
viruses

Review

Vertical and Horizontal Transmission of Pospiviroids

Yosuke Matsushita 1,* , Hironobu Yanagisawa 2 and Teruo Sano 3

1 Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization,
Tsukuba, Ibaraki 305-0852, Japan

2 Central Region Agricultural Research Center, National Agriculture and Food Research Organization,
Tsukuba, Ibaraki 305-8666, Japan; yana1208@affrc.go.jp

3 Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan;
sano@hirosaki-u.ac.jp

* Correspondence: yousuken@affrc.go.jp; Tel.: +81-29-838-6820

Received: 15 November 2018; Accepted: 5 December 2018; Published: 12 December 2018 ����������
�������

Abstract: Viroids are highly structured, single-stranded, non-protein-coding circular RNA pathogens.
Some viroids are vertically transmitted through both viroid-infected ovule and pollen. For example,
potato spindle tuber viroid, a species that belongs to Pospiviroidae family, is delivered to the embryo
through the ovule or pollen during the development of reproductive tissues before embryogenesis.
In addition, some of Pospiviroidae are also horizontally transmitted by pollen. Tomato planta macho
viroid in pollen infects to the ovary from pollen tube during pollen tube elongation and eventually
causes systemic infection, resulting in the establishment of horizontal transmission. Furthermore,
fertilization is not required to accomplish the horizontal transmission. In this review, we will overview
the recent research progress in vertical and horizontal transmission of viroids, mainly by focusing on
histopathological studies, and also discuss the impact of seed transmission on viroid dissemination
and seed health.
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1. Introduction

Viroids are the smallest, self-replicating, non-coding RNAs capable of inducing multiple disease
symptoms in susceptible host plants, including potato, tomato, cucumber, hop, coconut, grapevine,
fruit trees (apple, avocado, citrus, peach, pear and plum), and some ornamental plants (chrysanthemum
and coleus) [1,2]. Viroids are single-stranded RNAs, which range from 250–475 nucleotides in length,
and they exist as circular structures with a high degree of self-complementarity either to promote
compact folding or to perform their function(s). The short viroid genomes contain all necessary
genetic information that enables intracellular trafficking, localization, replication, and pathogenicity
of viroids [3]. Worldwide, approximately 30 viroids have been identified and classified into two
families, Pospiviroidae and Avsunviroidae [3]. In Pospiviroidae viroids, the secondary RNA structure is
either quasi-double-stranded or rod-like, whereas Avsunviroidae viroid RNA assumes highly branched
secondary structures. Members of the Pospiviroidae family, the type species for which is potato spindle
tuber viroid (PSTVd), have highly conserved regions in their rod-shaped secondary structure; they
replicate in the nuclei of infected cells and lack ribozyme activity [4,5]. Avsunviroidae have highly
branched structures with self-cleaving ribozymes and replicate in the host chloroplast.

Viroids mainly spread mechanical means: Through infected plant sap, grafting of contaminated
scions, plant materials propagated vegetatively from the infected plant and dispersal of infected seeds
and pollen. Transmission routes via seeds and pollen are the major ways of infection propagation from
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parental plants to their progeny and distribution among individuals. The term “seed transmission”
means the passage of the pathogen through seeds to seedlings and plants in the next generation. Hence,
it is also known as vertical transmission (Figure 1) [6–9]. Vertical transmission plays an important
role in the spread and survival of viroids, as well as viruses. Vertical transmission of viroids has
long been known [2,10,11], but much attention has not been paid to this phenomenon until the end
of 20th century. Importance of seed transmission of viroids, especially in pospiviroid species, has
been highlighted in the early 21st century, when the global distribution of pospiviroid-infected seeds
and seed materials became apparent in vegetables and ornamental plants, which increased the risk
of diffusion of pospiviroid-infected seeds materials in international trade [12]. The phenomenon of
a horizontal transmission closely connected to a vertical transmission, occurs when the pathogen
is transmitted to other individuals via pollination with infected pollen (Figure 1) [13,14]. Many
plant viruses and viroids are known to spread horizontally or even vertically through pollen in
experimental conditions, but for the viroids at least, the effects of these types of transmission on actual
plant cultivation have not yet been clearly understood. Recent experimental results suggested that
horizontal transmission not only causes spreading of the viroid to the surrounding host of the same
species, but also provides a chance to propagate in other host species. Here, we review vertical and
horizontal modes of transmission of viroids through pollen, focusing mainly on the recent progress
in the histopathological analysis of pospiviroids. For more general aspects of viroid seed and pollen
infection, including their economic importance, please refer to the review by Hammond [2].
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Figure 1. Pathways of tomato planta macho viroid during vertical and horizontal transmission through
pollen in infected petunia plants.

2. Factors Affecting Vertical Transmission of Viroids

Various rates of vertical (or seed) transmission of pospiviroids have been published previously
(Table 1). Seed transmission rate varies depending on the species and cultivar identity of the host plant,



Viruses 2018, 10, 706 3 of 11

species, and strain of the viroid, as well as on infection stages and environmental conditions. One of
the important factors affecting the transmission rate is host species: For example, the rate of seed
transmission of PSTVd was found to be 0.3% in Capsicum annuum var. grossum, 0.5% in C. annuum
var. angulosum, and 1.2% in Glebionis coronaria. In contrast, seed transmission was not observed in
S. melongena, C. annuum, or Tagetes patula [15]. Furthermore, the rate of vertical transmission of PSTVd
was found to range from 0 to 90.2% in tomato [15]. Whereas seed transmission rate in tomato cultivar
S-4 was about 90%, its value was below 10% in other cultivars. Seed transmission of coleus blumei
viroid 1 (CbVd 1) in 14 commercial cultivars of Coleus ranged from 0 to 100% [16]. These reports
suggest that vertical transmission of viroids is different depending on host cultivars. Tomato chlorotic
dwarf viroid (TCDVd) was reported to be seed-transmissible in the tomato cultivar “Sheyenne” [17],
however, no seed transmission was detected in the tomato cultivar “Rutgers” [18]. In the case of
CbVd-1, a point-mutation changed the seed transmission of CbVd-1 dramatically [19]. Thus, the
differences of viroid strains influence the efficiency of vertical transmission.

Earlier studies in viruses revealed that the time elapsed since infection has a large effect on the
seed transmission rate. In particular, the rate of seed transmission in the early stages of virus infection,
i.e., late in the growing season, normally results in low or no seed transmission [14,20]. This is also the
case in viroids. In PSTVd-infected Nicotiana benthamiana, PSTVd did not invade floral and vegetative
meristems in the initial stage of infection, but did infect them at the later infection stage [21]. Petunia
(Petunia × hybrida) is known to be highly susceptible, but symptomless, to some pospiviroids infection
and is prone to be infected via pollen and seed transmission [13,20]. PSTVd, tomato planta macho
viroid (TPMVd), and pepper chat fruit viroid (PCFVd) are efficiently transmitted vertically at a high
rate (more than 50%) by pollination with infected pollen (i.e., by “vertical pollen transmission”) in
petunia [22,23]. Analysis of seed transmission rate of PSTVd and TPMVd in petunia by pollination
with infected pollen grains collected at different time points from 4 to 8 months post-infection revealed
that vertical transmission rates increased in both viroids proportionally to the time elapsed since
infection [24]. Considering that viroid infection of pollen grains requires the invasion of viroids in the
floral meristems before gametogenesis (see below), sufficiently long infection periods are needed for
viroids to reach high titers in the infected tissues for invasion into floral meristems.

Table 1. Seed- and pollen-transmitted pospiviroids.

Viroid Host Plant Species Seed-Transmitted Pollen-Transmitted Reference

Potato spindle tuber viroid Potato + + [11,25,26]
Tomato + + [10,11,15,27]

Capsicum annum + [15]
Glebionis coronaria + [15]

Petunia hybrida + + [22,23]

Tomato chlorotic dwarf viroid Tomato + [17]
Petunia hybrida + [15]

Tomato apical stunt viroid Tomato + [15]

Tomato planta macho viroid Tomato + [23]
Petunia hybrida + + [23]

Pepper chat fruit viroid Tomato + [23]
Capsicum annum + [28]
Petunia hybrida + + [23]

Columunea latent viroid Tomato + [15]

Chrysanthemum stunt viroid Tomato + + [27]
Chrysahtmemum + + [16]

Citrus exocortis viroid Tomato + [29]
Impatiens + [29]
Verbena + [29]
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3. Trafficking of Viroids in Floral Organs and Pollen Tubes after Pollination with Infected Pollen

Viral seed transmission depends on whether viruses are transmitted by the infection of the
embryo, endosperms, or seed coat [6]. Most seed-transmitted viruses survive in embryos, which leads
to systemic infection. Potato true seeds obtained from PSTVd-infected potato plants were infected
with PSTVd [30]. In situ hybridization showed that PSTVd was present in the embryo (cotyledon
and radical) and endosperm of some tomato cultivars in which PSTVds were highly transmitted by
seeds [15]. Whereas some seed-transmitted viruses become inactive in seeds within short periods [7],
PSTVds have been recorded to survive for 21 years in true potato seeds [31]. Such long-term survival
of viroids in seeds may result from embryonic infection, whereas the infection of seed coat likely
results only in low transmission rate. In other words, seed transmission is high or low depending on
whether viroids invade the embryo or seed endosperm. Therefore, viroid invasion of the embryo plays
a key role in high seed transmission of viroids.

Several pospiviroids can be vertically transmitted by pollen as described above. PSTVd
was detected in pollen grains from a PSTVd-infected potato by using return-polyacrylamide gel
electrophoresis [30]. PSTVd and TPMVd were detected by RT-PCR in pollen grains obtained from
infected petunia plants, and pollination by these pollen grains gave rise to seed transmission rates over
80% and 90%, respectively [32]. Further observation by in situ hybridization showed that TPMVd was
present in both the generative and vegetative nuclei of the infected mature pollen grains [33]. At the
pollen germination stage, TPMVd was present in the migrating generative nucleus and vegetative
nucleus inside the germinating pollen tube on the top of the stigma of the pollinated plants. During
pollen tube elongation, TPMVd was present in the vegetative nucleus and also in the two sperm cells in
the pollen tube that were generated by the division of the generative nucleus in the style transmitting
tract. Pollen transmission of viroids is attributed to the infection of the embryo sac by viroids through
infected pollen [22]. Therefore, viroid infection of sperm nuclei is responsible for vertical pollen
transmission of viroids. Furthermore, observation by in situ hybridization revealed that PSTVd is also
present in the vegetative and generative nucleus of infected pollen grains (Figure 2) [33], suggesting
that pospiviroids, due to vertical transmission through pollen, generally invade the generative nucleus.
The sporangenous tissue, which gives rise to pollen mother cells, is connected with the anther wall by
the tapetum, a layer that provides nutrition to pollen for development [34]. Plasmodesmata between
the tapetum and pollen mother cells disappear during meiosis [35]. Since viroid intercellular trafficking
occurs through the plasmodesmata, the channels that transverse the cell walls of adjacent cells and do
not involve the plasma membrane [36], thus, the presence of the viroid in mature pollen grains suggests
that viroids invade pollen mother cells before plasmodesmata disappear. Thus, the presence of the
viroid in mature pollen grains suggests that viroids invade pollen mother cells before plasmodesmata
disappear. This phenomenon awaits further detailed analysis.
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Figure 2. In situ hybridization shows the presence of potato spindle tuber viroid (PSTVd) in the
generative nucleus and vegetative nucleus of, respectively, infected mature pollen grains (A) and infected
germinating pollen grains on healthy stigma (B) in PSTVd-infected petunia. cp, cytoplasm; gn, generative
nucleus; pg, pollen grain; pt, pollen tube; st, stigma; vn, vegetative nucleus. Scale bars = 50 µm.
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4. Mechanism of Seed Transmission

Many seed-transmitted viruses are present in the embryo, and the rate of seed transmission
is related closely to embryo infection [6]. Seed transmission of numerous viruses is attributed to
viral infection of the embryo directly during embryogenesis or indirectly, before embryogenesis,
through the infection of the reproductive tissues (ovule, megaspore mother cell, and pollen mother
cell) [13,36]. Indirect virus infection of embryos has been reported based on the observation of
virus presence in the megaspore mother cell and egg or in pollen mother cells and pollen [37–40].
Because the embryo is separated physically from maternal tissues by a callose layer that prevents
virus movement through plasmodesmata between cells, the virus must invade the embryo indirectly
through reproductive tissues before plasmodesmata disappear and callose barriers develop [14]. These
findings indicate that the success of embryo invasion by the virus depends on the developmental stage
of the reproductive organs.

PSTVd was detected in all floral parts, such as the sepal, petal, stamen, and pistil of tomato
plants [41]. In floral organs of petunia, PSTVd was present in the reproductive tissues of infected plants
before embryogenesis [22]. At the floral shoot stage, PSTVd was present in all tissues except for several
layers of cells that resemble shoot apical meristems (Figure 3). At the next stage, the viroid was detected
in the carpel, petal primordia, stamen primordia, and sepal, but not in ovary primordia. Although
PSTVd was absent from the ovule primordium at this stage, it was observed in early developing
ovules at the subsequent stage. Finally, PSTVd was present in the ovary wall, placenta, and ovules of
PSTVd-infected petunia plants at the flower opening stage (Figure 4). Similarly, the time course in situ
hybridization analysis of PSTVd distribution in ovules during different developmental stages leading
to seed formation has been performed in ovary parts using PSTVd-infected petunia pollinated with
uninfected petunia pollens. This revealed that PSTVd was already distributed in the integuments and
parenchyma following the placenta infection at the early stage of embryogenesis and then, at the next
stage, PSTVd was observed in the developing endosperm and embryo, and eventually, in the matured
seed. Thus, PSTVd strong signals were detected only in the embryo tissue.
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Figure 3. In situ hybridization shows the presence of potato spindle tuber viroid in the floral apical
meristem of an infected tomato plant (A) and a healthy (B) tomato plant. Scale bars = 50 µm.

The process of flower development is accompanied by drastic changes in cell-to-cell connections
between reproductive organs during microsporogenesis and microgametogenesis [42]. For example,
the female archesporium and megaspore mother cell have plasmodesmatal connections with
the nuclear cells. The functional megaspore and two- and four-nucleate embryo sacs have
plasmodesmatal connections with the nucleus. However, the organized embryo sac wall completely
lacks plasmodesmatal connections with the surrounding tissue at this time. In the organized embryo
sac, the egg, synergids, and central cell are only partially surrounded by cell walls and are in contact
only through the plasma membrane [42]. Furthermore, the embryo is separated physically from the
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mother plant by the callose layer [7,14] and therefore, because viroid intercellular trafficking occurs
through the plasmodesmata rather than through plasma membrane-mediated transport [35], viroids
cannot directly infect the embryo. Therefore, PSTVd must move into the egg cell in the embryo sac
before the plasmodesmata between the embryo sac and placenta tissue have disappeared in the mature
ovule stage. Nonetheless, in chili pepper and eggplant, seed transmission of PSTVd was low or
absent [15]. Experimental observations showed that PSTVd was present in the placenta and ovary
wall, but not in the ovules (Figure 5). Thereby, it was assumed that PSTVd could not invade the egg
cells, which resulted in a low rate or no seed transmission.
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Figure 5. In situ hybridization shows the presence of potato spindle tuber viroid in the ovary wall
(ov) and placenta (pl), but not the ovule (ov), which comprise the embryo sac (es) and integument (in),
respectively, in a flower of an infected eggplant (Solanum melongena) at the flower opening stage. Scale
bars = 100 µm.

5. Mechanism of Horizontal Transmission

PSTVd, TPMVd, and chrysanthemum stunt viroid (CSVd) are transmitted horizontally by infected
pollen (Table 2) [27,30,32]. Tomato plants pollinated with pollen grains infected with CSVd and PSTVd
were systemically infected by these viroids [27].
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Table 2. Horizontal transmission of pospiviroids.

Viroid Host Plant Species Reference

Potato spindle tuber viroid Potato [30]
Tomato [27]

Tomato planta macho viroid Petunia hybrida [32]
Chrysanthemum stunt viroid Tomato [27]

Although the rate of horizontal transmission was very high (more than 80%) in petunia plants
when they were pollinated with TPMVd-infected petunia pollen grains, horizontal transmission
was not observed at all in petunia pollinated with PSTVd-infected pollen [32]. Comparative
histopathological analysis of the distribution of TPMVd and PSTVd in the carpels of petunia plants
revealed that when petunia stigmata were pollinated with TPMVd-infected pollen grains, viroids
mobilized from pollen tubes to the ovary as pollen tubes elongated to the lower part of style, eventually
causing systemic infection of the pollinated plant and horizontal transmission of the viroid [32].
Tissue-printing hybridization and RT-qPCR analysis revealed that TPMVd invaded the ovary via the
style through elongating pollen tubes germinated from TPMVd-infected pollen and subsequently
spread to the placenta, suggesting that viroid mobilization from the pollen tube to the style and the
ovary results in horizontal transmission. In contrast, PSTVd was not detected in the lower part of the
style and the ovary in the same conditions. Thus, it failed to infect the pollinated plants systemically,
indicating that no horizontal transmission took place. Therefore, the process by which viroid invades
from a lower part of the style to the ovary seems to be critical for the establishment of horizontal
transmission (Figure 1). Recently, it has been experimentally shown in two plant viruses that the virus
genomic RNAs leaked out into a culture medium from the growing pollen tubes [43]. Further analysis
is needed whether viroid RNAs also mobilize from the elongating pollen tubes to style tissues.

Furthermore, when TPMVd-infected petunia pollen grains were mixed with healthy tomato pollen
to pollinate the stigma of tomato plants, TPMVd was first detected in fruit flesh and subsequently
spread systemically in the pollinated plants [32]. In the interspecific-cross of solanaceous plants,
germinated pollen tubes can extend into the style and subsequently reach the ovary, however,
elongation stops before they enter the ovule [44]. It has been suggested that even if pollen from
heterologous plant species cannot fertilize the ovules, if the viroid-infected pollen tubes reach the ovary
tissue, viroid infection of the pollinated plants can still occur. These results shed light on a possible
mechanism of horizontal transmission by which viroids change the hosts across species barriers in the
wild, as well as during farming practices, such as breeding.

6. Viroid Nucleotide Sequences Affecting the Efficiency of Horizontal and Vertical Transmission

As viroids are small, self-replicating, non-protein-coding RNAs, single mutations can induce
marked changes in their replication, trafficking, pathogenicity, and host range [5,45,46]. This implies
that certain genome sequences and/or structures can change the capacity for horizontal and vertical
transmission of viroids in the plant invaded mechanically or through pollen. The relationship between
the rates of horizontal and vertical transmission on the one hand and viroid sequence and structure on
the other hand was examined using several viroid-host combinations. During horizontal transmission
through pollen, for example, PSTVd and TPMVd share relatively high (~76%) overall nucleotide
sequence homology, however, only TPMVd was highly (~72%) transmitted horizontally in petunia
through pollen [32]. In contrast, during vertical (or seed) transmission through pollen, PSTVd
and TCDVd share high (ca. 85–90%) overall nucleotide sequence identity, however, only PSTVd
invades the ovule and is transmitted through seeds in tomato [18]. In CbVd 1 of the genus Coleviroid,
a point-mutation at position 25 in loop five from A to UU switched the potential to transmit vertically
through coleus seeds [19].

A detailed analysis focusing on the domains of pospiviroid affecting the capacity for horizontal
and vertical transmission through pollen has been reported recently using the isolates of TPMVd and



Viruses 2018, 10, 706 8 of 11

PSTVd with high and low horizontal and vertical transmission capacity, respectively, in petunia plants.
The pospiviroid genome consists of five domains (terminal left (TL), pathogenicity (P), central, variable
(V), and terminal right) [47]. Among the chimeras created by domain-swapping between TPMVd
and PSTVd, a chimera with TPMVd-derived TL and P domains was most efficiently horizontally
transmitted from infected pollen grains to the style and the ovary by pollination. The chimera with
the TL domain of TPMVd showed the second highest horizontal transmission rate. Moreover, these
two chimeras harboring the TL domain of TPMVd also had a capacity to transmit vertically at the
highest rate by pollination with infected pollen [24]. This result implied that element(s) influencing
the capacity of horizontal and vertical transmission through pollination of infected-pollen are mapped
to TL and P domains.

7. Further Prospects

Seed transmission of viruses depends on the virus strain, host plant species, distribution in seed
parts, host environment, and other factors [6,7]. Similarly, the rate of seed transmission of viroids
is also dependent on the viroid strain, host plant species, and distribution of viroids in seed parts.
As described above in Section 4 of this review, infection of the ovule in the floral organ is important
for the establishment of viroid seed transmission [22]. Therefore, preventing viroid invasion of the
ovule would block seed transmission. PSTVd has been detected in the ovules of infected tomato
and petunia plants but not in the ovules of eggplant and pepper plants [15]. In addition, whereas
PSTVd was present in the ovule of infected tomato plants, TCDVd was not [18]. These observations
suggest that there are mechanism(s) controlling viroid trafficking from the placenta to the ovule before
cytoplasmic connections between them are shut off, which restricts viroid invasion into megaspore
mother cell. It is necessary to further analyze the process of viroid invasion into the floral organs to
determine whether these differences are (1) controlled by host factors, such as defense mechanism
restricting viroid invasion or by transcription factors supporting viroid replication, or (2) depend on
the sequence(s) or motif(s) in the viroid molecule regulating replication, accumulation, and trafficking
in host plant.

An observation of the disappearance of viroids in pollen tubes elongating in stigma suggests
the existence of complex interactions between viroids, pollen (paternal organ), and stigma or pistil
(maternal organ). When PSTVd-infected pollen grains pollinate stigmata of uninfected plants and
subsequently infected pollen tubes elongate in the pistil, the concentration of PSTVd in the pollen tube
gradually decreases during elongation and eventually becomes undetectable even by RT-PCR [32].
In contrast, when pollen grains collected from PSTVd-infected petunia plants were germinated in
a liquid medium, viroids in the pollen tubes never disappeared after germination. These results
suggest that disappearance or degradation of viroids in elongating pollen tubes is a phenomenon
occurring only when pollen tubes extend through the stigma. Viroid RNA molecules are targets of
RNA silencing in plant cells: They become a substrate for dicer-like enzymes and are cleaved into
small 21–24-nt pieces called short interfering RNAs (siRNA) or viroid-specific small RNAs [5,48].
RNA silencing in viroid-infected pollen grains has been analyzed in hop stunt viroid (HSVd)-infected
cucumber [49]. The results indicated that RNA silencing targeting HSVd was actually induced in
pollen grains and HSVd-specific small RNAs of the size 21–24-nt were produced as in the vegetative
tissues. HSVd infection in pollen grains also caused changes in endogenous small RNAs and induced
hypomethylation of rRNA genes and transposable elements in pollen grains, which can change
in the transcriptional status in host reproductive tissues. Thus, it is thought that viroid RNAs are
degraded and disappear, due to RNA silencing or some other unknown mechanism during pollen
tube elongation in the stigma. Therefore, elucidation of the mechanism of viroid disappearance
in elongating pollen tubes after pollination during horizontal and vertical pollen transmission will
provide important insights about the interaction of viroids and hosts in floral organs. Analysis of
the biogenesis of viroid-specific small RNAs in the pollen tubes in floral organs will also provide
useful information. However, an important question still remains why only PSTVd but not TPMVd
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disappears in the pollen tubes during the elongation through the style. Considering that TPMVd was
consistently present in the style and ovary, the style may contain a sequence-specific or dose-dependent
RNA degradation system whereby PSTVd, but not TPMVd, is degraded.

Some viroids are horizontally transmitted by pollen. However, it remains unclear whether
horizontal transmission of viroids indeed occurs in the natural environment or on cultivation
agriculture sites. Usually, bumblebees are used to promote pollination in cultivation facilities.
Horizontal transmission of viroids through infected pollen carried by bumblebees might also
occur naturally, given that both tobacco mosaic virus and pepino mosaic virus are known to be
transmitted horizontally in this way [50,51]. In addition, TPMVd was experimentally shown to be
transmitted horizontally through pollen between the same and between different plant species. Because
bumblebees are important pollinators of multiple plant species, including crops and wildflowers,
it should be noted that viroids can be transmitted randomly among multiple plant species through
viroid-infected pollen not only by wind but also by insect pollinators.

Consequently, viroids can overcome various barriers existing in the tissues of floral organs to
successfully achieve vertical or horizontal transmission. During transmission, viroids are physically
and chemically attacked by host defense mechanisms, such as callose deposition, RNA silencing,
natural immunity, and others. The interaction between viroids and hosts has been mainly analyzed in
vegetative tissues or organs, such as the leaf or stem, in which disease symptoms, e.g., leaf curling,
epinasty, and stunting, are most pronounced. In addition to this, it is also important to further analyze
the interaction between viroids and hosts in reproductive organs during their development and clarify
how viroids establish vertical and horizontal transmission, in order to prevent global epidemics of
viroids transmitted through contaminated seeds and seed materials.
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