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Abstract: The emergence of duck tembusu virus (DTMUV), a new member of the Flavivirus genus,
has caused great economical loss in the poultry industry in China. Since the outbreak and spread of
DTMUV is hard to control in a clinical setting, an efficient and low-cost oral delivery DNA vaccine
SL7207 (pVAX1-C) based on the capsid protein of DTMUV was developed and evaluated in this study.
The antigen capsid protein was expressed from the DNA vaccine SL7207 (pVAX1-C), both in vitro and
in vivo. The humoral and cellular immune responses in vivo were observed after oral immunization
with the SL7207 (pVAX1-C) DNA vaccine. High titers of the specific antibody against the capsid
protein and the neutralizing antibody against the DTMUV virus were both detected after inoculation.
The ducks were efficiently protected from lethal DTMUV exposure by the SL7207 (pVAX1-C) vaccine
in this experiment. Taken together, we demonstrated that the capsid protein of DTMUV possesses
a strong immunogenicity against the DTMUV infection. Moreover, an oral delivery of the DNA
vaccine SL7207 (pVAX1-C) utilizing Salmonella SL7207 was an efficient way to protect the ducks
against DTMUV infection and provides an economic and fast vaccine delivery strategy for a large
scale clinical use.
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1. Introduction

The genus Flavivirus contains important anthropod-borne human pathogens, such as dengue
virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and
Zika virus (ZIKV) [1–3]. The genome of these flaviviruses consists of one single copy of positive-strand
RNA that encodes three structural proteins: capsid, pre-membrane/membrane (prM/M) and envelope
(E) proteins, as well as seven non-structural (NS) proteins: NS1, NS2A, NS2B, NS3, NS4A, NS4B,
NS5 [4].
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Duck tembusu virus (DTMUV) is a newly identified Flavivirus that was isolated from duck in
China in 2010 [5] and causes severe symptoms, such as a decline in egg production, high fever, loss of
appetite, retarded growth, or death. Since its outbreak, the spread of DTMUV has caused a huge
economic loss in the poultry industry in China [5,6]. The spread and outbreak of DTMUV is hard to
control because it is transmitted by arthropods, such as mosquitoes and also because of the wide range
of potential hosts, such as chicken, goose, pigeon and sparrow [7–9]. In addition, it was reported that
DTMUV has the potential to affect people [10]. Thus, the prevention and control of DTMUV infection
and transmission in the poultry industry is urgently needed. Different kinds of DTMUV vaccines
have been studied in previous studies but there is still room for further improvement. Although a live
attenuated DTMUV vaccine by serial passaging in chicken embryo fibroblasts provides good immune
responses, the virus could be measured in the vaccinated ducks’ tissues, which may pose the risk
of reversible virulence [11]. To provide safer alternatives, a DTMUV beta-propiolactone-inactivated
oil-emulsion vaccine and a purified DTMUV envelope protein containing liposome vaccine have been
developed [12,13]. However, these two vaccines are impossible for large-scale inoculations in clinical
practices, because of the high cost and intricate delivery. This has led to the exploration of new strategy
in vaccine development, such as the oral DNA vaccine designed in this study [14].

Capsid proteins, the main structure proteins of flaviviruses, have been widely studied regarding
to their function. The primary function of flaviviral capsid proteins is for genome packing [15].
Additionally, they can enhance the replication and translation of viral genomes during the production
of infectious virions [16–18]. They also play a crucial role in modulating host cell signaling networks by
affecting innate immunity, which benefits the replication of flaviviruses [19]. However, capsid proteins
used as an antigen in vaccine development against flaviviruses is rarely mentioned or evaluated. Thus,
based on attenuated Salmonella typhimurium which have been widely used to deliver heterologous
antigens to the immune system [20], an oral DNA vaccine using a DTMUV capsid protein as the
antigen was developed and evaluated against DTMUV infection in ducks.

2. Materials and Methods

2.1. Plasmid, Bacterial Strains, Virus and Ducks

Plasmid pVAX1 containing the eukaryotic expression promoter cytomegalovirus (CMV) and
bovine growth hormone (BGH) poly A signal was purchased from Invitrogen (USA). SL7207, Salmonella
typhimurium 2337-65 derivative hisG46, DEL407 [aroA::Tn10 (Tcs)], was kindly provided by Professor
Kai Schulze of the Helmholtz Center for Infection Research (Germany). The DTMUV WR strain
(GenBank: JX196334.1), isolated in Fujian, was generously provided by Professor Yu Huang from the
Fujian Academy of Agricultural Sciences (China). This virus was propagated in the allantoic cavities
of 9-day-old specific pathogen-free (SPF) embryonated duck eggs and stored in −80 ◦C until use.
One-day-old shelducks were purchased from commercial duck farms in Ya’an, China. DTMUV-free
ducks were confirmed by PCR. All animals were fed under standard conditions.

2.2. Construction of DNA Vaccine Plasmids

Total RNA of DTMUV was extracted from the allantoic fluid by Trizol (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions and was reverse transcribed into cDNA. The capsid
gene (GenBank: JX196334.1) was amplified with the primers listed in Table 1 from the cDNA template
and cloned into the multiple cloning site of the pVAX1 vector using the EcoRI site (underlined) in the
forward primer and the XhoI site (underlined) in the reverse primer. The resulted plasmid was named
pVAX-C. pVAX-C and empty pVAX plasmids were transformed into SL7207 by electroporation [21] to
generate an oral DNA vaccine SL7207 (pVAX-C) and SL7207 (pVAX).



Viruses 2018, 10, 180 3 of 12

Table 1. Primers used in this study.

Name Sequence (5′-3′) Length of PCR Products (bp) GenBank Number

C (Fw) TACAGAATTCACTATGGCATCTAACAAAAAACCAGGAAGACCC
360 JX196334.1C (Rev) TACACTCGAGCTACCCAGCAACTATCGGGAGTAACATA

Il-4 (Fw) TCTATCAGAGAAAGACAACAC
157 XM_013104023.1Il-4 (Rev) GGTGACTATTTCTTTCAAGT

Il-6 (Fw) AAGTTGAGTCGCTGTGCT
120 JQ728554.1Il-6 (Rev) GCTTTGTGAGGAGGGATT

GAPDH (Fw) CAAGGCTGAGAATGGGAAAC
171 GU564233.1GAPDH (Rev) CTGCCCACTTGATGTTGC

2.3. Expression of the Capsid Protein from DNA Vaccine in Vitro

Plasmids pVAX-C and pVAX were prepared using the EndoFree Plasmid Kit (Tiangen, Beijing,
China) and were transfected into COS7 cells using the TransIntroTM EL Transfection Reagent (TransGen
Biotech, Beijing, China) when the cells were growing at around 80% confluent in six-well plates.
The expression of the capsid protein in the cells post 48 h transfection was confirmed by indirect
immunofluorescence as described previously [21]. Briefly, transfected cells were washed with
phosphate-buffered-saline (PH 7.2) (PBS), then fixed with 4% paraformaldehyde and permeabilized
with 0.2% Triton X-100 in PBS and blocked with 5% BSA in PBS (BSA-PBS). After that, the cells
were incubated with rabbit anti-capsid protein polyclonal antibody (prepared by our lab) as the
primary antibody diluted 1:100 in BSA-PBS for 2 h, followed by incubation with the Alexa Fluor
488-conjugated goat anti-rabbit IgG (Thermo Fisher, Lafayette, CO, USA) as the secondary antibody
was diluted 1:2000 in BSA-PBS for 2 h at room temperature. The cell nuclei were counterstained with
4′, 6-diamidino-2-phenylindole (DAPI) for 10 min at room temperature. The cells were examined by
fluorescence microscopy (Nikon, Tokyo, Japan).

2.4. Sample Collection, Vaccination and Challenge Experiments

The animal experiments were approved by the Institutional Animal Care and the Use Committee
of Sichuan Agricultural University (29 January 2014, Permit Number: SYXK (Chuan) 2014-187), China.
56 ducks at 7-day-old were randomly divided into 2 groups (28 ducks per group). Ducks from each
group were vaccinated orally with 1010 colony-forming units (CFU) of SL7207 (pVAX-C) or SL7207
(pVAX) in 0.5 mL volume of PBS at 8-day-old and boosted at 24-day-old. At 3, 24, 32 and 40 days post
first injection (dpi), the spleens of three ducks randomly selected from each group were collected and
stored in −80 ◦C until use. At 8, 16, 24, 32, 40 and 48 dpi, sera were collected and stored in −80 ◦C
before use (Figure 1A).

Sixteen days after the second immunization, 10 ducks from each group were randomly selected
and challenged with 104.5-fold 50% of embryo lethal death (ELD50) DTMUV per duck by intravenous
injection. The clinical symptoms and death of those challenged ducks was checked and recorded for
continuous 10 days afterwards (Figure 1B).
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CFU of SL7207 (pVAX-C) and SL7207 (pVAX) at 8-day-old and 24-day-old, respectively. Animals were
sacrificed at 3, 24, 32 and 40 dpi to collect the spleen (n = 3 of each time point). Sera were collected at
8, 16, 24, 32, 40 and 48 dpi (n = 3 of each time point); (B) Schedule of challenge experiment. 10 ducks
of each group were randomly selected at 32 dpi for the immune protection test and mortality was
recorded for continuous 10 days after exposure of duck tembusu virus (DTMUV).

2.5. Expression of the Capsid Protein from DNA Vaccine in Vivo

The ducks in each group were euthanized and the spleens were collected at 3 dpi. The expression
of capsid proteins in vivo was checked by immunohistochemistry, as described previously [22]. In brief,
the spleen was fixed in 4% paraformaldehyde, embedded in paraffin and cut at 4 µm thickness (Leica
RM2128, Wetzlar, Germany). The sections were dewaxed with xylene and re-hydrated through gradient
ethanol and distilled water. Endogenous peroxidase activity was blocked by 0.3% hydrogen peroxide
(H2O2). The sections were then soaked in citrate buffer solution (CBS, 0.01 M, PH 6.0) and submitted
to antigen retrieval. Subsequently, the unspecific antigens were blocked by PBST (PBS containing
0.05% Tween-20, 0.01 M, PH 7.4) with 10% normal goat serum (S-PBST) for 1 h at 37 ◦C. Then the
slides were incubated with a rabbit anti-capsid protein polyclonal antibody (prepared by our lab)
as the primary antibody was diluted 1:200 in S-PBST and a horseradish peroxidase-conjugated goat
anti-rabbit immunoglobulin G (IgG) (Transgen Biotech, China) was used as the secondary antibody
was diluted 1:1000 in S-PBST. Next, the sections were stained by DAB (Solarbio, Beijing, China) and
examined by microscope (Olympus BX43, Tokyo, Japan).

2.6. Quantitative RT-PCR

Total RNA of spleen collected from 24, 32 and 40 dpi was extracted using Trizol (Invitrogen,
USA) according to the manufacturer’s manual. cDNA reverse transcribed from RNA was subjected to
quantitative real-time polymerase chain reaction (quantitative RT-PCR) to check the expression level of
IL-4 and IL-6 using the primers listed in Table 1. The procedure of quantitative RT-PCR was performed
as previous work [23]. The results of the quantitative RT-PCR were analyzed by 2−∆∆Ct method and
expressed as the mean ± standard deviation.

2.7. Enzyme-Linked Immunosorbent Assay (dELISA)

The presence of a specific anti-DTMUV capsid protein antibody from the serum in vaccinated
ducks was examined by using indirect ELISA. 100 µL of purified capsid protein (1 µg/mL) as a capture
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molecule was incubated in 96-well ELISA plates at 4 ◦C overnight. The plates were washed three times
with PBST and blocked by 1% bovine serum albumin (BSA) for 1 h at 37 ◦C. Serum samples diluted
1:400 in PBS were added into plates (100 µL per well) and incubated at 37 ◦C for 1 h. The plates were
washed three times with PBST. After that, 100 µL of 1:2000 diluted horseradish peroxidase conjugated
goat anti-bird IgY (Abcam, Cambridge, UK) was added to each well and incubated at 37 ◦C for 1 h.
After washing three times, the plates were incubated with 3,3′,5,5′-tetramethy1 benzidine (TMB) as a
substrate for 10 min. H2SO4 (2 mol/L) was added to each well to stop the reaction and the OD value
at 450 nm was measured by using a Bio-Rad Model 860 Plate Reader (Bio-Rad, Hercules, CA, USA).

2.8. Neutralizing Assay

Neutralizing antibodies from sera collected at 8, 16, 24, 32, 40, 48 dpi was measured, as described
previously [24]. Sera samples were inactivated at 56 ◦C for 30 min (n = 3) and diluted in serial
twofold dilutions in MEM medium. Each sample was mixed with an equal volume of 100 TCID50 of
DTMUV and incubated at 37 ◦C for 1 h. The mixture in each well was then replaced with BHK-21
cells and incubated and propagated for an additional 5 days. Titers of neutralizing antibodies were
determined by monitoring the cytopathic effect (CPE). Each sample was repeated twice independently.
Neutralizing activity was recorded until two out of three wells of infected cells showed no CPE.

3. Results

3.1. Expression of the Capsid Protein from the DNA Vaccine in Vitro and in Vivo

Expression of the antigen capsid protein from the DNA vaccine plasmid pVAX-C was confirmed
by indirect immunofluorescence assay in the transfected COS7 cells. After 48 h post transfection,
specific green fluorescence which indicated the DTMUV capsid protein was observed in the cells
transfected with pVAX-C, whereas no fluorescence was detected in cells transfected with empty vector
pVAX (Figure 2A). The results indicated that the vaccine plasmid was successfully constructed and the
capsid protein gene was successfully expressed from the DNA vaccine pVAX-C in vitro.

In order to investigate if the antigen was expressed in vivo via oral inoculation with the DNA
vaccine SL7207 (pVAX-C), the capsid protein in the spleens collected at 3 dpi in the SL7207 (pVAX)
or SL7207 (pVAX-C) vaccinated group was checked by using immunohistochemistry. As shown in
Figure 2B, specific brown spots which represented the capsid protein antigen was observed on the
slides from ducks orally inoculated with the DNA vaccine SL7207 (pVAX-C) (Figure 2Bb), whereas
an absence of brown spots on the slides of the SL7207 (pVAX) group was observed (Figure 2Ba).
These results indicated that the antigen capsid protein gene cloned in the pVAX eukaryotic vector was
successfully expressed in vivo. Moreover, the DNA vaccine orally delivered by using attenuated S.
typhimurium SL7207 was an efficient and successful inoculation method.
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Figure 2. Expression of the capsid protein gene in vitro and in vivo. (A) COS7 cells were transfected
with the DNA vaccine plasmids pVAX-C or pVAX. At 48 h post transfection, the cells were processed by
indirect immunofluorescence assay using the anti-DTMUV-capsid protein rabbit polyclonal antibody
as the first antibody and the Alexa Fluor 488-conjugated (green fluorescence) goat anti-rabbit as
the secondary antibody. Scale bar 200 µm; (B) Spleens collected from the SL7207 (pVAX) (a) or
the SL7207 (pVAX-C) vaccination group (b) at 3 dpi (n = 3). The capsid protein was detected by
immunohistochemistry assay using the anti-DTMUV-capsid protein rabbit polyclonal antibody as the
primary antibody and the horseradish peroxidase-conjugated goat anti-rabbit secondary antibody. The
brown dots directed by the arrow indicated the capsid protein. Scale bar 50 µm.

3.2. Cellular and Humoral Immune Responses in Ducks

To evaluate the cellular immune response stimulated by our developed oral DNA vaccine, the
expression of cytokine molecules IL-4 and IL-6 in the spleen was measured by quantitative RT-PCR.
As shown in Figure 3A, the expression of IL-4 was up-regulated 2.5 to 4-fold from 24 to 40 dpi in
the SL7207 (pVAX-C) immune group, compared with the SL7207 (pVAX) control group. In addition,
the expression level of IL-6 was 2 to 3.5-fold higher in the SL7207 (pVAX-C) group than that in the
SL7207 (pVAX) group, from 24 to 40 dpi. The expression of IL-4 was increased gradually from 24 to
40 dpi; in contrast, IL-6 presented the highest expression level at 24 dpi and subsequently dropped
gradually. However, both IL-4 and IL-6 were overexpressed at least 2 folds in the SL7207 (pVAX-C)
vaccine group during 24 to 40 dpi. These results indicated that the cellular immune response in vivo
was efficiently induced by orally inoculating our developed DNA vaccine SL7207 (pVAX-C).

To check the specific humoral immune response induced by the oral SL7207 (pVAX-C) vaccine,
antibody in the serum against the DTMUV capsid protein was analyzed by using indirect ELISA.
As shown in Figure 3B, a high level of specific antibodies against the capsid protein in the oral vaccine
SL7207 (pVAX-C) group was detected, which was 3 to 4-fold higher compared to the negative control
SL7207 (pVAX) group. The specific antibody appeared quickly after the second inoculation and
maintained at a high and stable level from 24 to 40 dpi. These results indicated that a specific antibody



Viruses 2018, 10, 180 7 of 12

against the DTMUV capsid protein was successfully induced by our developed oral vaccine SL7207
(pVAX-C) in vivo.
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Figure 3. Immune responses stimulated by the vaccine. (A) Expression of IL-4 and IL-6 was measured
by quantitative real-time polymerase chain reaction (RT-PCR) to evaluate the cellular immune responses.
Data from RT-PCR was analyzed using 2−∆∆Ct method. The expression level of IL-4 and IL-6 in
the SL7207 (pVAX-C) vaccinated group was presented as changed fold reference to those in the
SL7207 (pVAX) group. Data are shown as the mean ± standard deviations (n = 3 of each time point);
(B) The specific antibody IgY in the serum against the DTMUV capsid protein was detected by using
indirect ELISA. The serum samples were incubated with the capsid proteins and detected by using
the horseradish peroxidase conjugated goat anti-bird IgY. OD450 value of each well was measured.
The titers of the specific antibody were presented as the means ± standard deviations (n = 3 of each
time point); (C) Neutralizing antibodies against DTMUV in the serum was detected by neutralizing
assay. The titers of neutralizing antibodies against DTMUV were detected and presented as the log2

changed folds (Y-axis) reference to the negative control group SL7207 (pVAX). Data are shown as the
means ± standard deviations (n = 3 of each time point). The dash line indicates the lowest threshold
value for positive reaction in the neutralizing assay. All data were graphed by GraphPad Prism v5.0
(La Jolla, CA, USA).

3.3. Neutralizing Antibodies Responses

After the oral inoculation of SL7207 (pVAX-C) vaccine, neutralizing activity against the DTMUV
virus from the serum was detected by using a neutralizing assay. As shown in Figure 3C, the titers of the
neutralizing antibodies against DTMUV in the SL7207 (pVAX-C) vaccinated group were significantly
higher, which showed 2 to 4.8 log2 folds changes, than that in the negative control group SL7207
(pVAX) at all time points. It reached to the peak at 24 dpi and maintained high levels during all the
time points we tested. No neutralizing antibodies were detected in the negative control group SL7207
(pVAX). These results indicated that the oral SL7207 (pVAX-C) DNA vaccine efficiently induced the
neutralizing antibodies against DTMUV in vivo.

3.4. Protection of Ducklings against DTMUV Challenge

To verify the protective ability of our developed oral DNA vaccine against DTMUV, vaccinated
animals were challenged with 104.5-fold ELD50 DTMUV at 16 days after the second vaccination
(Figure 1B). As shown in Figure 4, 30% ducks in the SL7207 (pVAX) vaccine group died; however,
all ducks in the SL7207 (pVAX-C) vaccine group survived. Other than comparing the mortality
between the vaccine and control groups, the clinical signs of the ducks were recorded. The typical
clinical signs of the DTMUV infection, such as depression, inappetence and reluctance to move were
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observed in the surviving ducks in the non-vaccination group. However, these clinical signs were only
slightly observed in a few of the ducks in the vaccinated group during 1 to 4 days post the DTMUV
challenge and these ducks then soon recovered. These results indicate that the oral DNA vaccine
SL7207 (pVAX-C) successfully protected the ducks against DTMUV infection.
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4. Discussion

To the best of our knowledge, capsid protein of flaviviruses is not only as a genome guardian to
capsulate viral genomes but also as a modulator to affect host cell signaling pathways [19]. Data from
previous studies indicate that the capsid protein of hepatitis C virus (HCV) regulates the host innate
immune responses by modulating the interferon regulatory factor (IRF), Jak-Stat and inducible nitric
oxide synthase (iNOS) pathways to affect the persistence and pathogenesis of HCV [25]. Moreover,
the semi-purified capsid proteins of DENV-2 immunized have the ability to protect mice against
challenge with the homologous virus [26]. However, the immunogenic characteristics of DNA vaccine
based on capsid protein of flaviviruses have not been explored. In this study, the DNA vaccine
expressing the capsid gene of DTMUV delivered by attenuated Salmonella typhimurium SL7207 was
designed. Our data showed that the oral DNA vaccine expressing the capsid protein could induce
systemic immune responses against DTMUV. These results indicated that the capsid protein of DTMUV
possesses strong antigenicity and immunogenicity and the SL7207 (pVAX-C) vaccine might be used as
a candidate vaccine against DTMUV.

Eukaryotic expression plasmid pVAX1 has been extensively used as the backbone of the
DNA vaccine and has helped virus genes express in eukaryotic cells [27,28]. Attenuated Salmonella
typhimurium is a safe and efficient bacteria vector to carry a DNA vaccine [21,29]. Moreover,
S. typhimurium as an enteropathogenic bacteria can deliver exogenous antigens to the immune
system at a low cost [21,30]. Therefore, DNA vaccines encoding viral proteins carried by an attenuated
S. typhimurium vehicle have been widely developed [31,32]. In this study, the capsid proteins
were expressed efficiently in duck spleen cells when the ducks were orally inoculated with the
vaccine SL7207 (pVAX-C) (Figure 2). This outcome indicated that the DNA vaccine pVAX-C carried
by the attenuated S. typhimurium SL7207 was introduced successfully into body cells through oral
immunization and the eukaryotic promoter CMV functioned to drive the expression of the capsid
protein in eukaryotic cells after SL7207 degradation.
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Usually, E protein of flaviviruses contains major protective epitopes [33,34]. Seven T cell epitopes
were also identified in the capsid protein of DENV-4 [35]. This indicates that capsid protein of
flaviviruses is also a target antigen of the anti-viral immune responses. This study has shown that
the oral DNA vaccine SL7207 (pVAX-C) not only induced specific humoral antibody responses but
also stimulated cellular mediated immune responses (Figure 3). The systemic immune responses
were in agreement with previous results that the capsid protein of HCV induced strong humoral and
cellular immune responses [36,37]. Molecule IL-6 is related to the development and differentiation of
immune related cells, such as T helper cells and B cells [38,39]. In addition, IL-6 as a proinflammatory
cytokine molecule has been proven to play an important role in regulating antiviral immunity [40].
An earlier and stronger expression of IL-6 has been found compared to other immune related genes
including IFNγ, IL-1β, IL-2 and Cxcl8 in the DTMUV infected tissues; thus, IL-6 is deemed to be a key
molecule in the cellular immune responses against DTMUV [23,41]. The high expression level of IL-6
was also observed post oral immunization of the DNA vaccine SL7207 (pVAX-C) (Figure 3A). The peak
expression of IL-6 was earlier than IL-4 in the spleen after the vaccine inoculation. This may be because
IL-4 is a key regulator in humoral immune responses [42]. To illustrate that, there was a positive
relationship between the levels of IL-4 and the specific anti-capsid protein IgY antibody (Figure 3).
Therefore, the capsid protein of DTMUV has an effective immunogenicity to induce systemic immune
responses, as in the aforementioned findings.

Neutralizing antibodies have been regarded as the key factor for protection against flavivirus
infection [43]. The high neutralizing activity and protective capacity can be observed in the present
study. These may be related with several reasons. First, the S. typhimurium as an enteropathogenic
carrier which delivers the pVAX-C DNA vaccine directly into the professional antigen presenting
cells (APC) is feasible [44] and the bacterium containing lipopolysaccharide (LPS), which can activate
Toll-like receptor 4, is also a potent adjuvant for enhancing immunogenicity of the DNA vaccine [45,46].
Second, it is a common knowledge that the capsid protein is necessary to guard the genetic materials of
flavivirus to offspring [17,18]. Therefore, there were chances to against the DTMUV challenge through
hindering the production of infectious virions. Third, the capsid dibasic-site, which is a cleavage region
in the capsid protein, is important for virus growth [47]. As a result of blocking this site, the virus
particle release from infected cells can be restricted [48]. Finally, increasing evidence indicates that
capsid proteins can contact many host proteins to modulate the host immune signal in the cytoplasm
and nuclei [19,49]. For instance, capsid proteins interact with importins and human Sec3 exocyst
proteins to nullify the antiviral activity of the host [49,50]. Thus, the oral DNA vaccine expressing the
capsid protein in ducks could produce neutralizing antibodies and form a protective ability against
DTMUV infection.

Conclusively, the present study revealed that immunization with the oral DNA vaccine SL7207
(pVAX-C) induced strong humoral and cellular immune responses and provided an effective degree
of protection against DTMUV infection. All of the data obtained here for the first time indicated that
the capsid protein of DTMUV is a potentially protective antigen. Thus, capsid proteins are worthy to
be further studied to develop efficient strategies to prevent DTMUV infection. In addition, an oral
delivery of DNA vaccine SL7207 (pVAX1-C) utilizing Salmonella SL7207 provided an economic vaccine
delivery strategy for a large scale clinical use to protect ducks against DTMUV infection.
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