations, we sought to develop a bivalent EIV LAIV containing representative strains of both
clade 1 and clade 2 Florida sublineage EIVs. To that end, we generated a recombinant virus containing
the internal genes of Ohio/03 LAIV and the HA and NA glycoproteins of Rich/07 H3N8 to develop a
clade 2 Rich/07 LAIV. The bivalent EIV LAIV was next generated by blending the Ohio/03 and Rich/07
LAIVs as representatives of the Florida sublineages clade 1 and clade 2 EIV, respectively (Figure 1).

Because of the similarity in the nucleotide (Supplementary Figures S1 and S2) and amino acid
(Figure 2) sequences of Ohio/03 and Rich/07 HA and NA, the identity of the recombinant Ohio/03 and
Rich/07 LAIVs was confirmed by RT-PCR and enzyme restriction digestion based on the presence
of either Sac I (Ohio/03) or Aat II (Rich/07) restriction sites in the viral HAs (Figure 3A, left); and
the presence of either Bgl II (Ohio/03) or Hind III (Rich/07) enzyme restriction sites in the viral NAs
(Figure 3A, right). As expected, only the HA from Ohio/03 LAIV was digested with Sac I, generating
two segments of 1129 and 633 nucleotides (nt) (Figure 3B). A small fraction remained undigested
(1762 nt). In contrast, only the HA from Rich/07 LAIV was digested by Aat II, generating two separated
bands of 1455 and 313 nt; while the HA from Ohio/03 remained undigested (Figure 3B). Likewise, Bgl
II digestion of Ohio/03 LAIV NA resulted in two bands of 1317 and 143 nt, while the NA from Rich/07
LAIV remained undigested (Figure 3C). Finally, Hind III digestion of Rich/07 LAIV NA resulted in two
bands of 821 and 639 nt, while the NA from Ohio/03 remained undigested (Figure 3C). These results
demonstrate the identity of both our previously described Ohio/03 and the new Rich/07 LAIVs, which
was further confirmed by sequencing of the HA and NA RT-PCR products.
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Figure 1. Schematic representation of the bivalent equine influenza virus (EIV) live-attenuated influenza
vaccine (LAIV): To generate the clade 1 A/equine/Ohio/1/2003 H3N8 LAIV (Ohio/03 LAIV; top right),
the temperature sensitive (ts), cold adapted (ca), and attenuated (att) mutations of the human A/Ann
Arbor/6/60 H2N2 LAIV were introduced into the PB2 (N265S) and PB1 (K391E, E581G, and A661T)
segments of A/equine/Ohio/1/2003 H3N8 wild-type (WT) (Ohio/03 WT; top left). Ohio/03 LAIV was
used as a master donor virus (MDV) to generate clade 2 A/Richmond/1/2007 H3N8 LAIV (Rich/07 LAIV;
bottom right), containing the six internal genes (PB2, PB1, PA, NP, M, and NS) from Ohio/03 LAIV and
the hemagglutination assay (HA) and neuraminidase (NA) (red) of A/Equine/Richmond/1/2007 H3N8
WT (Rich/07 WT; bottom left). The bivalent EIV LAIV is made by combining Ohio/03 and Rich/07
monovalent LAIVs.
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Figure 2. Amino acid sequence alignments of Ohio/03 (top) and Rich/07 (bottom) HA (A) and NA (B).
In red are indicated the amino acid residues that differ between the two viruses present in the EIV

bivalent LAIV. Residue numbers are indicated at the right as reference.
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Figure 3. Genotypic characterization of clade 1 Ohio/03 and clade 2 Rich/07 LAIVs: (A) Schematic
representation of the hemagglutinin (HA; left) and neuraminidase (NA; right) segments from Ohio/03
(black) and Rich/07 (red) LAIVs, indicating the Sac I (Ohio/03) and Aat II (Rich/07); and the Bgl II
(Ohio/03) and Hind III (Rich/07) unique restriction sites and their location in the viral HA and NA,
respectively. (B,C) Madin-Darby canine kidney (MDCK) cells (6 well-plate format, 1 x 10° cells/well)
were individually infected (MOI 0.1) with Ohio/03 or Rich/07 LAIVs and incubated at 33 °C. At48 h
post-infection (p.i.), total RNA was extracted and the HA (B) and NA (C) viral segments were amplified
by RT-PCR using specific primers. Undigested and Sac I- or Aat II-digested PCR products of HA (B)
and Bgl II- or Hind IlI-digested PCR products of NA (C) are shown. M: Ladder marker. The nucleotide
size of the different bands of the ladder marker is indicated on the left. Nucleotide length of undigested
and digested products for Ohio/03 (black) and Rich/07 (red) are indicated on the right.

Next, multicycle growth kinetics (Figure 4A) and the plaque phenotype (Figure 4B) of Ohio/03
and Rich/07 LAIVs were evaluated at different temperatures (33 °C, 37 °C, and 39 °C) in MDCK cells
and compared to the Ohio/03 WT. At 33°C, Ohio/03 LAIV and WT grew at similar levels while Rich/07
LAIV titers were slightly reduced (~0.5-1 logs) as compared to Ohio/03 WT (Figure 3A, left). At 37 °C,
and as expected, both Ohio/03 and Rich/07 LAIVs viral titers were ~2 logs (Ohio/03) or ~3 logs (Rich/07)
lower than those of Ohio/03 WT (Figure 4A, middle). As previously described [61], Ohio/03 LAIV was
not detected at 39 °C and the same ts phenotype was observed with Rich/07 LAIV (Figure 4A, right),
while Ohio/03 WT efficiently replicated at 39 °C. Likewise, we observed that all three viruses displayed
a similar plaque phenotype at 33 °C (Figure 4B, left), while a reduction in plaque sizes was observed
with Ohio/03 and Rich/07 LAIVs compared to the Ohio/03 WT at 37 °C (Figure 4B, middle). Notably,
only Ohio/03 WT was able to make plaques at 39 °C. No viral plaques at 39 °C were observed in the
case of Ohio/03 and Rich/07 LAIVs (Figure 4B, right). These results demonstrate that the Rich/07 LAIV
containing HA and NA from the clade 2 Rich/07 WT in the Ohio/03 LAIV clade 1 MDV backbone
is only able to replicate efficiently at the permissive temperature of 33 °C but not at the restrictive
temperatures of 37 °C and 39 °C.
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Figure 4. In vitro characterization of Ohio/03 and Rich/07 LAIVs: (A) Multicycle growth kinetics:
MDCK cells (12-well plate format, 5 x 10° cells/well, triplicates) were infected (multiplicity of infection
(MOQI) 0.001) with Ohio/03 WT, Ohio/03 LAIV, or Rich/07 LAIV and incubated at 33 °C (left), 37 °C
(middle), and 39 °C (right). Tissue culture supernatants from infected cells collected at 12, 24, 48, and
72 h p.i. were used to evaluate the presence of viruses by immunofocus assay (FFU/mL) using an
anti-NP monoclonal antibody (HB-65). Data represent the means +/- SDs of the results determined
in triplicate wells. Dotted black lines indicate the limit of detection of the assay (200 FFU/mL). Lines
below the limit of detection represent non-detected virus. p < 0.05: * Ohio/03 WT vs. Ohio/03 LAIV;
** Ohio/03 WT vs. Rich/07 LAIV. (B) Plaque assay: MDCK cells (6-well plate format, 1 x 106 cells/well)
were infected with Ohio/03 WT, Ohio/03 LAIV, or Rich/07 LAIV and incubated at 33 °C (left), 37 °C
(middle), and 39 °C (right). The plaque phenotype was analyzed at 72 h p.i. by immunostaining with
the anti-NP monoclonal antibody HB-65.

3.2. Safety Profile of the Bivalent EIV LAIV

To evaluate the safety profile of the bivalent EIV LAIV, horses were inoculated, by aerosol
inhalation, with a 1:1 mixture of 3 x 108 FFU of Ohio/03 and Rich/07 LAIVs using a prime-boost regimen
(Figure 5). In our previous study, horses that were vaccinated with 3 x 108 FFU of the monovalent
Ohio/03 LAIV by intranasal intubation did not develop any clinical signs of infection [61]. Thus,
a mixture of an equivalent amount of clade 1 and clade 2 EIV LAIVs was used in this study. Vaccination
was followed by close monitoring of clinical signs such as coughing, nasal discharge, respiration,
or depression. After first vaccination, all horses remained healthy in appearance (i.e., bright, alert,
responsive) with no signs of anorexia/depression. One horse showed a mucopurulent nasal discharge
at day 3 p.i. and a slight serous nasal discharge at day 7 p.i. Other three horses showed mucopurulent
nasal discharge at day 7 p.i. After the second LAIV dose, none of the vaccinated horses displayed any
clinical signs of EIV infection and the behavior of all animals was similar to those of unvaccinated
horses or before vaccination.

In addition, vaccinated horses were closely monitored for changes in rectal temperature and viral
shedding. After prime, horses maintained normal mean rectal temperatures as compared with day of
vaccination (37.9 °C + 0.4 day 0 vs. 38.2 °C £ 0.5 day 7) (Figure 6A). The mean rectal temperature was
slightly elevated at day 2 p.i. (38.8 °C + 0.4) but still within normal range, and this elevation was also
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detected in one of the sentinels (ambient air temperatures that week were ~32 °C). After boost with the
bivalent EIV LAIV (Figure 6B), a slight decrease of rectal temperature was observed between days 0
and 7 (38.3 °C + 0.4 day 0 vs. 37.8 °C + 0.33 day 7) in vaccinated horses.

Safety
A . .
I . 1 Immunogenicit
EIV bivalent LAIV EIV bivalent LAIV 8 Y
Prime Boost [ \
Day 0 Day 29 28 days after prime and boost
’ Days ; Days
=0): 2,3,7 2,3,7
riys —py ] »‘I I' ————- —s HAI
Rectal temperature Rectal temperature 1
Virus shedding Virus shedding
Day 57
WT viral challenges
B Group 1 ‘/\ Group 2
— ﬁ
Protection KY/14 WT Rich/07 WT
efficacy 7 | !
Day 58-65 Day 58-65
HAI HAI
Rectal temperature Rectal temperature
_  Virus shedding Virus shedding

Figure 5. Schematic representation of the vaccination and challenge protocol: One-to-two year-old
horses of both sexes (n = 12) were randomly separated into group 1 (1 = 6) and group 2 (n = 6)
and inoculated by aerosol inhalation with a virus preparation containing 3 x 108 FFU of clade 1
Ohio/03 LAIV and 3 x 108 FFU of clade 2 Rich/07 LAIV using a prime-boost regimen. Individual
rectal temperature and viral shedding were measured in each horse before and at days 2, 3, and 7 after
each dose (safety). Twenty-eight days after the boost, samples were collected and presence of serum
antibodies was assessed by HAI (immunogenicity). Fifty-seven days after prime, vaccinated (n = 12)
and mock-vaccinated (1 = 6) horses were randomly separated into group 1 and group 2 and challenged
by aerosol inhalation with 5 x 107 EIDsg of A/equine/Kentucky/2014 WT (KY/14 WT; n = 6 vaccinated
group 1 and 7 = 3 mock-vaccinated) or 5 x 107 EIDsg of Rich/07 WT (1 = 6 vaccinated group 2 and n = 3
mock-vaccinated) to assess protection against clade 1 and 2 EIVs, respectively. Rectal temperatures and
virus shedding were evaluated (protection efficacy) for eight days after challenge.

Collected nasopharyngeal swabs (one swab per horse per day) during the monitoring period
were used to evaluate the presence of EIV LAIVs by immunofocus assay (FFU/mL) (Figure 6C). Virus
was detected in 11 out of 12 horses at days 2 and 3 after priming with a decrease in viral titers from
day 2 (mean, 3.9 x 10° FFU/mL) to day 3 (mean, 2.12 x 10* FFU/mL), with viral clearance by day 7
post-vaccination (Figure 6C). Importantly, viruses in nasopharyngeal swabs collected after boost were
not detected in any of the vaccinated animals, indicating that prime vaccination induced protection at
the site of influenza infection. Altogether, these results demonstrated that the bivalent EIV LAIV was
able to efficiently replicate in the upper respiratory tract of vaccinated horses, which is necessary for
the induction of specific immunity. Replication in the upper respiratory tract did not lead to disease or
adverse effects in the vaccinated animals, which remained healthy and were able to spontaneously
control viral shedding and infection.
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Figure 6. Attenuation of the bivalent EIV LAIV in horses: (A,B) Graphical representation of the rectal
temperatures in vaccinated horses (n = 12) before (day 0) and 2, 3, and 7 days after prime (A) and
boost (B) vaccination with the bivalent EIV LAIV. Data represent the rectal temperature of each horse
which representative symbol is indicated at the bottom-right. (C) Viral titers: Nasopharyngeal swabs
from vaccinated horses (n = 12) were collected on days 0, 2, 3, and 7 days after prime vaccination.
Virus content was determined by immunofocus assay (FFU/mL). Individual results for each horse
are represented. Bars indicate the mean of the results determined in the 12 horses. ND, not detected.
Dotted black lines indicate the limit of detection (200 FFU/mL). Striped black circles below the limit of
detection represent non-detected virus, horse 5. * p < 0.05 was considered statistically significant.

3.3. Induction of Serum Antibody Responses

Blood samples were taken at day 0 and 28 days after prime- and boost-vaccination to evaluate the
ability of the bivalent EIV LAIV to elicit serum HAI antibodies against Ohio/03, KY/14 and Rich/07 WT
viruses. Twenty-eight days after vaccination, low titers of HAI antibodies were detected against all
three strains, with the highest rate of seroconversion against Ohio/03 WT (6/12 after prime and 8/12
after boost-vaccination). Only two horses seroconverted against KY/14 WT while one seroconverted
against Rich/07 WT after boost doses.

After evaluating the safety of the bivalent EIV LAIV, at 57 days post-VO0 the group 1 (1 = 6) and
unvaccinated control (n = 3) and sentinel (n = 2) horses were challenged with 5 X 107 EIDs units of the
clade 1KY/14 WT virus, administered by aerosol inhalation. Moreover, at 57 days post-VO0, group 2
(n = 6) and another group of unvaccinated control horses (n = 3) were challenged with the clade 2
Rich/07 WT.

Blood samples were taken at days 0, 7, 14, and 21 after challenge with clade 1 KY/14 or clade 2
with Rich/07 WT to evaluate anamnestic antibody responses against Ohio/03 (Figure 7A,D), KY/14
(Figure 7B,E), and Rich/07 (Figure 7C,F) WT viruses by HAIL During the first 21 days after challenge
of group 1 with KY/14 WT, antibody titers had slightly risen in the vaccinated Ohio/03 WT group 1
(Figure 7A) and the KY/14 WT group 1 (Figure 7B), although non-significant differences were observed
between vaccinated and control horses (Figure 7A-C). Importantly, horses challenged with Rich/07 WT
(group 2) displayed a marked increment in HAI geometric mean titers (GMT) from day 0 to day 21
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for Ohio/03 WT (HAI GMT 0.92 vs. 1.95, p < 0.05; Figure 7D), KY/14 WT (HAI GMT 0.80 vs. 1.67,
p < 0.05; Figure 7E) and Rich/07 WT (HAI titer 0.7 vs. 1.77, p < 0.05; Figure 7F). Although no significant
differences in HAI GMT were observed at day 21 when comparing vaccinated and control horses
challenged with Rich/07 WT, the HAI GMT in vaccinated control horses tended to be higher than in
unvaccinated horses against Ohio/03 WT (HAI GMT 1.95 vs.1.79; Figure 7D), KY/14 WT (GMT 1.66 vs.
1.37; Figure 7E), and Rich/07 WT (HAI GMT 1.77 vs.1.37; Figure 7F). Importantly, significant differences
between vaccinated and unvaccinated groups were mainly observed at short-term after challenge
(day 7) (Figure 7D-F). These results suggest that the bivalent EIV LAIV might allow vaccinated horses
to respond faster and better in terms of antibodies than unvaccinated horses during challenge with a
homologous virus.
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Figure 7. Induction of humoral response by the bivalent EIV LAIV before and after WT viral challenges:
Fifty-seven days after prime vaccination, group 1 horses (1 = 6) were challenged with 5 x 107 EID5,
of the clade 1 KY/14 WT and group 2 horses (1 = 6) were challenged with 5 x 107 EIDs of the clade
2 Rich/07 WT. Unvaccinated horses (n = 3) were used as internal controls in each group. HAI titers
against Ohio/03 WT (A,D), KY/14 WT (B,E), and Rich/07 WT (C,F) were determined using sera collected
before (day 0) and 7, 14, and 21 days after challenge of group 1 (A-C) and group 2 (D-F) horses.
Individual HAI titers (logy) with sera obtained from vaccinated and control horses are represented as
black circles and gray squares, respectively. Bars indicate the geometric mean of the results obtained
from the vaccinated or control horses, respectively. An HAI titer of 5 (equivalent to HAI log, of 0.71)
was arbitrarily assigned to those data below the limit of detection (<10). * p < 0.05 was considered

statistically significant.
3.4. Protection Efficacy of the Bivalent EIV LAIV Against Clade 1 and 2 EIVs

After challenge with KY/14 (group 1) or Rich/07 (group 2) WT EIVs, horses were monitored daily
over eight-nine days for rectal temperatures (Figure 8A,B) and clinical signs (Figure 8C,D). Body
temperatures in group 1 vaccinated horses remained within a normal range through the nine days
after WT viral challenge (Figure 8A). However, increases in rectal temperature was observed in control
horses compared to vaccinated horses at day 2 after challenge (mean increase 0.8 °C). These differences
in rectal temperatures between vaccinated and control horses were higher for those horses challenged
with Rich/07 WT (Figure 8B). In this case, the mean rectal temperature of control horses increased by
0.98 °C and 1.4 °C at days 2 and 5 post-challenge, respectively. Notably, the three unvaccinated control
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horses challenged with Rich/07 all displayed pyrexia while all vaccinated horses remained within
normal temperature ranges with no significant alterations during the nine days post-challenge.
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Figure 8. Rectal temperature and clinical scores in vaccinated and control horses after EIV viral
challenges: (A,B) Rectal temperatures: Rectal temperatures were measured daily over 9 days after
challenge of group 1 horses with KY/14 WT (A) and group 2 horses with Rich/07 WT (B). (C,D) Clinical
scores: Clinical signs were recorded over 8 days after challenge of group 1 (C) and group 2 (D) horses.
The clinical signs scoring index is found in Table 1 (maximum clinical score of 6). Data represent the
means +/— SDs of the clinical score calculated for vaccinated (black) and control (gray) horses after
challenge with KY/14 WT (C) and Rich/07 (D). * p < 0.005 was considered statistically significant.

Clinical signs (Table 1) were monitored for eight days after challenges (Figure 8C,D). Overall,
the occurrence of clinical signs in group 1 (Figure 8C) and group 2 (Figure 8D) vaccinated horses was
lower and of a shorter duration than in unvaccinated horses. In the KY/14 WT challenge, tachypnea
was observed in one unvaccinated control but in none of vaccinates. Nasal discharge was observed in
five out of six vaccinates and all three control horses, although it was significantly shorter in vaccinated
(2 days =+ 0.7) than in control (7.6 days + 1.1; p < 0.001) horses. Importantly, coughing was observed in
all three control horses (4.6 days + 1.5) but not in the vaccinated horses after challenge with KY/14 WT
virus. Signs of anorexia were observed in control horses at one-two days after challenge, while normal
behavior was observed in vaccinated horses. In the Rich/07 challenge experiment (Figure 8D), all three
unvaccinated controls also showed an increase in the time of nasal discharge (4.6 days + 1.5) compared
to vaccinates (one horse, one day only) horses. In addition, only one horse in the vaccinated group
was observed to cough from days 3-5 p.i. whereas coughing was observed in all three unvaccinated
controls during 5.6 + 1.15 days. In this group 2, anorexia was only detected in the three unvaccinated
control horses beginning at day 3 post-challenge. We did not find a correlation between the HAI titer
after vaccination (Figure 7) and the clinical score (Figure 8), suggesting a possible role of mucosal
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immunity and/or T-cell immunity in protecting from clinical signs after challenge (Supplementary
Figure S3). Although horses presenting clinical signs at day 7 were unvaccinated horses, we could not
correlate protection from clinical sings with higher HAI titer (Supplementary Figure S3). In addition,
viral shedding was undetectable for all horses at day 7 after challenge (Figure 9A,B), independently of
the HAI titer.

All six unvaccinated control, but no vaccinated, horses were deemed by an independent and
study-blinded veterinarian to require treatment for control of secondary bacterial infections, and were
so treated with Ceftiofur crystalline free acid Excede (Zoetis Inc., Parsippany, NJ, USA) beginning in
most cases on day 5 post-challenge. Three of the six controls (one in the KY/14 challenge, two in the
Rich/07 challenge), but no vaccinated, also received non-steroidal anti-inflammatory treatment with IV
flunixin meglumine (Zoetis Inc.) at least once subsequent to challenge.
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Figure 9. Viral shedding in vaccinated and control horses after EIV WT challenges: (A,B) Virus titers
from nasopharyngeal swabs collected over 8 days after challenge with WT EIV were determined
by immunofocus assay (FFU/mL) using an anti-NP monoclonal antibody (HB-65). Data represent
individual results from each vaccinated (black) or control (gray) horse in group 1 (A) and group 2
(B). Dotted black lines represent the limit of detection of the assay (200 FFU/mL). (C,D) Embryonated
chicken eggs were inoculated (100 pL/egg, in triplicate) with nasopharyngeal swabs collected over 8
days after challenge with WT EIVs and presence of challenge virus was evaluated by hemagglutination
assay (HA). Horses were considered positive when at least one egg showed progeny virus growth.
Bars represent the incidence of positive vaccinated (black) or control (gray) horses in group 1 (C) and
group 2 (D). Number of eggs (1 = 3) positive for the presence of WT EIV challenge virus are indicated
at the bottom.
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Virus shedding in nasopharyngeal swabs was also evaluated eight days after challenge by
immunofocus assay (Figure 9A,B) and by virus amplification in embryonated chicken eggs (Figure 9C,D).
Only one vaccinated horse in group 1 had detectable virus at day 4 p.i. (5 x 102 FFU/mL) while the
three control horses were positive for the presence of challenge virus, peaking at day 2 p.i. (Figure 9A).
Similarly, the three control horses were positive for virus between days 3-6 p.i. in group 2, while
only one vaccinated horse contained virus in nasopharyngeal swabs at day 3 p.i. (2.3 x 10* FFU/mL)
(Figure 9B). Importantly, in both horse groups, viral titers found in the nasopharyngeal swabs of
the three control horses were higher than those found in the two vaccinated horses (Figure 9A,B).
When nasopharyngeal swabs from unvaccinated control horses following KY/14 WT challenge were
inoculated in embryonated chicken eggs, an incidence of infection of 100% was found between days
1-6 p.i, while an incidence between 10-50% was found for vaccinated horses, peaking at day 3 p.i.
(Figure 9C). Following Rich/07 WT challenge, an incidence of 100% was found in the unvaccinated
control group between days 1-7 p.i. while vaccinated horses only reached the 100% at day 3 p.i. and
then decreased until day 7 p.i. (Figure 9D). In addition, when we quantified the infectious virus
present in the nasopharyngeal swab samples collected at day 2 post-challenge, we observed that viral
titers were significantly lower in vaccinated than unvaccinated horses in group 1 (0.33 vs. 5.87 EIDs,
p < 0.001) and group 2 (1.90 vs. 6.22 EIDs, p = 0.002) horses. Altogether, these results demonstrate that
our bivalent EIV LAIV is able to induce protective but not sterile immune responses against challenge
with clade 1 KY/14 WT and clade Rich/07 WT EIVs.

Interestingly, the two sentinel horses co-mingled with group 1 post-vaccination displayed opposite
responses to challenge. One showed temperature and clinical profiles very similar to the group 1
vaccinates following challenge, and no virus was detected in nasopharyngeal swabs by FFU assay.
The other (observed in pasture to be a less sociable horse) displayed pyrexia and nasal discharge
similar to the unvaccinated controls, similarly required antibiotic/anti-inflammatory treatments, and
shed detectable virus on day 2 after challenge. This suggests the likelihood that vaccine virus had been
spread in the one case but not the other.

4. Discussion

Equine influenza caused by H3N8 EIV is one of the major infectious respiratory diseases of
horses [2]. This virus can spread through the air reportedly up to 1-2 km and be transmitted via
infectious aerosols [75]. Horses are especially susceptible to EIV infection when they are transported
because of the stress of travel and exposure to other horses in a closed environment. The worldwide
transport of horses by air and the congregation of horses at equestrian events facilitates virus spread
that causes important economic losses [24,76] and introduction of EIV to EIV-free zones around
the world [77]. Equine influenza surveillance, restricted movement and traffic, proper quarantine
practices, and isolation of infected animals are important measures to contain EIV [30]. Apart from
those preventive measures, vaccination is the best prophylactic strategy to control EIV infections in
horses [46,47].

Despite prevention efforts made by owners and veterinary practitioners, frequent outbreaks have
occurred worldwide with high morbidity in susceptible horse populations [78-80]. In 2018-2019, equine
influenza outbreaks were reported in South America [81], the US, Europe (United Kingdom, France,
Belgium, the Netherlands, and Germany), Nigeria, and South America, including in vaccinated horses,
which support claims of inadequate vaccine(s) effectiveness [58]. Different reasons have been proposed
for explaining this: improper vaccination schedules, the continued evolution of the EIV genome, and
the use of outdated virus strains in the EIV vaccines [27,31]. Thus, continuous surveillance, virus strain
characterization, and updating of vaccines with recent circulating strains are urgently needed to control
equine influenza in the horse population. Although it has been shown that some cross-reactivity
could exist between clade 1 and clade 2 strains [82], cross-reactive antibodies have shown to be less
effective than strain-specific antibodies in reducing virus shedding after EIV infection [83]. Since 2010,
the OIE has recommended the inclusion of representative clade 1 (A/equine/South Africa/04/2003-like
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or A/equine/Ohio/2003- like viruses) and clade 2 (represented by A/equine/ Richmond/1/2007-like
viruses) strains of the Florida sublineage into equine influenza vaccines. Although recent IIV have
been updated to include representative strains of the clades 1 and 2 Florida sublineage, the EIV LAIV
Flu Avert LN. only contains an outdated strain (A/equine/Kentucky/1/1991) that pre-dates both Florida
clades. The mismatch between the EIV strain in Flu Avert LN. and currently circulating strains seems
likely to result in inadequate protection of vaccinated horses [27,84,85].

To overcome this limitation, we have generated, for the first time, a bivalent EIV LAIV based on
the use of reverse genetics approaches and the inclusion of two representative strains of the clade 1
and clade 2 EIVs of the Florida sublineage recommended by the OIE. Our goal was to evaluate the
safety and protection efficacy against viral challenge in its natural host, the horse. The bivalent
EIV LAIV was produced by blending our previously generated clade 1 Ohio/03 LAIV [61] with a
newly developed recombinant clade 2 Rich/07 LAIV, containing the HA and NA from Rich/07 WT
and the six internal segments from Ohio/03 LAIV. Although an unattenuated vaccine group was not
included for comparison in horses, our bivalent EIV LAIV was safe, with only minor episodes of nasal
discharge and an absence of severe adverse effects after a prime-boost regimen. We anticipate that the
concentration/purification steps of a commercial production will eliminate the need for nebulization to
administer the vaccine, and with that eliminate even the mild post-vaccination effects we observed.
Our bivalent EIV LAIV was detected in the nasal swabs of all vaccinated horses, suggesting the ability
of the LAIV to replicate in the upper respiratory tract, which is needed for an effective induction of
EIV-specific immune responses in the mucosa. Importantly, virus shedding occurred for less than a
week, as has been shown for other EIV LAIVs [35,61]. We observed evidences of viral spread from
vaccinated to one unvaccinated horse, which is still consistent with previous results that showed that
Flu Avert I.N. had spontaneous transmissibility [54]. This fact should not be a cause of concern as that
horse showed no clinical signs. It is possible that our nebulization method by face mask has left virus
residues on noses of vaccinated horses, resulting in transmission to the exposed sentinel. This issue of
shed-spread does need to be examined in future studies.

As previously reported in the literature [55,72], circulating antibody responses in naive horses
following vaccination were low and this is believed to be a consequence of the route of administration.
In contrast to naturally exposed horses, it is well known that after vaccination with LAIV the serum
antibody level does not correlate with protection [54,55,72]. In fact, Flu Avert L.N. conferred complete
clinical protection with little to no detectable serum antibody [54]. This fact suggests that a circulating
antibody-independent immunity could be responsible of the protective response [36]. Although there
is still little information about the role of CTL in protection against EIV, some studies have suggested
that CTL could have an important role in protection in the absence of detectable antibody [36].

In this study, anamnestic antibody responses tended to be higher in vaccinated horses as compared
to unvaccinated animals after challenge with either clade 1 or clade 2 Florida sublineage EIVs at
early times after challenges (day 7). It is possible that HAI titer are not a good marker to determine
protection and future research should be done to measure mucosal immune response. To overcome
this limitation, we included other relevant data such as clinical presentation and shedding. The rectal
temperatures of all vaccinated horses remained within a normal range with an absence of fever after
challenge. In addition, clinical scores of infection were lower, shorter in duration, and less severe
in vaccinated horses as compared to unvaccinated horses. None of the vaccinated but all of the
control horses were, upon independent veterinary examination, deemed to require antibiotic treatment.
Importantly, the reduced coughing seen in vaccinated horses is likely to minimize the risk of EIV
dissemination. Notably, unvaccinated horses displayed a higher rate and duration of virus shedding
than vaccinated horses. Sterilizing immunity was not conferred by our bivalent LAIV suggesting that a
higher vaccination dose or a second boost dose could be suitable for future studies in order to achieve
the highest level of immunity. Lack of sterile immunity was also observed in our previous study and
even in the case of Flu Avert I.N. [54,61]. In the present study, we observed that our LAIV protected
better against heterologous KY/14 WT than against homologous Rich/07 WT. The cross-protection
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conferred against heterologous KY/14 WT EIV is likely due to the induction of a T cellular response by
the internal proteins belonging to Ohio/03 LAIV rather than antibody responses.

Our LAIV meets the requirements for licensing of an EIV vaccine [86] because it follows the OIE
recommendation of including representative clade 1 and 2 strains of the Florida sublineage of EIVs,
has a safe profile in horses, induces a serological response against viruses present in the vaccine, and
confers protection against challenge with both clades 1 and 2 EIVs of the Florida sublineage that are
currently circulating in horses. Importantly, since our bivalent EIV LAIV is based on the use of reverse
genetics approaches, it would be easy to update against EIVs of epidemiological relevance or newly
introduced EIV strains in the horse population. It must be mentioned that EIV has crossed the species
barrier to infect other animal species such as dogs, camels, and pigs, and could also potentially pose a
threat to humans [87-91]. A better control of EIV in its natural host by using more efficient vaccines like
this EIV bivalent LAIV could also prevent the potential infection of other species, including humans.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/10/933/s1,
Figure S1: Nucleotide alignment of clade 1 Ohio/03 and clade 2 Rich/07 HA, Figure S2: Nucleotide alignment of
clade 1 Ohio/03 and clade 2 Rich/07 NA and Figure S3: Correlation between HAI titer and Clinical Score.
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