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Abstract: Rotavirus is a primary cause of severe dehydrating gastroenteritis in infants and 

young children. The virus is sensitive to the antiviral effects triggered by the interferon 

(IFN)-signaling pathway, an important component of the host cell innate immune response. 

To counteract these effects, rotavirus encodes a nonstructural protein (NSP1) that induces 

the degradation of proteins involved in regulating IFN expression, such as members of the 

IFN regulatory factor (IRF) family. In some instances, NSP1 also subverts IFN expression 

by causing the degradation of a component of the E3 ubiquitin ligase complex responsible 

for activating NF-B. By antagonizing multiple components of the IFN-induction pathway, 

NSP1 aids viral spread and contributes to rotavirus pathogenesis. 
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1. Introduction  

The innate immune system provides an immediate mechanism of suppressing the replication and 

spread of viruses. The production of type I interferon (IFN), including IFN- and IFN- subtypes, is 

critical to an effective innate immune response. Type I IFNs activate the expression of hundreds of 

IFN-stimulated genes (ISGs), which play critical roles not only in the innate immune response, but also 

in B-cell and T-cell activation, cell cycle regulation, and apoptosis [1,2]. ISGs can interfere with 

viruses at various stages of their replicative cycle. To counteract the innate immune response, most 
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viruses have evolved mechanisms to subvert IFN signaling, including rotaviruses (RVs), members of 

the Reoviridae family. RV antagonizes the IFN induction pathway through the action of the 

nonstructural protein NSP1, which induces the proteasomal degradation of one or more transcription 

factors necessary for the efficient expression of type I IFN (Figure 1).  

IFN Response to Viral Infection 

The IFN response can be triggered in virus-infected cells by the interaction of viral nucleic acids or 

proteins with pattern-recognition receptors (PRRs). Two families of PRRs have been identified as 

primary sensors of viral infection: the transmembrane TLRs (Toll-like receptors) and the cytoplasmic 

pathogen detectors, including the RNA sensors RIG-I (retinoic acid-inducible gene I) and MDA5 

(melanoma differentiation-associated gene 5), and the DNA sensor DAI (DNA-dependent activator of 

IFN-regulatory factors) [3-5]. The interaction of viral nucleic acids with PRRs leads to the activation 

of IFN regulatory factors (IRFs) and nuclear factor (NF)-B, which translocate from the cytoplasm to 

the nucleus where they stimulate transcription of type I IFN genes. Collectively, IFN expression 

requires the participation of several transcription factors, providing viruses many potential targets for 

antagonizing the IFN signaling pathway [6].  

Members of the IRF family of proteins include IRF3 and IRF7, key regulators of type I IFN 

expression [7]. IRF3 is constitutively expressed in cells where it accumulates at elevated levels in the 

cytoplasm. In contrast, IRF7 is present in most cells at very low levels, and its expression is amplified 

by type I IFN [7,8]. Both IRF3 and IRF7 reside in an inactive state in the cytoplasm and are activated 

by phosphorylation of residues in the C-terminal regulatory region by the kinases TBK1 or  

IKK- [9,10]. Phosphorylated IRF3 and IRF7 form homodimers or heterodimers, which then 

translocate to the nucleus. IRF3 homodimers, IRF7 homodimers, and IRF3/IRF7 heterodimers have 

differential effects on the expression of type I IFN gene-family members [11-13]. IRF3, in cooperation 

with other transcription factors, is an activator of IFN- and a few IFN- subtypes. IRF7 has broader 

effects than IRF3, promoting the expression of even higher levels of IFN- and a greater number of 

IFN- subtypes. Maximal expression of type I IFN is achieved through the combined actions of IRF3 

and IRF7 [9,12,14,15]. Other members of the IRF family, such as IRF5, are known to play important 

roles in the development of antiviral responses. However, their contribution to effective IFN 

expression is not well understood and may vary depending on host species [4]. 

Secreted type I IFNs bind to type I IFN receptors (IFNAR) and induce the formation of  

IFN-stimulated gene factor 3 (ISGF3), a heterotrimeric complex consisting of signal transducer and 

activator of transcription (STAT) 1, STAT2, and IRF9. ISGF3 translocates to the nucleus and 

stimulates transcription of ISGs, including IRF7. Thus, in most cell types, IRF7 levels are increased 

through positive feedback by type I IFNs [13,14]. However, IRF7 is constitutively expressed at high 

levels in plasmacytoid dendritic cells (pDC), the primary source of type I IFN in response to  

infection [16]. IRF7 has been shown to be crucial for virus-induced IFN- and IFN- expression in 

both pDC and non-pDC cell lines [17].  

NF-B is also required for inducing transcription of the IFN- gene, but not for  

IFN- genes [11,18]. NF-B subunits are held inactive in the cytoplasm through an interaction with 

inhibitors of B (IB). Phosporylation of IB by IB kinases (IKK/) results in its ubiquitination by 
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the E3 ligase Skp1/Cul1/F-box complex SCF-TrCP, and subsequent degradation by the  

proteasome [19]. IB degradation releases the NF-B heterodimer p50/p65, which allows it to 

translocate to the nucleus for promoter binding and transcription of genes containing NF-B response 

elements. 

Figure 1. Summary of NSP1 inhibition of the innate immune response pathway. 

Activation of dsRNA sensors in the cytoplasm (such as RIG-I) or bound to membranes 

(such as TLR3) stimulates pathways that result in the phosphorylation of IRF3 and IRF7 

by IKK- and TBK1. Phosphorylation allows for the formation of IRF3 homodimers, IRF7 

homodimers, or IRF3/IRF7 heterodimers. RIG-I activation also results in the ubiquitination 

(Ub) of IB by the E3 ligase Skp1/Cul1/F-box complex SCF-TrCP and subsequent 

degradation by the proteasome. Degradation of IB frees the NF-B complex (p50 and 

p65), which moves to the nucleus. The binding of NF-B and IRF dimers to the IFN- 

promoter results in transcription and secretion of IFN-, which binds to type I IFN 

receptors (IFNAR). IFNAR signals the ISGF3 complex, consisting of STAT1, STAT2, and 

IRF9, to produce additional IRF7 and type I IFNs, thus amplifying the IFN response. The 

NSP1 protein from different RVs has a range of activities. Some RV NSP1 proteins inhibit 

the type I IFN response by degrading IRF3 and IRF7, while at least one NSP1 prevents 

type I IFN induction by degrading -TrCP and preventing the nuclear translocation of  

NF-B. 
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2. Rotavirus Biology 

RV is one of several genera of segmented double-stranded (ds) RNA viruses within the family 

Reoviridae. RV is a primary cause of severe dehydrating gastroenteritis in children under 5 years of 

age, causing approximately 500,000 deaths worldwide each year [20]. Though the global burden of 

diarrheal disease has been decreasing, children living in developing countries are more likely to die 

from RV infection [21]. The introduction of vaccines in some countries in North and Latin America, 

Europe, and Australia has reduced the number of cases of severe diarrhea and deaths. These vaccines 

are currently not available or not affordable in the poorest countries, and their efficacy may be 

suboptimal in impoverished settings. This latter issue may stimulate renewed efforts to modify existing 

or to develop a new generation of more efficacious vaccines. One potential strategy for developing 

new vaccine candidates is to engineer human RVs with a weakened ability to antagonize host IFN 

induction pathways.  

2.1. Replication 

The RV virion is an icosahedral particle composed of three concentric layers of protein that 

encapsidate 11 segments of dsRNA (Figure 2) [22,23]. The virion core includes the inner shell protein 

VP2, small amounts of the viral RNA-dependent RNA polymerase (RdRP) VP1 and the  

mRNA-capping enzyme VP3, and the segmented dsRNA genome [24-26]. Cores surrounded by a 

protein layer formed by VP6 represent double-layered particles (DLPs). In the infected cell, DLPs are 

transcriptionally active and are responsible for the synthesis of the 11 viral mRNAs [27,28]. The outer 

protein layer of the capsid is comprised predominantly of the glycoprotein VP7. Protruding from the 

VP7 layer are spikes formed by the protease-sensitive attachment protein VP4. VP4 and VP7 induce 

neutralizing antibody responses in the infected host, and are the basis for immunological protection 

against subsequent disease [29]. 

RV mRNAs contain methylated 5' caps but lack 3' poly(A) tails [31,32]. Translation of viral 

mRNAs yields six structural proteins (VP1-VP4, VP6-VP7) and six nonstructural proteins  

(NSP1-NSP6). In addition to serving as templates for protein synthesis, RV mRNAs are also used by 

the viral RdRP as templates for the synthesis of genomic dsRNAs [33,34]. Genome replication and 

packaging occur in coordination with the assembly of cores, which takes place in cytoplasmic 

inclusion bodies known as viroplasms [26,35]. DLPs are also assembled in association with 

viroplasms, and then migrate to the endoplasmic reticulum (ER), where via budding the particles 

acquire the outer capsid VP7-VP4 protein shell [36]. The predominant mechanism of virus release 

from RV-infected cells is by lysis, though there is evidence that a subpopulation of virions may be 

released from the apical membrane of polarized cells by a non-lytic mechanism [37,38].  

The segmented character of the RV dsRNA genome allows distinct strains of the virus to exchange 

(reassort) genetic material during coinfection [39]. Such reassortment provides a mechanism for the 

rapid evolution of the virus and possibly the emergence of new antigenically-distinct virus strains. 

Selective pressures placed on individual viruses in nature may result in the maintenance of certain 

genome constellations encoding viral proteins that function optimally as a set, limiting the extent of 

reassortment.  
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Figure 2. Three-dimensional structure of the RV virion. Genomic dsRNAs are associated 

with the RdRP VP1 and the capping enzyme VP3 on the interior side of the VP2 (green) 

core shell. An intermediate layer of VP6 (blue) surrounds the core. The outer layer of the 

virion is comprised of a VP7 capsid (yellow) with VP4 spikes (orange) protruding through 

this shell, completing the infectious virion. Figure was kindly provided by B.V.V. Prasad 

(Baylor College of Medicine) and details are given in [22,25,30].  

 
 

2.2. Classification 

RVs are classified into seven distinct groups, A to G, based on the antigenicity of the VP6 protein. 

Those in group A represent the major causative agents of acute gastroenteritis in humans and animals. 

Human group A RVs are divided into three distinct genogroups based on overall similarity to the three 

prototype strains: Wa, DS-1, and AU-1 [40]. Animal group A RVs are similarly divided into 

genogroups, though the divisions are more complex, with some genogroups including strains of RVs 

isolated from different animal species [41,42]. The antigenic and sequence characteristics of the outer 

capsid proteins VP7 (glycoprotein) and VP4 (protease-sensitive) have been used to classify group A 

RVs into G and P serotypes and genotypes [43]. Thus far, 22 G genotypes and 31 P genotypes have 

been defined [41,44-47]. Recently, a comprehensive sequence-based classification and nomenclature 

system was defined for RV, allowing each genome segment to be assigned a particular genotype [41].  

2.3. Pathogenesis 

RV infects mature differentiated enterocytes near the tips of the villi of the small intestine, causing 

mild inflammation, severe villus blunting, and malabsorption in the small intestine [48,49]. These 

effects contribute to the severe watery diarrhea and vomiting that are characteristic of RV disease, 

which in their most extreme manifestations can lead to death due to dehydration. Recent studies 
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indicate that RV infections in children and animal model systems are not always limited to the 

intestine, but in some cases can spread beyond the gut, causing a transient viremia and a more systemic 

infection that involves the liver, lung, kidney, spleen, and mesenteric lymph nodes [49-54].  

2.4. RV Host Range Restriction  

RVs are highly infectious in their natural (homologous) hosts, with even small amounts of virus  

(<1 plaque-forming units) capable of causing productive infection and severe disease. In contrast, 

successful RV infection of a heterologous host typically requires a concentrated-virus inoculum, yields 

little progeny virus, and is asymptomatic. The characteristic attenuated phenotype of RVs in their 

heterologous hosts has provided the foundation for the creation of human vaccines from bovine 

(RotaTeq, Merck) and rhesus (RotaShield, Wyeth) strains of RVs [21].  

The basis for RV host range restriction is not fully understood, but analysis of the growth and 

virulence characteristics of RV reassortants has identified several gene products that may be involved. 

The outer capsid proteins VP4 and VP7 have been implicated in species-specific RV growth due to 

their roles in virus attachment and entry [55-57]. Moreover, studies of reassortants indicate that the RV 

enterotoxin protein NSP4, host translation inhibitor protein NSP3, and RNA capping enzyme VP3 

influence the growth, spread, and virulence of viruses in different animal species [36,53,54,57]. A 

study investigating viral genes of murine RVs responsible for virulence in a mouse model obtained 

strong evidence that NSP1 has a role in viral pathogenesis [55]. Notably, the VP3, VP4, VP7, NSP1 

and NSP4 proteins each show a degree of species-specific sequence variation, consistent with the idea 

that the activities of these proteins may vary depending on host cell type and thus provide a partial 

basis for host cell restriction. 

2.5. Role of IFN in RV infection 

Rotavirus infection stimulates the production of type I and II IFN in children and animals [58-60]. 

Elevated IFN- is present both in the serum and stool of the infected host [59,61,62]. IFN- 

administered prior to infection reduces RV-associated diarrhea in bovine and porcine models of 

infection, indicating that IFN restricts RV growth in some animals [63,64]. In contrast, IFN 

pretreatment of neonatal mice has little or no effect on the course of diarrhea or virus shedding caused 

by infection with some strains of RV [65]. More recent studies have shown that homologous and 

heterologous strains of RV differ in the ability to spread in mice deficient in IFN signaling. These 

results raise the possibility that the host IFN response, and the capacity of the virus to overcome it, 

may play a role in limiting intestinal replication and extraintestinal spread [66].  

Type I IFNs also inhibit the growth of RVs in cell culture, although RV is not as sensitive to IFN as 

vesicular stomatitis virus (VSV) [67,68]. The human intestinal epithelial cell lines HT29 and Caco-2 

cells are resistant to RV infection when pretreated with IFN- [69]. HT29 cells do not express IFN- 

mRNA following RV infection with the simian strain RRV, though evidence of NF-B and NF-B-

dependent chemokine expression is apparent [70-72].  
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2.6. Properties of NSP1 

NSP1 (referred to as NS53 or VP5 in early literature) is the ~58-kDa protein product of RV genome 

segment 5 (Figure 3A). The protein accumulates at low levels in the cytoplasm of infected cells, 

possibly in association with the cytoskeleton [73-75]. The gene 5 RNA of group A RVs is unique in 

that its total length, as well as that of its open reading frame (ORF), can vary considerably among 

different virus strains. As a result, the NSP1 protein ranges in size from 486 to 496 amino acids for 

mammalian RV isolates, to as much as 577 amino acids for avian isolates. The amino acid sequence of 

NSP1 also differs significantly from strain to strain, more so than for any other RV protein. Notably, 

NSP1 sequence identities for mammalian RVs fall below 40%, and below 10% when the NSP1 

sequences of mammalian and avian strains are compared.  

Although divergent in primary sequence, the conservation of proline residues among NSP1 proteins 

suggests that they share similar higher order structures [76-78]. The N-terminal sequence of NSP1 is 

more conserved than that of the C terminus, and the N terminus includes the cysteine-rich motif,  

C-X2-C-X8-C-X2-C-X3-H-X-C-X2-C-X5-C (where X is any amino acid), which is common to all RV 

group A and C NSP1 proteins [75]. Early studies described the cysteine-histidine pattern as two zinc 

fingers, although recent studies have suggested this region is organized in a manner characteristic of 

those found in RING finger proteins (Figure 3B) [79,80]. NSP1 binds to zinc, but it has not been 

definitively demonstrated that the putative RING domain mediates this activity [81]. NSP1 also binds 

viral single-stranded (ss) RNA, and the RING domain is essential for this activity [74,81,82]. Mapping 

studies suggest that NSP1 recognizes the 5'-end of viral mRNAs, although the specific target of the 

binding activity has not been identified [74]. The role of the RNA-binding activity of NSP1 remains 

undefined. 

Two lines of evidence indicate that NSP1 is not essential for RV replication. First, reducing NSP1 

expression with gene-specific small-interfering RNAs during infection does not inhibit viral protein 

expression, gene synthesis, or virion assembly [35]. Secondly, RV variants have been isolated that 

encode C-truncated forms of NSP1, yet these viruses continue to replicate efficiently [82-85]. The 

most extreme example of an NSP1-defective variant is the bovine isolate A5-16, which encodes a 

truncated NSP1 that contains only the first 40 amino acids of the wild-type protein and therefore lacks 

the conserved zinc finger region [83,85]. This and other RV variants with a C-truncated NSP1 grow to 

titers similar to their wild-type parents in highly permissive MA104 cells [82,84]. However, in cells 

that are generally less permissive for RV replication (such as Caco-2 and FRhL2), wild-type RVs grow 

to titers that are at least one-log greater than NSP1-defective RVs, suggesting a role for NSP1 in 

enhancing cell-type specific viral replication [86].  

Rotaviruses encoding wild-type NSP1 form plaques that are considerably larger than those of RVs 

encoding C-truncated NSP1, suggesting that NSP1 is linked to the efficient cell-to-cell spread of the 

virus [83-85,87]. For example, SA11-5S, a simian RV variant that expresses a C-truncated NSP1 that 

lacks the last 17 amino acids of the full-length protein, produces plaques that are roughly half the size 

of those produced by its parental virus SA11-4F [84]. The small plaque size of NSP1-defective RVs is 

consistent with a role for NSP1 in subverting IFN-dependent pathways that would otherwise impede 

the successful movement of RV from infected to uninfected cells.  
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Figure 3. (a) Schematic of general location of structural and functional domains in SA11-

4F NSP1; RING finger domain (RING); RNA-binding domain (RNA-BD); cytoplasmic 

localization domain (Cyto-LD); IRF-binding domain (IRF-BD). (b) Comparison of the 

consensus sequence of the RING finger domain of group A and C RV NSP1 and the viral 

RING domain. Conserved residues proposed to bind to first zinc ion highlighted in red 

boxes and conserved residues proposed to bind to second zinc ion highlighted in blue 

boxes. Numbers above boxes correspond to sequential numbering of metal ligands. 

Conserved tryptophan residues highlighted in violet circles. (c) Predicted cross-brace 

organization of the RING finger domain of NSP1 and comparison to the known viral 

RING domain organization. Subscript numbers correspond to sequential numbering of 

metal ligands, and interspersed numbers correspond to the residues between metal ligands.  

 

3. Interaction of NSP1 with Transcription Factors of the IFN Induction Pathway 

3.1. NSP1-Induced Degradation of IRF Proteins 

The first evidence of an interplay between NSP1 and the innate immune system came from a yeast 

two-hybrid assay designed to identify proteins in a cDNA expression library of simian MA104 cells 

that interacted with NSP1 [88]. The analysis revealed that NSP1 of diverse origins (bovine B641 and 
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murine EW RVs) bound to IRF3. The association of NSP1 and IRF3 during RV infection was 

confirmed by co-immunoprecipitation assays performed with human Caco-2 cells infected with a 

simian RV (SA11-4F) [89]. Derivative experiments revealed that the C-terminal one-third of NSP1 

was sufficient for IRF3 interaction and that the deletion of a small C-terminal portion from NSP1 

prevented IRF3 binding [88,89].  

Infection of Caco-2 cells with SA11-4F reduced IRF3 to levels that were nearly undetectable. In 

contrast, infection with SA11-5S, which expresses a C-truncated NSP1, led to little decrease in IRF3 

levels [89]. This result correlated expression of intact NSP1 with the capacity of RV to induce the 

degradation of IRF3. Direct evidence for NSP1-mediated degradation of IRF3 was provided by 

transient expression assays in which wild-type NSP1 or C-truncated NSP1 was co-expressed along 

with IRF3. Wild-type NSP1, but not the C-truncated form, induced IRF3 degradation [86]. Treatment 

with the proteasome inhibitor MG132 prevented NSP1-mediated degradation of IRF3, suggesting that 

IRF3 turnover is dependent on proteasome activity [89,90]. The ability of NSP1 to induce IRF3 

degradation has been confirmed with multiple strains of RV in a variety of cell types  

(Table 1) [86,89-91].  

Ultimately, NSP1-induced degradation of IRF3 precludes activation and nuclear accumulation of 

this transcription factor, which has a primary role in IFN- expression. The importance that NSP1 has 

on IFN- expression has been assessed using a bioassay with a green fluorescent protein  

(GFP)- expressing recombinant VSV (VSV-GFP). VSV growth, as measured by GFP fluorescence, is 

strongly inhibited by the presence of IFN in cell culture media. Studies using the bioassay system 

showed that VSV-GFP grows well in media taken from cells infected with wild-type RVs (SA11-4F, 

30-19, and UK strains), demonstrating that RVs can suppress IFN expression [86]. In contrast, media 

recovered from cells infected with RV encoding a C-truncated NSP1 inhibited VSV-GFP growth, 

consistent with failure of its NSP1 to degrade IRF3. Importantly, the addition of a neutralizing anti-

IFN- antibody to the media recovered from cells infected with the NSP1-defective RV restored VSV-

GFP growth. These studies are supported by experiments measuring levels of secreted IFN-in RV-

infected cells, and provide evidence that intact NSP1 is a significant antagonist of IFN-  

expression [86,91].  

The importance of the putative RING domain of NSP1 on IRF3 degradation has been addressed by 

mutagenesis. Specifically, the mutation of conserved cysteine and histidine residues in the RING 

weakened interactions between NSP1 and IRF3 in yeast two hybrid assays and prevented NSP1 from 

inducing IRF3 degradation in co-expression assays [90]. These findings raise the possibility that the 

RING domain is essential for the activity of NSP1, much like the RING domains of some classes of E3 

ubiquitin ligases. However, it is possible that mutation of the RING domain caused such severe 

misfolding of NSP1 that a functionally-independent distant region of the protein involved in IRF3 

degradation was rendered inactive.  

Members of the IRF family share multiple structural features: all have an N-terminal DNA-binding 

domain that recognizes a consensus promoter sequence, several have a C-terminal serine-rich 

activation domain that is subject to phosphorylation, and others have a protein interaction domain that 

directs IRF dimerization [11]. These shared features raise the possibility that by interacting with one of 

the common domains, NSP1 can degrade members of the IRF family in addition to IRF3.  



Viruses 2009, 1                            

 

 

1044

Table 1. Capacity of NSP1 from RV strains shown to degrade endogenous IRF3. 

RV Strain Host Species  IRF3 Degradation (Cell Type Tested) Reference 

SA11-4F Simian  (Caco-2, FRhL2, MA104) [86,89,90] 

30-19 Simian  (FRhL2) [89] 

RRV Simian  (Cos7, MEF) [91,92] 

UK Bovine  (Cos7)                          

 (MEF) 

[91,92] 

B641 Bovine  [90]

NCDV Bovine                 

 (MEF)
[90,92]

OSU Porcine  (MA104, HEK293) [90,92]

ETD Murine  (Cos7, MEF) [91,92]

EW Murine  (MEF) [91] 

 

Indeed, transient expression assays have confirmed that the NSP1 product of the SA11-4F strain not 

only degrades IRF3, but also IRF5 and IRF7 through a proteasome-dependent process [86]. Thus, 

NSP1 represents a broad-spectrum antagonist of the IFN induction pathway. The biological 

significance of such broad activity is not clear, but the ability of NSP1 to induce the degradation of 

IRF7 suggests that some RVs may be particularly well suited to infect specialized cells, such as pDCs, 

that constitutively express IRF7. RVs can replicate in a minor proportion of pDCs, providing a means 

by which RVs can possibly escape the gut and give rise to a systemic infection [93]. Importantly, since 

pDCs are a primary source of IFN- in the infected host, the capacity of RVs to infect these cells and 

degrade their IRF7 component may represent a particularly effective mechanism of down-regulating 

IFN- expression in and around the gut. IRF5 is primarily detected in certain specialized cell types 

(e.g., B cells and DCs) [94]. The ability of NSP1 to degrade this transcription factor provides 
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additional evidence that NSP1 assists the virus in infecting specialized cells that allow trafficking 

beyond the gut. 

3.2. NSP1 Inhibition of the NF-B Pathway 

 

Numerous RV strains encoding full-length NSP1 have been shown to degrade IRF3  

(Table 1) [86,89-92,95]. Surprisingly, the porcine RV strain OSU was shown to inhibit the expression 

of IFN-, but failed to cause IRF3 degradation. In fact, IRF3 was activated and accumulated in the 

nucleus of OSU-infected cells. Further analysis has shown that OSU NSP1 can bind to IRF3, but less 

efficiently than B641 NSP1, suggesting a weak or unstable interaction incapable of triggering IRF3 

degradation [90,96]. Because IFN- expression requires not only activated IRF3, but also activated 

NF-B, Graff et al. [96] examined the fate of NF-B in OSU-infected cells. In uninfected cells,  

NF-B is retained in the cytoplasm due to its interaction with IB-. Activation of NF-B requires the 

interaction of phosphorylated IB- with the substrate recognition protein -transducin repeat 

containing protein (-TrCP) of the cellular E3 ubiquitin ligase complex SCF-TrCP. This interaction 

results in the degradation of IB-, which then allows nuclear translocation of NF-B [19]. OSU 

NSP1 was shown to induce the degradation of -TrCP, which in turn prevents the degradation of  

IB-. As a result, IFN- gene expression is not upregulated in OSU-infected cells due to the absence 

of activated NF-B in the nucleus. The study by Graff et al. [96] also suggests that some NSP1 

proteins may have multiple specificities, resulting in the degradation of both IRF3 and -TrCP. The 

targeted degradation of a cellular F-box protein required for E3 ligase substrate recognition is a novel 

IFN evasion strategy not described previously for any other virus [96].  

Additional studies have indicated that some strains of RV (human Wa) stimulate the 

phosphorylation of NF-B. However, TNF--induced nuclear translocation and NF-B-driven gene 

expression are inhibited during infection. Similarly, some strains (Wa) activate STAT1 by inducing 

phosphorylation, but IFN--induced STAT1 and STAT2 nuclear translocation are inhibited by RV 

infection. The mechanism by which RV brings about these phenomena remains unresolved, but this 

activity is not due to the expression of NSP1 alone [97]. 

3.3. Host Cell Dependence of NSP1 Activity 

The neonatal mouse has been used extensively as an animal model system for identifying viral and 

host factors that influence RV growth, spread, and pathogenesis. Neonatal mice infected with many 

homologous (murine EC, EW, EDIM, ETD) and some heterologous (simian RRV) RVs develop 

diarrheal disease, but only during the first two weeks of life. Afterwards, these viruses cause 

asymptomatic infections in the mouse [21]. Early studies showed that treatment of neonatal mice with 

murine type I IFN prior to or after infection with EC RV had no effect on viral replication or diarrhea. 

This established that RVs have mechanisms for overcoming IFN-dependent antiviral responses. 

Further support for this idea came from the observation that diarrhea and virus shedding were not 

significantly reduced in IFN type I or type II receptor knockout (KO) mice [65].  

Infection of the sucking mouse with some homologous RV strains (e.g., EC) leads not only to an 

enteric infection, but also to a systemic infection with the virus replicating in several internal organs. 
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In addressing factors affecting virus spread, Feng et al. [66] found that enteric and systemic replication 

of the EC virus did not differ between wild-type and IFN signaling-deficient mice  

(IFN-// receptor KO or STAT1 KO). However, enteric and systemic replication of a heterologous 

simian strain (RRV) was significantly increased in mice deficient in type I and type II IFN signaling 

(IFN-// receptor KO or STAT1 KO) [66]. In adult mice, STAT1 deficiency was associated with 

increased viral shedding of the heterologous simian strain RRV [98]. These results suggest that IFN 

signaling has a role in modulating RV infection, but that some RV strains can antagonize this effect. 

Additional studies using primary mouse embryonic fibroblasts (MEFs) found that the replication of 

some heterologous RV strains (UK, NCDV, and OSU) was restricted in wild-type MEFs, but not in 

IFN signaling-deficient (IFN-// receptor KO or STAT1 KO) MEFs. However, homologous murine 

strains and the heterologous simian strain RRV replicated to similar titers in wild-type and IFN 

signaling-deficient MEFs. By analyzing a panel of reassortant viruses, the ability of RRV to replicate 

efficiently in wild-type MEFs was mapped to the NSP1 gene. Strains that replicated well were able to 

degrade endogenous IRF3 in wild-type MEFs, thereby inhibiting IFN- secretion [91]. In contrast, 

heterologous strains that replicated poorly in wild-type MEFs failed to degrade IRF3 and stimulated 

the secretion of IFN-. The production of IFN- was dependent on viral replication, which triggered 

phosphorylation of IRF3. Though replication was restricted in wild-type MEFs, these strains grew well 

in IFN signaling-deficient MEFs. Only NSP1 was associated with a differential growth advantage in 

the presence of an intact IFN signaling system [91]. These results suggest strain-specific differences 

exist in NSP1-mediated degradation of IRF3 and suppression of IFN- secretion. Bovine UK RV, one 

of the RV strains with restricted replication in MEFs that was unable to degrade endogenous murine 

IRF3, was also unable to degrade ectopically expressed murine IRF3 in simian Cos7 cells. This was 

not due to an inherent inability to degrade IRF proteins in general, as this strain was able to degrade 

endogenous simian IRF3 and ectopically expressed human IRF3 in MEFs [92]. Studies on the abilities 

of various heterologous and homologous strains of RV to replicate in MEFs continue to provide 

greater understanding into the potential role of NSP1 in RV host range restriction and cell tropism.   

3.4. NSP1 as an E3 Ubiquitin Ligase 

NSP1 has several characteristics that suggest it may function as a viral E3-ubiquitin (Ub) ligase. 

Perhaps central among these is that NSP1 contains a RING domain similar to that of some E3 ligases 

and that the protein induces the proteasomal degradation of target proteins. In addition, NSP1 is itself 

susceptible to proteasomal degradation, and treatment with proteasome inhibitors leads to an increased 

accumulation of NSP1 [80,90,92]. The degradation of NSP1 is likely mediated by polyubiquitination, 

as inhibition of the E1 Ub-activating enzyme activity enhances NSP1 accumulation [92]. 
Ubiquitination places signals on proteins that cause their redistribution in the cell or degradation by 

the proteasome. Polyubiquitination of a protein occurs through a cascade of events, whereby an E1  

Ub-activating enzyme transfers the Ub moiety to an E2 Ub-conjugating enzyme. The E2 then interacts 

with one of two classes of E3 Ub ligases, which differ markedly in the mechanism by which they 

direct the ubiquitination of target proteins. The HECT domain-containing E3 Ub ligases undergo 

transient ubiquitination by E2 ligases, and then transfer the Ub moiety onto the target protein. In 
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contrast, the RING domain-containing E3 ligases act as an adaptor between the target protein and the 

E2 ligase, which directly transfers the Ub moiety onto the target.  

NSP1 contains a conserved cysteine-histidine sequence in its N-terminal region proposed to form 

zinc fingers [75,79]. Subfamilies of zinc finger proteins are generally classified by the order of the 

zinc-coordinating cysteine (C) and histidine (H) residues that serve as metal ligands. The classic RING 

finger domain consists of a signature C3-H-C4 motif, while the classic PHD motif is C4-H-C3 [99]. 

Some viral immunomodulatory proteins, such as Kaposi’s sarcoma herpesvirus K3 and K5, which 

were initially classified as PHD proteins according to their C4-H-C3 motif, have more recently been 

described as variants of the RING domain family, termed viral RING (vRING) [100]. These vRING 

proteins possess ubiquitin ligase activity, whereas classically defined PHD proteins do not. Additional 

criteria used to classify PHD domains include the presence of a tryptophan residue, which is positioned 

two amino acids upstream of metal ligand 7. The vRING domain, however, possesses two invariant 

tryptophan residues, which are located one amino acid downstream of metal ligand 1 and three amino 

acids upstream of metal ligand 6. Group A RV NSP1 proteins possess a C4-H-C3 core motif similar to 

that of PHD and vRING domains (Figure 3B, C). This region of NSP1 includes two highly conserved 

tryptophan residues; yet neither matches the positioning of the conserved PHD-specific tryptophan 

residue. Instead, the NSP1 tryptophan residues are positioned similar to those of vRING proteins. The 

first tryptophan of the NSP1 RING domain is one residue upstream of metal ligand 1 while the second 

is two residues upstream of metal ligand 6. An additional feature of vRING proteins is the predicted 

presence of transmembrane helices that direct these ubiquitin ligases to their targets, membrane-bound 

MCH class I proteins; however, this feature is not shared by NSP1. Based on sequence analysis, NSP1 

shares homology with vRING proteins. Based on functional analysis, NSP1 induces the proteasomal-

dependent degradation of IRF family members. Together, the sequence and function of NSP1 support 

the hypothesis that the protein functions as an E3 ubiquitin ligase. However, direct evidence in support 

of this has yet to be obtained. 

3.5. NSP1 Similarities to Other Viral Proteins 

Viruses use a diverse array of approaches to counteract the host IFN-signaling pathway (see [101] 

and [102] for review). Viruses can disrupt nearly every stage of the IFN response including early 

dsRNA signaling events (e.g., RIG-I, MDA5), the IFN receptor-signaling pathway (e.g., JAK, STAT), 

or specific ISG products (e.g., PKR or MxA). Like RVs, several other viruses suppress type I IFN 

expression by interfering with the IRF3 pathway, though the mechanisms of IRF3 antagonism vary. 

The human papillomavirus 16 protein E6 binds to IRF3 preventing transcription of IFN-. However, 

the binding of E6 to IRF3 does not induce its ubiquitination or proteasomal degradation [103]. 

Classical swine fever virus (CSFV) downregulates the expression of IRF3, and the viral protein Npro 

mediates this effect [104]. Npro also associates with IRF3 and induces its degradation in a proteasome-

dependent manner [105]. This is the same mechanism used by the related virus bovine viral diarrhea 

virus (BVDV) [106,107]. However, IRF7 expression does not appear to be affected by Npro [105]. 

Characterization of Npro shows that it is a zinc-binding protein, and that the zinc-binding site is 

required for IRF3 degradation and inhibition of IFN- production. Npro contains a metal binding 

TRASH (trafficking, resistance and sensing of heavy metals) motif at its C terminus, rather than the 
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RING-finger motif typical of E3 ubiquitin ligases [108]. This mechanism of IRF3 inhibition is similar 

to the activity of RV NSP1, though it does not appear to be as broadly active as NSP1. 

4. Conclusions and Perspectives 

Although the NSP1 proteins of different RV strains can vary in their activities, it is clear that NSP1 

is an antagonist of the type I IFN induction pathway. Of the types of NSP1 examined to date, most 

induce the proteasomal degradation of one or more of the IRF proteins (IRF3, IRF5, and IRF7) 

involved in stimulating IFN expression. However, there are exceptions such as OSU NSP1, which 

blocks IFN- induction by inducing the degradation of -TrCP, a protein that is necessary for NF-B 

activation. It is important to note that our current understanding of NSP1 activities is based chiefly on 

the study of relatively few strains of cell culture-adapted animal RVs. Thus, we may have a somewhat 

skewed perspective of what is typical for NSP1. Moreover, it is possible that the design of the assay 

systems used in testing the activities of NSP1 may have introduced biases into experimental results. 

For example, whether an NSP1 protein can degrade an IRF target in an assay system may depend not 

only on the viral source of NSP1, but also on the species origin of the target.  

NSP1 has been established to interact with several host proteins, including those in the IRF family 

and -TrCP. It is quite likely that the function of NSP1 requires it to interact with other host proteins 

as well, mostly notably the E2 ligases. It is possible that failures noted in the ability of some NSP1 

proteins to degrade target proteins may not stem from the inability of NSP1 to physically engage a 

target, but may instead be due to the failure of an E2 ligase to interact successfully with an NSP1-

target protein complex. Certainly, the lack of compatibility between the host E2 ligase and NSP1 could 

be a defining factor in RV host range restriction and cell tropism. Also unresolved is the relative 

importance of the strength and stability of the interaction between NSP1 and its target as a factor in 

target degradation.  

Currently, no single sequence feature of NSP1 has been identified that can be tied to the ability of 

some RV strains but not others to degrade IRF3. Phylogenetic analyses rules out any obvious link 

between the activities of NSP1 and genotype of the protein, or the serotype or host range of the virus 

encoding the protein. Studies of the NSP1 activities of a diverse collection of RV isolates have been 

slowed by difficulties raising hyperimmune serum against NSP1, reflecting the low antigenicity of the 

protein [81]. Additionally, the few antibodies that have been generated to recognize NSP1 are 

exquisitely specific, with little to no capacity to cross-react with NSP1s from different RV species. The 

development of antibodies to several strains of RV NSP1 or a single highly cross-reactive antibody 

would greatly enhance future studies of the protein and its activities. 

An important unresolved question is whether the RNA-binding activity of NSP1 has a role in 

suppressing IFN induction. One possibility is that NSP1 may use this activity to sequester viral RNAs 

in infected cells, similar to the IFN-antagonist protein of influenza A virus NS1, thereby preventing 

interactions with PRRs [109-111]. Some evidence indicates that RV infection might stimulate innate 

immune responses through recognition of viral RNAs by RIG-I [112]. However, the association of 

NSP1 with PRRs upstream of IRF3 remains unexplored. 

NSP1 plays a role in RV pathogenesis as a broad-spectrum antagonist of IFN induction, yet many 

unanswered questions remain. Are there other cellular targets degraded or otherwise targeted for 
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inactivation by NSP1? Does the RNA-binding activity of NSP1 play a role in subverting the IFN 

response? What are the sequence determinants of different NSP1 activities? Is NSP1 an E3 ubiquitin 

ligase, and if so, what is its E2 partner? Does NSP1 from human strains of RV share the activities that 

have been described for the cell culture-adapted animal strains? The answers to such questions will 

lend insight into how NSP1 enhances virulence of RV in infected hosts. There are several challenges to 

studying RV NSP1, including difficulties in adapting and growing human RVs in cell culture, the 

expense and relative lack of large animal models, and the absence of an appropriate reverse genetics 

system. However, developing solutions to these challenges will enhance and renew efforts to create 

new and more effective vaccine candidates. 

Acknowledgements 

We thank Kristen Guglielmi and Sarah McDonald for critical review of this manuscript. M.M.A. 

and J.T.P. are supported by the Intramural Research Program of the National Institute of Allergy and 

Infectious Diseases at the National Institutes of Health.  

References and Notes 

1. Bonjardim, C.A.; Ferreira, P.C.; Kroon, E.G. Interferons: signaling, antiviral and viral evasion. 

Immunol. Lett. 2009, 122, 1-11. 

2. Der, S.D.; Zhou, A.; Williams, B.R.; Silverman, R.H. Identification of genes differentially 

regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc. Natl. Acad. Sci. 

U S A 1998, 95, 15623-15628. 

3. Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 

783-801. 

4. Paun, A.; Pitha, P.M. The IRF family, revisited. Biochimie 2007, 89, 744-753. 

5. Takaoka, A.; Wang, Z.; Choi, M.K.; Yanai, H.; Negishi, H.; Ban, T.; Lu, Y.; Miyagishi, M.; 

Kodama, T.; Honda, K.; Ohba, Y.; Taniguchi, T. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor 

and an activator of innate immune response. Nature 2007, 448, 501-505. 

6. Maniatis, T.; Falvo, J.V.; Kim, T.H.; Kim, T.K.; Lin, C.H.; Parekh, B.S.; Wathelet, M.G. 

Structure and function of the interferon-beta enhanceosome. Cold Spring Harb. Symp. Quant. 

Biol. 1998, 63, 609-620. 

7. Honda, K.; Taniguchi, T. IRFs: master regulators of signalling by Toll-like receptors and 

cytosolic pattern-recognition receptors. Nat. Rev. Immunol. 2006, 6, 644-658. 

8. Zhang, L.; Pagano, J.S. IRF-7, a new interferon regulatory factor associated with Epstein-Barr 

virus latency. Mol. Cell. Biol. 1997, 17, 5748-5757. 

9. Fitzgerald, K.A.; McWhirter, S.M.; Faia, K.L.; Rowe, D.C.; Latz, E.; Golenbock, D.T.; Coyle, A. 

J.; Liao, S.M.; Maniatis, T. IKKepsilon and TBK1 are essential components of the IRF3 signaling 

pathway. Nat. Immunol. 2003, 4, 491-496. 

10. Sharma, S.; tenOever, B.R.; Grandvaux, N.; Zhou, G.P.; Lin, R.; Hiscott, J. Triggering the 

interferon antiviral response through an IKK-related pathway. Science 2003, 300, 1148-1151. 

11. Barnes, B.; Lubyova, B.; Pitha, P.M. On the role of IRF in host defense. J. Interferon Cytokine 

Res. 2002, 22, 59-71. 



Viruses 2009, 1                            

 

 

1050

12. Lin, R.; Mamane, Y.; Hiscott, J. Multiple regulatory domains control IRF-7 activity in response to 

virus infection. J. Biol. Chem. 2000, 275, 34320-34327. 

13. Marie, I.; Durbin, J.E.; Levy, D.E. Differential viral induction of distinct interferon-alpha genes 

by positive feedback through interferon regulatory factor-7. EMBO J. 1998, 17, 6660-6669. 

14. Sato, M.; Hata, N.; Asagiri, M.; Nakaya, T.; Taniguchi, T.; Tanaka, N. Positive feedback 

regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett. 1998, 

441, 106-110. 

15. Sato, M.; Suemori, H.; Hata, N.; Asagiri, M.; Ogasawara, K.; Nakao, K.; Nakaya, T.; Katsuki, M.; 

Noguchi, S.; Tanaka, N.; Taniguchi, T. Distinct and essential roles of transcription factors IRF-3 

and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 2000, 13, 539-548. 

16. Colonna, M.; Trinchieri, G.; Liu, Y.J. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 

2004, 5, 1219-1226. 

17. Honda, K.; Yanai, H.; Negishi, H.; Asagiri, M.; Sato, M.; Mizutani, T.; Shimada, N.; Ohba, Y.; 

Takaoka, A.; Yoshida, N.; Taniguchi, T. IRF-7 is the master regulator of type-I interferon-

dependent immune responses. Nature 2005, 434, 772-777. 

18. Yeow, W.S.; Au, W.C.; Juang, Y.T.; Fields, C.D.; Dent, C.L.; Gewert, D.R.; Pitha, P.M. 

Reconstitution of virus-mediated expression of interferon alpha genes in human fibroblast cells by 

ectopic interferon regulatory factor-7. J. Biol. Chem. 2000, 275, 6313-6320. 

19. Kroll, M.; Margottin, F.; Kohl, A.; Renard, P.; Durand, H.; Concordet, J.P.; Bachelerie, F.; 

Arenzana-Seisdedos, F.; Benarous, R. Inducible degradation of IkappaBalpha by the proteasome 

requires interaction with the F-box protein h-betaTrCP. J. Biol. Chem. 1999, 274, 7941-7945. 

20. Parashar, U.D.; Gibson, C.J.; Bresse, J.S.; Glass, R.I. Rotavirus and severe childhood diarrhea. 

Emerg. Infect. Dis. 2006, 12, 304-306. 

21. Greenberg, H.B.; Estes, M.K. Rotaviruses: from pathogenesis to vaccination. Gastroenterology 

2009, 136, 1939-1951. 

22. Prasad, B.V.; Wang, G.J.; Clerx, J.P.; Chiu, W. Three-dimensional structure of rotavirus. J. Mol. 

Biol. 1988, 199, 269-275. 

23. Yeager, M.; Dryden, K.A.; Olson, N.H.; Greenberg, H.B.; Baker, T.S. Three-dimensional 

structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction. J. Cell Biol. 

1990, 110, 2133-2144. 

24. Chen, D.; Luongo, C.L.; Nibert, M.L.; Patton, J.T. Rotavirus open cores catalyze 5'-capping and 

methylation of exogenous RNA: evidence that VP3 is a methyltransferase. Virology 1999, 265, 

120-130. 

25. Lawton, J.A.; Estes, M.K.; Prasad, B.V. Three-dimensional visualization of mRNA release from 

actively transcribing rotavirus particles. Nat. Struct. Biol. 1997, 4, 118-121. 

26. Patton, J.T.; Jones, M.T.; Kalbach, A.N.; He, Y.W.; Xiaobo, J. Rotavirus RNA polymerase 

requires the core shell protein to synthesize the double-stranded RNA genome. J. Virol. 1997, 71, 

9618-9626. 

27. Bican, P.; Cohen, J.; Charpilienne, A.; Scherrer, R. Purification and characterization of bovine 

rotavirus cores. J. Virol. 1982, 43, 1113-1117. 

28. Spencer, E.; Arias, M.L. In vitro transcription catalyzed by heat-treated human rotavirus. J. Virol. 

1981, 40, 1-10. 



Viruses 2009, 1                            

 

 

1051

29. Santos, N.; Hoshino, Y. Global distribution of rotavirus serotypes/genotypes and its implication 

for the development and implementation of an effective rotavirus vaccine. Rev. Med. Virol. 2005, 

15, 29-56. 

30. Prasad, B.V.; Rothnagel, R.; Zeng, C.Q.; Jakana, J.; Lawton, J.A.; Chiu, W.; Estes, M.K. 

Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. 

Nature 1996, 382, 471-473. 

31. Imai, M.; Akatani, K.; Ikegami, N.; Furuichi, Y. Capped and conserved terminal structures in 

human rotavirus genome double-stranded RNA segments. J. Virol. 1983, 47, 125-136. 

32. McCrae, M.A.; McCorquodale, J.G. Molecular biology of rotaviruses. V. Terminal structure of 

viral RNA species. Virology 1983, 126, 204-212. 

33. Chen, D.; Zeng, C.Q.; Wentz, M.J.; Gorziglia, M.; Estes, M.K.; Ramig, R.F. Template-dependent, 

in vitro replication of rotavirus RNA. J. Virol. 1994, 68, 7030-7039. 

34. Patton, J.T.; Spencer, E. Genome replication and packaging of segmented double-stranded RNA 

viruses. Virology 2000, 277, 217-225. 

35. Silvestri, L.S.; Taraporewala, Z.F.; Patton, J.T. Rotavirus replication: plus-sense templates for 

double-stranded RNA synthesis are made in viroplasms. J. Virol. 2004, 78, 7763-7774. 

36. Estes, M.K.; Kang, G.; Zeng, C.Q.; Crawford, S.E.; Ciarlet, M. Pathogenesis of rotavirus 

gastroenteritis. Novartis Found. Symp. 2001, 238, 82-96; discussion 96-100. 

37. Delmas, O.; Durand-Schneider, A.M.; Cohen, J.; Colard, O.; Trugnan, G. Spike protein VP4 

assembly with maturing rotavirus requires a postendoplasmic reticulum event in polarized caco-2 

cells. J. Virol. 2004, 78, 10987-10994. 

38. Jourdan, N.; Maurice, M.; Delautier, D.; Quero, A.M.; Servin, A.L.; Trugnan, G. Rotavirus is 

released from the apical surface of cultured human intestinal cells through nonconventional 

vesicular transport that bypasses the Golgi apparatus. J. Virol. 1997, 71, 8268-8278. 

39. Taniguchi, K.; Urasawa, S. Diversity in rotavirus genomes. Seminars in Virology 1995, 6,  

123-131. 

40. Nakagomi, O.; Nakagomi, T. Genomic relationships among rotaviruses recovered from various 

animal species as revealed by RNA-RNA hybridization assays. Res. Vet. Sci. 2002, 73, 207-214. 

41. Matthijnssens, J.; Ciarlet, M.; Heiman, E.; Arijs, I.; Delbeke, T.; McDonald, S.M.; Palombo, E.A.; 

Iturriza-Gomara, M.; Maes, P.; Patton, J.T.; Rahman, M.; Van Ranst, M. Full genome-based 

classification of rotaviruses reveals a common origin between human Wa-Like and porcine 

rotavirus strains and human DS-1-like and bovine rotavirus strains. J. Virol. 2008, 82, 3204-3219. 

42. Nakagomi, O.; Nakagomi, T. Genetic diversity and similarity among mammalian rotaviruses in 

relation to interspecies transmission of rotavirus. Arch. Virol. 1991, 120, 43-55. 

43. Hoshino, Y.; Kapikian, A.Z. Classification of rotavirus VP4 and VP7 serotypes. Arch. Virol. 

Suppl. 1996, 12, 99-111. 

44. Matthijnssens, J.; Potgieter, C.A.; Ciarlet, M.; Parreno, V.; Martella, V.; Banyai, K.; 

Garaicoechea, L.; Palombo, E.A.; Novo, L.; Zeller, M.; Arista, S.; Gerna, G.; Rahman, M.; Van 

Ranst, M. Are human P[14] rotavirus strains the result of interspecies transmissions from sheep or 

other ungulates that belong to the mammalian order Artiodactyla? J. Virol. 2009, 83, 2917-2929. 

45. Schumann, T.; Hotzel, H.; Otto, P.; Johne, R. Evidence of interspecies transmission and 

reassortment among avian group A rotaviruses. Virology 2009, 386, 334-343. 



Viruses 2009, 1                            

 

 

1052

46. Solberg, O.D.; Hasing, M.E.; Trueba, G.; Eisenberg, J.N. Characterization of novel VP7, VP4, 

and VP6 genotypes of a previously untypeable group A rotavirus. Virology 2009, 385, 58-67. 

47. Trojnar, E.; Otto, P.; Johne, R. The first complete genome sequence of a chicken group A 

rotavirus indicates independent evolution of mammalian and avian strains. Virology 2009, 386, 

325-333. 

48. Bass, E.S.; Pappano, D.A.; Humiston, S.G. Rotavirus. Pediatr. Rev. 2007, 28, 183-191. 

49. Ramig, R.F. Systemic rotavirus infection. Expert Rev. Anti. Infect. Ther. 2007, 5, 591-612. 

50. Crawford, S.E.; Patel, D.G.; Cheng, E.; Berkova, Z.; Hyser, J.M.; Ciarlet, M.; Finegold, M.J.; 

Conner, M.E.; Estes, M.K. Rotavirus viremia and extraintestinal viral infection in the neonatal rat 

model. J. Virol. 2006, 80, 4820-4832. 

51. Blutt, S.E.; Conner, M.E. Rotavirus: to the gut and beyond! Curr. Opin. Gastroenterol. 2007, 23, 

39-43. 

52. Fenaux, M.; Cuadras, M.A.; Feng, N.; Jaimes, M.; Greenberg, H.B. Extraintestinal spread and 

replication of a homologous EC rotavirus strain and a heterologous rhesus rotavirus in BALB/c 

mice. J. Virol. 2006, 80, 5219-5232. 

53. Mossel, E.C.; Ramig, R.F. Rotavirus genome segment 7 (NSP3) is a determinant of extraintestinal 

spread in the neonatal mouse. J. Virol. 2002, 76, 6502-6509. 

54. Mossel, E.C.; Ramig, R.F. A lymphatic mechanism of rotavirus extraintestinal spread in the 

neonatal mouse. J. Virol. 2003, 77, 12352-12356. 

55. Broome, R.L.; Vo, P.T.; Ward, R.L.; Clark, H.F.; Greenberg, H.B. Murine rotavirus genes 

encoding outer capsid proteins VP4 and VP7 are not major determinants of host range restriction 

and virulence. J. Virol. 1993, 67, 2448-2455. 

56. Ciarlet, M.; Estes, M.K.; Barone, C.; Ramig, R.F.; Conner, M.E. Analysis of host range restriction 

determinants in the rabbit model: comparison of homologous and heterologous rotavirus 

infections. J. Virol. 1998, 72, 2341-2351. 

57. Hoshino, Y.; Saif, L.J.; Kang, S.Y.; Sereno, M.M.; Chen, W.K.; Kapikian, A.Z. Identification of 

group A rotavirus genes associated with virulence of a porcine rotavirus and host range restriction 

of a human rotavirus in the gnotobiotic piglet model. Virology 1995, 209, 274-280. 

58. Azim, T.; Ahmad, S.M.; Sefat, E.K.; Sarker, M.S.; Unicomb, L.E.; De, S.; Hamadani, J.D.; 

Salam, M.A.; Wahed, M.A.; Albert, M.J. Immune response of children who develop persistent 

diarrhea following rotavirus infection. Clin. Diagn. Lab. Immunol. 1999, 6, 690-695. 

59. De Boissieu, D.; Lebon, P.; Badoual, J.; Bompard, Y.; Dupont, C. Rotavirus induces alpha-

interferon release in children with gastroenteritis. J. Pediatr. Gastroenterol. Nutr. 1993, 16, 29-32. 

60. Wang, Y.; Dennehy, P.H.; Keyserling, H.L.; Tang, K.; Gentsch, J.R.; Glass, R.I.; Jiang, B. 

Rotavirus infection alters peripheral T-cell homeostasis in children with acute diarrhea. J. Virol. 

2007, 81, 3904-3912. 

61. Chaplin, P.J.; Entrican, G.; Gelder, K.I.; Collins, R.A. Cloning and biologic activities of a bovine 

interferon-alpha isolated from the epithelium of a rotavirus-infected calf. J. Interferon Cytokine 

Res. 1996, 16, 25-30. 

62. La Bonnardiere, C.; Cohen, J.; Contrepois, M. Interferon activity in rotavirus infected newborn 

calves. Ann. Rech. Vet. 1981, 12, 85-91. 



Viruses 2009, 1                            

 

 

1053

63. Lecce, J.G.; Cummins, J.M.; Richards, A.B. Treatment of rotavirus infection in neonate and 

weanling pigs using natural human interferon alpha. Mol. Biother. 1990, 2, 211-216. 

64. Schwers, A.; Vanden Broecke, C.; Maenhoudt, M.; Beduin, J.M.; Werenne, J.; Pastoret, P.P. 

Experimental rotavirus diarrhoea in colostrum-deprived newborn calves: assay of treatment by 

administration of bacterially produced human interferon (Hu-IFN alpha 2). Ann. Rech. Vet. 1985, 

16, 213-218. 

65. Angel, J.; Franco, M.A.; Greenberg, H.B.; Bass, D. Lack of a role for type I and type II 

interferons in the resolution of rotavirus-induced diarrhea and infection in mice. J. Interferon 

Cytokine Res. 1999, 19, 655-659. 

66. Feng, N.; Kim, B.; Fenaux, M.; Nguyen, H.; Vo, P.; Omary, M.B.; Greenberg, H.B. Role of 

interferon in homologous and heterologous rotavirus infection in the intestines and extraintestinal 

organs of suckling mice. J. Virol. 2008, 82, 7578-7590. 

67. Dagenais, L.; Pastoret, P.P.; Van den Broecke, C.; Werenne, J. Susceptibility of bovine rotavirus 

to interferon. Brief report. Arch. Virol. 1981, 70, 377-379. 

68. La Bonnardiere, C.; de Vaureix, C.; L'Haridon, R.; Scherrer, R. Weak susceptibility of rotavirus to 

bovine interferon in calf kidney cells. Arch. Virol. 1980, 64, 167-170. 

69. Bass, D.M. Interferon gamma and interleukin 1, but not interferon alfa, inhibit rotavirus entry into 

human intestinal cell lines. Gastroenterology 1997, 113, 81-89. 

70. Casola, A.; Estes, M.K.; Crawford, S.E.; Ogra, P.L.; Ernst, P.B.; Garofalo, R.P.; Crowe, S.E. 

Rotavirus infection of cultured intestinal epithelial cells induces secretion of CXC and CC 

chemokines. Gastroenterology 1998, 114, 947-955. 

71. Casola, A.; Garofalo, R.P.; Crawford, S.E.; Estes, M.K.; Mercurio, F.; Crowe, S.E.; Brasier, A.R. 

Interleukin-8 gene regulation in intestinal epithelial cells infected with rotavirus: role of viral-

induced IkappaB kinase activation. Virology 2002, 298, 8-19. 

72. Rollo, E.E.; Kumar, K.P.; Reich, N.C.; Cohen, J.; Angel, J.; Greenberg, H.B.; Sheth, R.; 

Anderson, J.; Oh, B.; Hempson, S.J.; Mackow, E.R.; Shaw, R.D. The epithelial cell response to 

rotavirus infection. J. Immunol. 1999, 163, 4442-4452. 

73. Johnson, M.A.; McCrae, M.A. Molecular biology of rotaviruses. VIII. Quantitative analysis of 

regulation of gene expression during virus replication. J. Virol. 1989, 63, 2048-2055. 

74. Hua, J.; Chen, X.; Patton, J.T. Deletion mapping of the rotavirus metalloprotein NS53 (NSP1): the 

conserved cysteine-rich region is essential for virus-specific RNA binding. J. Virol. 1994, 68, 

3990-4000. 

75. Hua, J.; Mansell, E.A.; Patton, J.T. Comparative analysis of the rotavirus NS53 gene: 

conservation of basic and cysteine-rich regions in the protein and possible stem-loop structures in 

the RNA. Virology 1993, 196, 372-378. 

76. Dunn, S.J.; Cross, T.L.; Greenberg, H.B. Comparison of the rotavirus nonstructural protein NSP1 

(NS53) from different species by sequence analysis and northern blot hybridization. Virology 

1994, 203, 178-183. 

77. Kojima, K.; Taniguchi, K.; Kobayashi, N. Species-specific and interspecies relatedness of NSP1 

sequences in human, porcine, bovine, feline, and equine rotavirus strains. Arch. Virol. 1996, 141, 

1-12. 



Viruses 2009, 1                            

 

 

1054

78. Xu, L.; Tian, Y.; Tarlow, O.; Harbour, D.; McCrae, M.A. Molecular biology of rotaviruses. IX. 

Conservation and divergence in genome segment 5. J. Gen. Virol. 1994, 75, 3413-3421. 

79. Mitchell, D.B.; Both, G.W. Conservation of a potential metal binding motif despite extensive 

sequence diversity in the rotavirus nonstructural protein NS53. Virology 1990, 174, 618-621. 

80. Pina-Vazquez, C.; De Nova-Ocampo, M.; Guzman-Leon, S.; Padilla-Noriega, L. Post-

translational regulation of rotavirus protein NSP1 expression in mammalian cells. Arch. Virol. 

2007, 152, 345-368. 

81. Brottier, P.; Nandi, P.; Bremont, M.; Cohen, J. Bovine rotavirus segment 5 protein expressed in 

the baculovirus system interacts with zinc and RNA. J. Gen. Virol. 1992, 73 (Pt 8), 1931-1938. 

82. Hua, J.; Patton, J.T. The carboxyl-half of the rotavirus nonstructural protein NS53 (NSP1) is not 

required for virus replication. Virology 1994, 198, 567-576. 

83. Okada, J.; Kobayashi, N.; Taniguchi, K.; Shiomi, H. Functional analysis of the heterologous 

NSP1 genes in the genetic background of simian rotavirus SA11. Arch. Virol. 1999, 144,  

1439-1449. 

84. Patton, J.T.; Taraporewala, Z.; Chen, D.; Chizhikov, V.; Jones, M.; Elhelu, A.; Collins, M.; 

Kearney, K.; Wagner, M.; Hoshino, Y.; Gouvea, V. Effect of intragenic rearrangement and 

changes in the 3' consensus sequence on NSP1 expression and rotavirus replication. J. Virol. 

2001, 75, 2076-2086. 

85. Taniguchi, K.; Kojima, K.; Urasawa, S. Nondefective rotavirus mutants with an NSP1 gene which 

has a deletion of 500 nucleotides, including a cysteine-rich zinc finger motif-encoding region 

(nucleotides 156 to 248), or which has a nonsense codon at nucleotides 153-155. J. Virol. 1996, 

70, 4125-4130. 

86. Barro, M.; Patton, J.T. Rotavirus NSP1 inhibits expression of type I interferon by antagonizing 

the function of interferon regulatory factors IRF3, IRF5, and IRF7. J. Virol. 2007, 81, 4473-4481. 

87. Tian, Y.; Tarlow, O.; Ballard, A.; Desselberger, U.; McCrae, M.A. Genomic 

concatemerization/deletion in rotaviruses: a new mechanism for generating rapid genetic change 

of potential epidemiological importance. J. Virol. 1993, 67, 6625-6632. 

88. Graff, J.W.; Mitzel, D.N.; Weisend, C.M.; Flenniken, M.L.; Hardy, M.E. Interferon regulatory 

factor 3 is a cellular partner of rotavirus NSP1. J. Virol. 2002, 76, 9545-9550. 

89. Barro, M.; Patton, J.T. Rotavirus nonstructural protein 1 subverts innate immune response by 

inducing degradation of IFN regulatory factor 3. Proc. Natl. Acad. Sci. U S A 2005, 102,  

4114-4119. 

90. Graff, J.W.; Ewen, J.; Ettayebi, K.; Hardy, M.E. Zinc-binding domain of rotavirus NSP1 is 

required for proteasome-dependent degradation of IRF3 and autoregulatory NSP1 stability.  

J. Gen. Virol. 2007, 88, 613-620. 

91. Feng, N.; Sen, A.; Nguyen, H.; Vo, P.; Hoshino, Y.; Deal, E.M.; Greenberg, H.B. Variation in 

antagonism of the interferon response to rotavirus NSP1 results in differential infectivity in mouse 

embryonic fibroblasts. J. Virol. 2009, 83, 6987-6994. 

92. Sen, A.; Feng, N.; Ettayebi, K.; Hardy, M.E.; Greenberg, H.B. IRF3 Inhibition by Rotavirus NSP1 

is Host cell and Viral Strain Dependent but Independent of NSP1 Proteasomal Degradation.  

J. Virol. 2009. 



Viruses 2009, 1                            

 

 

1055

93. Mesa, M.C.; Rodriguez, L.S.; Franco, M.A.; Angel, J. Interaction of rotavirus with human 

peripheral blood mononuclear cells: plasmacytoid dendritic cells play a role in stimulating 

memory rotavirus specific T cells in vitro. Virology 2007, 366, 174-184. 

94. Barnes, B.J.; Moore, P.A.; Pitha, P.M. Virus-specific activation of a novel interferon regulatory 

factor, IRF-5, results in the induction of distinct interferon alpha genes. J. Biol. Chem. 2001, 276, 

23382-23390. 

95. Douagi, I.; McInerney, G.M.; Hidmark, A.S.; Miriallis, V.; Johansen, K.; Svensson, L.; Karlsson 

Hedestam, G.B. Role of interferon regulatory factor 3 in type I interferon responses in rotavirus-

infected dendritic cells and fibroblasts. J. Virol. 2007, 81, 2758-2768. 

96. Graff, J.W.; Ettayebi, K.; Hardy, M.E. Rotavirus NSP1 inhibits NFkappaB activation by inducing 

proteasome-dependent degradation of beta-TrCP: a novel mechanism of IFN antagonism. PLoS 

Pathog. 2009, 5, e1000280. 

97. Holloway, G.; Truong, T.T.; Coulson, B.S. Rotavirus antagonizes cellular antiviral responses by 

inhibiting the nuclear accumulation of STAT1, STAT2, and NF-kappaB. J. Virol. 2009, 83,  

4942-4951. 

98. Vancott, J.L.; McNeal, M.M.; Choi, A.H.; Ward, R.L. The role of interferons in rotavirus 

infections and protection. J. Interferon Cytokine Res. 2003, 23, 163-170. 

99. Aravind, L.; Iyer, L.M.; Koonin, E.V. Scores of RINGS but no PHDs in ubiquitin signaling. Cell 

Cycle 2003, 2, 123-126. 

100. Dodd, R.B.; Allen, M.D.; Brown, S.E.; Sanderson, C.M.; Duncan, L.M.; Lehner, P.J.; Bycroft, 

M.; Read, R.J. Solution structure of the Kaposi's sarcoma-associated herpesvirus K3 N-terminal 

domain reveals a Novel E2-binding C4HC3-type RING domain. J. Biol. Chem. 2004, 279,  

53840-53847. 

101. Weber, F.; Kochs, G.; Haller, O. Inverse interference: how viruses fight the interferon system. 

Viral Immunol. 2004, 17, 498-515. 

102. Katze, M.G.; He, Y.; Gale, M., Jr. Viruses and interferon: a fight for supremacy. Nat. Rev. 

Immunol. 2002, 2, 675-687. 

103. Ronco, L.V.; Karpova, A.Y.; Vidal, M.; Howley, P.M. Human papillomavirus 16 E6 oncoprotein 

binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev. 1998, 

12, 2061-2072. 

104. La Rocca, S.A.; Herbert, R.J.; Crooke, H.; Drew, T.W.; Wileman, T.E.; Powell, P.P. Loss of 

interferon regulatory factor 3 in cells infected with classical swine fever virus involves the  

N-terminal protease, Npro. J. Virol. 2005, 79, 7239-7247. 

105. Bauhofer, O.; Summerfield, A.; Sakoda, Y.; Tratschin, J.D.; Hofmann, M.A.; Ruggli, N. Classical 

swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal 

degradation. J. Virol. 2007, 81, 3087-3096. 

106. Chen, Z.; Rijnbrand, R.; Jangra, R.K.; Devaraj, S.G.; Qu, L.; Ma, Y.; Lemon, S.M.; Li, K. 

Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro 

from a cytopathic bovine viral diarrhea virus. Virology 2007, 366, 277-292. 

107. Hilton, L.; Moganeradj, K.; Zhang, G.; Chen, Y.H.; Randall, R.E.; McCauley, J.W.; Goodbourn, 

S. The NPro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory 

factor 3 and targets it for proteasomal degradation. J. Virol. 2006, 80, 11723-11732. 



Viruses 2009, 1                            

 

 

1056

108. Szymanski, M.R.; Fiebach, A.R.; Tratschin, J.D.; Gut, M.; Ramanujam, V.M.; Gottipati, K.; Patel, 

P.; Ye, M.; Ruggli, N.; Choi, K.H. Zinc binding in pestivirus N(pro) is required for interferon 

regulatory factor 3 interaction and degradation. J. Mol. Biol. 2009, 391, 438-449. 

109. Guo, Z.; Chen, L.M.; Zeng, H.; Gomez, J.A.; Plowden, J.; Fujita, T.; Katz, J.M.; Donis, R.O.; 

Sambhara, S. NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen 

sensor, RIG-I. Am. J. Respir. Cell. Mol. Biol. 2007, 36, 263-269. 

110. Mibayashi, M.; Martinez-Sobrido, L.; Loo, Y.M.; Cardenas, W.B.; Gale, M., Jr.; Garcia-Sastre, A. 

Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 

protein of influenza A virus. J. Virol. 2007, 81, 514-524. 

111. Pichlmair, A.; Schulz, O.; Tan, C.P.; Naslund, T.I.; Liljestrom, P.; Weber, F.; Reis e Sousa, C. 

RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006, 

314, 997-1001. 

112. Hirata, Y.; Broquet, A.H.; Menchen, L.; Kagnoff, M.F. Activation of innate immune defense 

mechanisms by signaling through RIG-I/IPS-1 in intestinal epithelial cells. J. Immunol. 2007, 179, 

5425-5432. 

 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).  


