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Abstract: Rodents and bats are now widely recognised as important sources of zoonotic virus
infections in other mammals, including humans. Numerous surveys have expanded our knowledge
of diverse viruses in a range of rodent and bat species, including their origins, evolution, and range of
hosts. In this study of pegivirus and human hepatitis-related viruses, liver and serum samples from
Vietnamese rodents and bats were examined by PCR and sequencing. Nucleic acids homologous
to human hepatitis B, C, E viruses were detected in liver samples of 2 (1.3%) of 157 bats, 38 (8.1%),
and 14 (3%) of 470 rodents, respectively. Hepacivirus-like viruses were frequently detected (42.7%)
in the bamboo rat, Rhizomys pruinosus, while pegivirus RNA was only evident in 2 (0.3%) of 638
rodent serum samples. Complete or near-complete genome sequences of HBV, HEV and pegivirus
homologues closely resembled those previously reported from rodents and bats. However, complete
coding region sequences of the rodent hepacivirus-like viruses substantially diverged from all of
the currently classified variants and potentially represent a new species in the Hepacivirus genus.
Of the viruses identified, their routes of transmission and potential to establish zoonoses remain to
be determined.
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1. Introduction

Unlike many other communicable diseases, the burden of viral hepatitis has substantially
increased over the last two decades to recently become the seventh leading cause of mortality
worldwide. Viral hepatitis now causes more deaths than tuberculosis, AIDS or malaria each year.
Hepatitis C virus (HCV) and hepatitis B virus (HBV) are responsible for >90% (96% in 2013) of viral
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hepatitis-related mortality and disability. As such, these hepatitis viruses are the targets of efforts
to combat viral hepatitis [1], including HBV vaccination, development of HCV vaccines, and highly
effective drugs. In contrast, hepatitis E virus (HEV) is endemic in many low-income countries [2] but
usually causes self-limiting hepatitis. Infection with HEV occasionally results in liver failure [1].

HBV, HCV, and HEV are members of virus families Hepadnaviridae, Flaviviridae, and Hepeviridae,
respectively. HBV has a partially double-stranded DNA genome with 4 overlapping open reading
frames (ORFs) [3], whereas HCV and HEV have a single-stranded RNA genome [4,5]. While the
origins of these human viruses are unknown, rodents and bats are putative reservoir hosts because
they host a diverse array of Hepadnaviridae [6–8], Hepeviridae [7,9–16], and genera Pegivirus [17–19] and
Hepacivirus [17,19,20] of the Flaviviridae family including homologues of the human hepatitis viruses
under question. Among these, it is of concern that a bat hepadnavirus may possess the ability to infect
human liver cells [6].

Several factors may contribute to the risk of zoonotic rodent or bat virus transmission. Rodent
meat is a popular source of protein for human consumption in Vietnam, particularly in the Mekong
Delta, where rats (Rattus spp. and Bandicota indica) are commonly trapped and sold live in wet
markets [21]. The total annual consumption of rat meat in Vietnam is estimated at 3300–3600
tonnes [22]. Hoary bamboo rats (Rhizomys pruinosus) are additionally farmed for human consumption.
Moreover, bat faeces collected from bat caves or farms is used as natural fertilizer (“guano”) in Vietnam.
As rodents and bats are reservoirs or carriers of a significant number of zoonotic pathogens [23] and
viruses with unknown zoonotic potential, there are health risks that are associated with exposure to
these animals. However, a previous study [22] showed none of the surveyed rat catchers or processors
were aware of infection risks from contact with live rats. Consequently, no precautions were taken for
the handling of rodents.

In the search for viral diversity and zoonotic viruses, novel paramyxovirus and coronavirus
in Vietnamese bats and rats were detected in a previous study [24]. Here, we report the detection
pegivirus and human hepatitis-related viruses in these mammals.

2. Materials and Methods

2.1. Sample Collection

Rodent and bat samples were collected within the VIZIONS (Vietnam Initiative on Zoonotic
Infections) framework [25] for the screening of zoonotic microorganisms [21,26–28].

Rodent samples. As it is important and essential to understand the risk associated with rodents,
including those sold in the markets, a total of 435 rats purchased from markets in five of twelve
provinces in the Mekong Delta during 2012–2015 and 82 farmed bamboo rats purchased from a
market in Dak Lak in 2014–2015 were enrolled. In addition, 226 trapped rats were also included.
Rat trapping was carried out in different locations (pig and poultry farms, rice fields, fruit groves,
tropical forests, markets, slaughter-house) in the provinces of Dong Thap during March 2013 and
Dak Lak in April 2014, as previously described [27]. Serum and liver samples were collected
post-mortem. Species identification of rats was carried out on the basis of morphological characteristics
and sequencing of a conserved housekeeping gene [27]. All of the samples were stored in sterile
tubes with RNA later at −20 ◦C until nucleic acid extraction. Special precautions were taken to
avoid cross-contamination.

Bat samples. A total of 157 bats were trapped at six sites in the provinces of Dong Nai (in Cat
Tien National Park) and Quang Ngai in May 2013 using mist nets and harp traps as described [26].
Trapped bats were speciated according to morphology [29], and liver samples were collected and
stored as described above for rats.

This study was approved by the People Committees of Dong Thap (No. 47/UBND-KTN,
23 January 2013) and Dak Lak (No. 5407/UBND-TH, 07 August 2013) provinces and the Oxford
Tropical Research Ethics Committee (OxTREC) (No. 157-12, 10 September 2012) in the United Kingdom.
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2.2. Nucleic Acid Extraction

RNA was manually extracted from 638 rodent serum samples using QIAamp Viral RNA Mini Kit
(Qiagen, Manchester, UK) and following instructions from the manufacturer.

Liver samples from 157 bats and 470 rodents were subjected to nucleic acid extraction using
AllPrep DNA/RNA Mini Kit (Qiagen, Manchester, UK). Briefly, about 30 mg of liver per sample was
first lysed and homogenised using TissueLyser (Qiagen, Manchester, UK). The lysate was applied to an
AllPrep DNA spin column for DNA to bind onto the column. Ethanol was added to the flow-through
and RNA and bound to the membrane when the sample was passed through an RNeasy spin column.
After washing steps, DNA and RNA was eluted separately in 50 µL of nuclease-free water. Extracted
nucleic acid was used in screening for the targeted hepatitis viruses.

2.3. Screening of Hepatitis Viruses and Pegivirus

In order to minimize contamination, PCR mastermix preparation, and the addition of templates
were carried under separated laminar flow hoods and lab spaces. All of the surfaces, tubes, and
equipment were UV irradiated between each PCR. Reverse transcription using SuperScript III reverse
transcriptase (Invitrogen, Paisley, UK) was performed according to the manufacturer’s instruction.
Synthesized cDNA was screened for hepaciviruses and pegiviruses using a semi-nested PCR protocol
with broad spectrum degenerate primers, which can detect all known hepaciviruses and pegiviruses.
Amplification conditions (using GoTaq from Promega, Southampton, UK) included 95 ◦C for 3 min,
and 30 cycles of denaturation (94 ◦C, 30 s), annealing (55 ◦C, 30 s) and elongation (72 ◦C, 30 s). Similarly,
HEV was screened using broadly reactive primers targeting viral RNA-dependent RNA polymerase
as described in Drexler et al., 2012 [11].

DNA extracted from liver samples was used for screening of HBV. Degenerate primers targeting
a highly conserved region of the polymerase gene of sequences from all known HBV hosts were
designed for a nested PCR protocol using the above amplification conditions. Primers for screening
are listed in Table S3.

The length of the sequenced screening fragments (excluding primer sequences) of homologues of
HBV, HEV, HCV, and pegivirus was 257, 284 and 360 nucleotides, respectively.

2.4. Complete Genome Sequencing

For rodent hepacivirus, HEV and pegivirus genomes, extracted RNA from representative positive
samples was subjected to deep sequencing using an Illumina platform. Libraries were prepared from
total extracted RNA using the NEBNext Ultra Directional Sequencing Kit (New England Biolabs,
Hitchin, UK) with omission of actinomycin D, then pooled and sequenced on a HiSeq 4000 instrument
(Illumina, Nr Saffron Walden, UK). Quality control and trimming of reads were performed before
genome mapping using CLC Genomics Workbench (Qiagen Bioinformatics, Redwood City, CA, USA)
with the default affine gap cost parameters. The closest related virus genomes (Genbank numbers
KC815310, JX120573 and KJ950934 for hepacivirus, HEV and pegivirus, respectively) were used as
templates for genome mapping. Additional primers were designed using the obtained contigs for
gap fillings.

For bat HBV, primers were designed using sequences available from Genbank and the obtained
sequences from screening. These primers amplified amplicons, with overlapping regions as presented
in Table S4. All of these nested or hemi-nested PCR protocols used SuperScript III One-Step RT-PCR
System with Platinum Taq DNA polymerase (Invitrogen, Paisley, UK) for RNA viruses or Q5
High-Fidelity DNA Polymerase (New England Biolabs, Hitchin, UK) for HBV in the first round
PCR, according to instructions from the manufacturers. Q5 High-Fidelity DNA Polymerase was also
used in the second round PCR.



Viruses 2018, 10, 102 4 of 12

2.5. Hepacivirus RNA Titer Measurement

Two real-time PCR primer sets (Table S5) in the 5′ untranslated region of bamboo rat hepaciviruses
and the screening fragment of other rat hepaciviruses were designed using sequences available from
this study. The targeted regions were amplified from positive samples and cloned into pGEM-T
Easy Vector (Promega, Southampton, UK) for in vitro transcription, as previously described [30].
The obtained RNA transcripts were used to generate standard curves of the real-time PCR assays for
measurement of rodent hepacivirus RNA titers using SuperScript III reverse transcriptase (Invitrogen,
Paisley, UK) and PowerUp SYBR Green master mix (Thermo Fisher Scientific, Northumberland, UK).

2.6. Sequence Analysis

Sequences were imported into SSE (Simmonic Sequence Editor) [31] for the alignment and
calculation of sequence distance values from reference sequences of known viruses from which
sequence identities were inferred. Sequence distances instead of sequence identities in the regions
used for classification of hepaciviruses and pegiviruses were presented to easily compare with
the species p-distance thresholds set in the proposed update to the taxonomy of the genera
Hepacivirus and Pegivirus [32]. Maximum-likelihood phylogenetic trees were reconstructed using
the MEGA 7.0 software package [33] with 1000 bootstrap resamples. The best-fitting model for
each sequence dataset (as shown in figure captions) was first determined and used for phylogenetic
reconstruction. Sequences obtained in this study have been assigned the following GenBank accession
numbers MG600410–MG600465.

3. Results

3.1. Detection of Hepatitis Viruses in Bat and Rodent Liver Samples

Nucleic acid that was extracted from liver samples of 157 bats (29 species; Table S1) and 470 rodents
(six species) was screened for pegivirus and human hepatitis B, C, E viruses and their homologues
(Table 1) by nested and semi-nested PCR assays with degenerate primers. Hepaciviruses were the most
commonly detected (8.1% of rodent samples, from three species), followed by hepatitis E related virus
(3% of rodent samples, from four species) while hepatitis B related viral DNA was only detectable
in three bats (2 species). Most of the hepacivirus positive samples were from farmed hoary bamboo
rats in Dak Lak province although the predominantly sampled rat species was Rattus argentiventer.
Coinfection with hepacivirus and HEV was observed in a sample from Rattus losea. All liver samples
from bats were negative for hepacivirus and hepatitis E related virus and no sample was positive
for pegivirus.

Table 1. Detection of hepatitis related viruses in rodent liver samples.

Species Tested
Positive (%)

Hepacivirus HEV HBV

Bandicota indica 38 0 1 (2.6) 0
Rattus argentiventer 275 2 (0.7) 10 (3.6) 0

Rattus losea 19 1 (5.3) 2 (10.5) 0
Rattus norvegicus 39 0 0 0
Rattus tanezumi 17 0 1 (5.9) 0

Rhizomys pruinosus 82 35 (42.7) 0 0

Total 470 38 (8.1) 14 (3) 0

3.2. Screening of Rodent Serum Samples for Hepacivirus and Pegivirus

Serum samples from 638 rodents (from eight species; Table S2) were screened for pegivirus and
hepacivirus RNA simultaneously using the same primer set. This sample set included 30 bamboo rats
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and 335 other rats whose liver samples were screened for hepacivirus as above. Hepacivirus RNA was
only detected in serum samples of 10 bamboo rats with positive liver samples. Pegivirus RNA was
detected in two samples from Rattus tanezumi.

Two real-time PCR assays specific for bamboo rat hepaciviruses, and other hepaciviruses were
used to determine viral RNA concentration in the positive samples. The concentration of RNA
(Figure 1) was high in both liver tissue (median, 3.35 × 107 copies/gram; range, 0.9 × 105–1.16 × 109)
and sera (median, 5.7 × 106 copies/mL; range, 2.3 × 106–2 × 107).
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3.3. Sequence and Phylogenetic Analysis

Amplicons derived from PCR screening experiments were all successfully sequenced and
complete or near complete genome sequences were determined for representatives of the viruses by
PCR or deep sequencing. After exclusion of primers, the obtained screening sequences from each
targeted virus clustered in one or two clades of those with high identity and were most closely related
to sequences previously reported from rodents or bats from the US [17,18], China [7] and Vietnam [16].
Rodent hepacivirus sequences (360 nucleotides) formed two well supported clades (Figure 2a). Clade
1 included all of 35 sequences from Rhizomys pruinosus which shared 84.5–100% pairwise nucleotide
identity while three sequences (nucleotide identity of 89–99%) from Rattus losea and Rattus argentiventer
grouped in clade 2. These clades differed from each other by mean distances of 39.6% and 33.2% at
nucleotide and amino acid levels, respectively. While the four Vietnamese bamboo rat hepacivirus
genomes were highly similar to each other (<12% nucleotide and <3% amino acid distances in the
complete coding region (cds)), they were remarkably different from the closest sequence (KC815310)
with the corresponding distances of 40% and 36%, respectively (Table 2). The amino acid p-distances of
the obtained hepacivirus sequences and KC815310 in the regions 1123–1566 and 2536–2959 (numbered
relative to M62321) were 30% and 32%, respectively. The newly identified hepaciviruses therefore
could be provisionally classified as members of a new hepacivirus species (Figure 2b) [32]. The other
bamboo rat hepaciviruses in clade 1 may also belong to this new virus species on the basis of the high
sequence identity in this clade. Similarly, although complete genome sequences were not determined
for hepaciviruses in clade 2, they likely belong to species Hepacivirus G due to their low amino acid
p-distances (7.6–8.4%) in the screening region to KJ950938. The 5’ untranslated region sequences of
these hepaciviruses contain two miR-122 seed sites (CACUCC), which were located 51 nucleotides
from each other, as consistent with the suspected hepatotropism of the viruses.

In contrast to host specificity of rodent hepaciviruses, the 15 HEV sequences (284 nucleotides)
from four rodent species were 84.4–99.3% identical to each other and phylogenetically interspersed
with each other and with reference sequences from other rat species (Figure 3a). The obtained complete
genome of rat HEV comprised of 6960 nucleotides excluding the poly A tail. Its concatenated ORF1
and ORF2 differed by 6.8% (Table 2) at amino acid level to the closest match (JX120573) and these two
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sequences therefore belong to a same genotype in the species Orthohepevirus C (Figure 3b), according
to the latest proposal for classification of hepeviruses [34].

The three HBV variants (from bat species Hipposideros pomona and Hipposideros larvatus) clustered
with known bat HBV sequences (Figure 4). The two bat HBV complete genome sequences comprised
3275 and 3302 nucleotides. As with other hepadnaviruses, the bat HBV genomes have four open
reading frames (ORFs) encoding the surface (S), polymerase (P), core (C), and X proteins. A detailed
comparison of the ORFs of these viruses with their closest sequences is shown in Table 2. Bat031
consistently showed greatest sequence identity to KY905324 in all 4 ORFs. In contrast, Bat033 shared
highest identity to KY905328 in the P and S ORFs, but was more similar to KY905324 and KY905327 in
the ORFs encoding for X and C, respectively.

The two Vietnamese pegivirus sequences from Rattus tanezumi grouped with a sequence
previously reported from Rattus norvegicus (Figure 5a). The amino acid p-distance between the obtained
rodent pegivirus sequence and KJ950934 in the region 888–1635 (numbered relative to U22303) was
17.8% and the two viruses could be classified as members of species Pegivirus J (Figure 5b), according
in the update to the taxonomy of the Pegivirus genus [32].
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Table 2. Nucleotide and amino acid identities of Vietnamese rodent and bat virus sequences to the
closest matches.

Virus Sequence Compared
Region

Highest Nucleotide
Identity (%)

Highest Amino
Acid Identity (%) Closest Match

Rodent hepacivirus

05VZ-14-103 Complete cds 59.7 63.3 KC815310
05VZ-14-104 Complete cds 59.7 63.2 KC815310
05VZ-14-118 Complete cds 59.5 63.3 KC815310
05VZ-14-119 Complete cds 59.5 63.3 KC815310

Rodent HEV 05VZ-75-65-L08-R3 ORF1 + ORF2 81.5 93.2 JX120573

Bat HBV

Bat031

P gene 89 87 KY905324
S gene 91 94 KY905324
X gene 92.4 86 KY905324
C gene 90 96.3 KY905324

Bat033

P gene 82.5 80 KY905328
S gene 87 84 KY905328
X gene 90 80 KY905324
C gene 89 97.2 KY905327

Rodent pegivirus 05VZ-14-070 Complete cds 65.2 65.5 KJ950934
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The high prevalence of hepacivirus in bamboo rats also indicates the need to reconsider 
transmission routes of hepaciviruses. Among hepaciviruses, the transmission route of HCV has been 
relatively well studied, while those of other hepaciviruses are mostly speculative [38,39]. As a 
bloodborne virus, HCV is thought to be mainly transmitted through injections or blood transfusion. 
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Figure 5. Maximum likelihood trees of (a) the screening fragment and (b) the region 888–1635 of
pegiviruses using the best-fitting model of LG+G+I+F. Labels for sequences obtained in this study are
highlighted in bold. Bootstrap support values of ≥ 70% are shown. The trees were drawn to scale; bar,
estimated number of substitutions per site.

4. Discussion

The present study reports the findings of pegivirus and human hepatitis-related viruses in
Vietnamese rodents and bats. The detection of hepacivirus, HEV homologue and pegivirus in a
number of rodent species, and HBV homologue in Hipposideros larvatus indicates wider host ranges of
these viruses. Whereas, the identified rat HEV and bat HBV showed relatively high sequence identity
to previously characterized viruses infecting Rattus rattus, Rattus tanezumi and Hipposideros pomona,
the rodent pegivirus and hepacivirus showed substantial sequence distances to their closest sequences
and represent new pegivirus variants and a new hepacivirus species. This highlights the incomplete
genetic characterization of these viruses. Thus far, only one complete genome and two complete coding
sequences (including the one from this study) of rodent pegivirus are available on Genbank. More
highly divergent hepacivirus and pegivirus sequences are expected to be discovered from rodents in
future studies.

The absence of bat HEV, hepacivirus, pegivirus, and low detection frequency of bat HBV are
consistent with their low prevalence (0–5%) reported in previous studies [6,7,11,19]. Contrastingly, the
prevalence of hepacivirus in the farmed bamboo rats was unprecedentedly high (42.7%). The inbred
nature of farmed bamboo rats that were investigated in this study may have contributed to
susceptibility to infection and likelihood of persistence [35,36]. The existence of relatively homozygous
individuals may play a key role in the maintenance of pathogens in a population [37].

The high prevalence of hepacivirus in bamboo rats also indicates the need to reconsider
transmission routes of hepaciviruses. Among hepaciviruses, the transmission route of HCV has
been relatively well studied, while those of other hepaciviruses are mostly speculative [38,39]. As a
bloodborne virus, HCV is thought to be mainly transmitted through injections or blood transfusion.
However, this does not explain how a range of divergent HCV strains have been maintained for
centuries in some rural populations in central Africa and southeast Asia [40]. Equine hepacivirus has
been shown to be transmittable via direct inoculation [41] and via vertical transmission [42]. Rodent
hepacivirus may utilize a similar transmission route as experimental intravenous injection of the
supernatants of homogenised liver tissues from infected rats lead to viraemia [43]. The high prevalence
of hepacivirus in bamboo rats (in this study) and commensal Rattus norvegicus (23.3% in Firth et al.
2014 [18]) indicates other more efficient transmission routes may exist such as via saliva and bites,
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which are likely to occur in caged conditions with a density of 15–20 individuals/2 m2 cage. Infection
experiments (i.e., exposure of hepacivirus negative bamboo rats to hepacivirus positive saliva) may
elucidate transmission routes of the new hepacivirus.

The zoonotic potential of the detected viruses is unknown and requires further investigation.
While the identified rodent hepaciviruses appear host species specific, four rodent species were infected
with highly similar HEV homologues, which were phylogenetically interspersed, indicative of low host
species specificity. This is a characteristic that may lead to their establishment and emergence in new
hosts. Understanding the receptor usage for cell entry of HEV in rodents and other host species would
potentially help predict the host range of the virus. Furthermore, a surrogate assay with pseudotyped
viruses carrying surface/envelope proteins of the identified viruses may be useful in assessing their
potential to infect human liver cells. Such an assay was used to show that a bat HBV could infect
primary human hepatocytes [6].

In summary, this study demonstrated the wide circulation of diverse pegivirus and human
hepatitis-related viruses in new rodent and bat species. The presented findings form a framework for
future investigations of human transmission risk, now that the rodent and bat species infected with
these viruses have been identified and the human contact groups are better defined (e.g., bamboo rat
farmers, rat catchers, rat sellers, and bat farmers). The transmission routes of the identified viruses are
to be determined.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1.
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