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Abstract: Climatic change is expected to affect forest development in the short term, as well as the
spatial distribution of species in the long term. Species distribution models are potentially useful
tools for guiding species choices in reforestation and forest management prescriptions to address
climate change. The aim of this study is to build spatial and spatio-temporal models to predict the
distribution of four different species present in the Spanish Forest Inventory. We have compared
the different models and showed how accounting for dependencies in space and time affect the
relationship between species and environmental variables.

Keywords: hierarchical Bayesian models; stochastic partial differential equation; integrated nested
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1. Introduction

Tree species distributions are undoubtedly associated with climatic factors through the direct
effects of climate circumstances on tree biological processes [1]. Consequently, climate change is likely
to affect forest development in the short term [2], as well as spatial distribution of species in the
long term, through demographic processes [3,4]. For temperature-limited boreal woods, the main
expectation is a deep northward shift of appropriate tree species environment, while the situation
in temperate areas tends to be more complex and is different between Mediterranean, continental,
and maritime climates [5]. Climate impacts, such as water deficit and the elevated risk of forest fires,
will threaten Mediterranean forests [6,7], while forest development might benefit in continental and
Atlantic forests, but only at sites where an increased evaporative demand can be satisfied by enough
water availability [8–10].

Although the predicted impacts of global warming, there are uncertainties around the magnitude
of the effects. Among forest researchers, awareness has increased that the global warming poses a
huge impact to the management and environmental value of woodland areas [11]. In Europe, it was
projected that financial losses may come to several billion euros by the end of this century if policies
for the forest sector do not change in response to the predicted climate changes [12].

To help species selection in reforestation and forest management treatments to manage climate
change, species distribution models (SDMs) are a valuable tool [13]. Species distribution models
(SDMs) can be defined as a mathematical approach built on combination of observations of species
presence or abundance with environmental factors. These models are treated to evaluate species
distributions across sceneries [14]. Although there are exceptions (e.g., [15]), SDMs usually predict the
appropriate niches of species [13].
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Even though the limits of SDMs for global warming impact assessments on complex ecological
structures, it has been recognized that species distribution models are theoretically sufficiently
appropriate for simpler practical tasks: for example in leading global warming adaptation policies
that include habitat restoration or species selection for reforestation or forest management [16–19].
For such management treatments, the key is to match the source and the ambient target. However,
it is uncertain whether subsequent long-term forest developments are correctly described by species
distribution models that can be used to influence early decisions on species selection for a geographic
area [13].

SDM typically consists of the following process: (1) compilation of the sites of occurrence of
species; (2) collection of environmental variables from databases (pluviometry, soil composition, etc.)
for the registered location; (3) regression algorithms to understand the connection between sites of
presence or species abundance and the environmental variables collected in (2); (4) prediction of the
outcome variable (occurrence or species richness) through the space/time of interest, based on the
models in (3) [20].

Some of the newest SDMs only use the presences of the groups in the modeling process. Other
approaches use presence/absence data or pseudo-absences. Logistic regression is the most common
approach to studying presence/absence data [20]. Currently the statistical knowledge of applied
researchers is growing, and new approaches can handle bigger, more complex datasets, so that applied
statisticians are faced with the necessity to specify sophisticated statistical approaches. Logically, as
the difficulty of these models grows, it becomes more difficult to perform inferences. The Bayesian
approach is mostly suitable as it is flexible and can deal with complex models, for instance, naturally
accounting for a hierarchical structure, which could describe the data well, or deal with missing data
imputation. Unquestionably, the most popular family of approximate inference methods in Bayesian
statistics is the class of Markov Chain Monte Carlo (MCMC) approaches. These approaches, which
exploded into popularity in the mid-1980s, have continued at the vanguard of Bayesian statistics ever
since, with the basic structure being expanded to cope with progressively more difficult problems [21].

The modeling patterns of the presence/absence of species using local ecological variables has
been a rising problem in the field of ecology over the last few years [22]. This type of modeling has
been highly used to address numerous questions, as the identification of essential wildlife habitats
with the purpose of classifying and managing conservation regions [23], and predicting the reaction
of species to environmental structures [24,25]. Several methodologies and approaches have been
presented in this perspective (see for instance [26–29], with generalized linear models and additive
models (GLM and GAM) [30], species envelope models such as BIOCLIM [31], and the multivariate
adaptive regression splines (MARS) [32] being some of the most commonly used models [33].

Most of these approaches consist of regression models to assess the role of environmental factors
(e.g., precipitation, bathymetry, etc.) in explaining the species presence [30]. However, some difficulties
appear: for example, spatial autocorrelation must be taken into account, even if the data were captured
through a consistent sampling scheme, as the observations are often adjacent and exposed to similar
environmental characteristics [34,35]. Furthermore observer error [36,37], gaps in the sampling, missing
data, and the mobility of the species [38] can also influence the models.

Even though traditionally climatic variables have been believed the principal factor in the spatial
distribution of the European forest species [39], several paleobotanic studies have shown that the
Iberian forest structure has been influenced by the activity of the first agricultural societies from
the Neolithic and Chalcolithic period [40–43]. Hence, more complex analysis of forest ecosystems
are required to comprehend how land-cover variations can affect vegetation dynamics and spatial
distribution [44]. Unfortunately, some of these activities are not possible for inclusion in our
spatio-temporal framework, not only because of the absence of geographical references, but also
because of the difference of timestamps (i.e., Forest Inventory is developed each 10 years).

The forest ecosystems in Europe were affected by several disturbances during the last years.
One of the most important issues is degradation due to stress caused by anthropogenic processes.
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Variation in forest circumstances were not connected to a particular issue but rather to a combination
of stress factors that intensified one another. In order to understand the evolution of these ecosystems,
the pertinent processes need to be approached by spatio-temporal modeling on detailed spatial and
temporal scales [44]. Spatio-temporal processes include the development of spatial patterns over time,
thus providing a connection between pattern and process in ecological communities, and having a
crucial role in understanding the ecosystem processes [45]. Most of the analyses developed in forest
communities were motivated by forest growth (i.e., [46–49] for general surveys, and [50] for a specific
study), while in this paper, we take a slightly different perspective, and our interest is to show that
trees communities are dynamic systems that are affected by environmental disturbances, and that
these can also cause changes in the species distribution and dispersion in short periods of time.

Hierarchical models can manage complex interactions by specifying parameters varying on
several levels via the introduction of random effects. The predicted value of the response is then
articulated to be conditional on these random effects [51]. The benefits of applying hierarchical
Bayesian models arises moreso as complexity rises, when, for instance, spatio-temporal change needs
to be modeled explicitly [37]. The Bayesian structure similarly offers the benefit of supplying the
full posterior probability of the set of parameters of interest, so that point estimates and measures
of uncertainty can be easily computed, but with the added benefit that any other function of the
parameters can be obtained with no additional effort [52,53].

Hierarchical Bayesian models have commonly relied on MCMC simulation techniques, which
are challenging from a technical perspective and are computationally intensive, consequently limiting
their use. However, a new statistical method is now available, namely integrated nested Laplace
approximations (INLA) via the R-INLA package (http://www.r-inla.org) [51]. The INLA approach
and its potent application to handle complex datasets has been introduced to a wider nontechnical
researchers [54]. Differently from MCMC simulations, INLA applies an approximation for inference,
and hence prevents the intense computational requests, convergence, and combining issues sometimes
faced by MCMC algorithms [55]. It is only implemented for latent Gaussian models, but this includes
the class of models that we consider here for species distribution (for example, logistic regression).
Moreover, when the interest lies in a continuous spatial phenomenon, for which realizations are
obtained at discrete locations, R-INLA can be coupled with the stochastic partial differential equations
(SPDE) approach [56] which performs discretization of the underlying continuous Gaussian field.
This is the case of environmental inventories, which are typically characterized by clustered spatial
patterns, and at the same time record large regions with absences. Jointly, these statistical approaches
and their implementation in R allow researchers to fit intricated spatio-temporal models considerably
faster and more reliably [57], due to the characteristics of this approach.

The aim of this paper is to build spatial and spatio-temporal models to predict the distribution
of four different species present in the Spanish Forest Inventory. We want to compare the different
models and show how accounting for dependencies in space and time affect the relationship between
species and environmental variables. We will work with real data on four species of trees obtained
from forest inventories developed in Galicia as part of the National Inventories 1970–2010, supported
with environmental variables. In particular we consider the II (1980’s), III (1990’s), and IV (2000’s)
inventories. For these species we have their presence/absence at specific geographical coordinates,
and we generate SDMs for each species. We specify a Bayesian hierarchical geostatistical modeling
structure accounting for the spatial dependency.

Other studies have been developed to understand species distribution through a Bayesian
approach using INLA, i.e., [58] analyzing the spatial distribution of caribou, or [59] analyzing the
presence of invasive species and shrubs in Azores. One of the most interesting differences for our case
is the temporal approach, as we work with data from three different inventories.

http://www.r-inla.org
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2. Materials and Methods

Our main data source was the Spanish National Forest Inventory (NFI) dataset, which comprises a
systematic grid with 91,889 plots, each of which is 0.2 ha in size, collecting data every 10 years. In our case,
we worked only with the Galician dataset, which has had three completed Forest Inventories since 1970.
The following tree species are present in the different National Inventories: Pinus sylvestris L., P. uncinate
Ram., P. pinea L., P. halepensis Mill., P. nigra Arn., P. pinaster Ait., P. canariensis C. Sm., P. radiata D. Don, Abies
alba Mill., Quercus robur L./Q. petraea (Matt.) Liebl, Q. pyrenaica Chips./Q. pubescens Willd./Q. humilis
Mill., Q. faginea Lam./Q. canariensis Willd., Q. ilex L., Q. suber L., Alnus glutinosa (L.) Gaertn., Fraxinus spp.,
Populus nigra L./P. x Canadensis Moench, Eucalyptus globulus Labill., E. camaldulensis Dehnh, Olea europaea
L., Ceratonia siliqua L., Castanea sativa Mill., Betula spp., Myrica faya Ait./Erica arborea L., Fagus sylvatica L.,
and Juniperus spp. The data provided by the National Inventory included the presence/absence of species.

We chose the following four species from the Spanish National Inventory according to their
characteristics, usage, and distribution in the Spanish Peninsula, and more specifically in Galicia:

2.1. Abies alba Mill.

Silver fir (A. alba) is a huge evergreen tree located in central Europe, and in some parts of southern
and eastern Europe. It is one of the largest tree species of the genus Abies in Europe. This species is
considered to be a significant ecological and efficient balancer of European forests, and an essential
species for preserving high biodiversity in forest ecosystems. Its future distribution is subject to debate
between palaeoecologists and modelers, with contrasting climate-response forecasts [60].

2.2. Castanea sativa Mill.

The sweet chestnut is the single natural species of the genus in Europe. Extensive dispersion
and active management caused the establishment of the species at the boundaries of its prospective
ecological range. For this reason, it is difficult to trace its original natural area. In Europe, chestnut
forests are mainly concentrated in a few countries such as Italy, France, Spain, and Portugal.
This species has an extraordinary multipurpose nature, and can be managed for timber production,
for chestnut production, and also for a broad range of secondary products and ecosystem services [60].

2.3. Pinus pinaster Ait.

The maritime pine is a widespread medium-size tree native to the western Mediterranean basin.
This pine dwells well in temperate-warm locations, from coasts to high mountains. It does not tolerate
shade. Due to its undemanding behavior, salt spray tolerance, and fast growth, it has been used
for soil protection, reforestation of degraded areas, and dune stabilization as shelterbelts and also in
intensive plantations. The maritime pine has been also traditionally utilized for the extraction of resin
for turpentine and rosin. In the Southern Hemisphere, where maritime pine has been introduced for
environmental and economical purposes, it has been considered as a highly invasive species [60].

2.4. Quercus robur L.

Pedunculate oak is a common deciduous tree species in Europe, found from the north
(Scandinavia) to the southwest (Spain and Portugal). This genus has cultural importance for people
through Europe, and the trees or leaves are commonly used in national or regional emblems. This genus
can live several centuries and grow to about 40 m in height. The wood from oaks is strong and robust,
and has been valued for centuries. It is preferred for structures, and also for barrels (to contain wine
and spirits); overall, it was a main source of ship timbers. Currently, acute oak decline is one of the
biggest concerns faced by this genus [60].
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2.5. Environmental Variables

We have used the following variables to elaborate our models: mean annual temperature, mean of
the maximum temperatures of the warmest month, mean of the minimum temperatures of the coldest
month, and mean annual rainfall, calcareous soil and elevation.

The environmental variables used in this analysis were obtained from [61,62], and are those
typically considered in this type of studies: mean annual temperature, mean of the maximum
temperatures of the warmest month, the mean of minimum temperatures of the coldest month,
and mean annual rainfall. We also considered the distribution of the calcareous parent materials as
a useful predictor of plant species distribution in our study area [63]. We used the European Soil
Database [64] to assign each plot to a parent material class. All of the values were related to the
data points. In each data point, we have obtained all the environmental variables apart from the
presence/absence of the species and coordinates (X, Y, Z).

We can see the summary of the different meteorological variables (mean annual temperature,
mean of maximum temperatures of the warmest month, mean of minimum temperatures of the coldest
month, and mean annual rainfall) below (Figure 1). As we can see, there are no large fluctuations
between the three inventories.
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Figure 1. Boxplot summary of meteorological variables during the different inventories. From top
to bottom: mean annual rainfall (Ppr) in mm; mean annual temperature (Tas) in ◦C, mean of the
maximum temperatures of the warmest month (Tas MAX) in ◦C, mean of minimum temperatures of
the coldest month (Tas MIN) in ◦C.

On the other hand, the presence of the different species varied among the different inventories:
three of the species analyzed showed a decrease in the presence in the III inventory, while A. alba was
almost constant across time (Table 1).

Table 1. Percentage of presences of the different species in Galicia during the three inventories.

Inventory Abies alba Mill. Castanea sativa Mill. Pinus pinaster Ait. Quercus robur L.

II (1980s) 1% 26% 51% 51%
III (1990s) 2% 15% 38% 40%
IV (2000s) 1% 35% 46% 59%
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2.6. Spatial Model

Spatial data are described as realizations of a stochastic process indexed by space:

Y(s) ≡ {y(s), s ε D}, (1)

where D is a (fixed) subset of Rd (here we consider d = 2). The actual data can be then represented by a
collection of observations y = {y(s1), ..., y(sn)}, where the set (s1, ..., sn) indicates the spatial units where
the measurements are taken. Depending on D being a continuous surface or a countable collection
of d-dimensional spatial units, the problem can be specified as a spatially continuous or discrete
random process, respectively [65]. In our case, we can consider a collection of data points with their
presence/absence obtained from the inventory, and the sampled points being the set (s1, ..., sn) of n
points; ys is the presence of each species in each point, and it is specified as:

ys ~Bernoulli(πs) (2)

where πs is the probability of the species being present.
Then, on the logit(πs) a linear model is specified including the different covariates, xms

(Temperatures, precipitation, soil and elevation) and a spatial field ξs:

logit(πs) = ∑M
(m=1) βm xms + ξs, (3)

where M is the number of parameters, and a discretely indexed spatial random process (see [56]) is
included to approximate the continuous process:

ξs = ∑G
(g=1) ϕg (s)ξg, (4)

where G is the total number of vertices of the triangulation.
In practice, the discretization is done dividing the study region in triangles, and writing ξs as a linear

combination of basis functions ϕg weighted by some zero means terms ξg (for more details see [66]).
The vector ξ̃ = {ξ1, ..., ξG} can be modeled as a Gaussian Markov Random Field with a structured

covariance function of the distance.

2.7. Spatio-Temporal Model

The concept of the spatial process can be extended to the spatio-temporal case, including a time
dimension. The data are then defined by a process:

Y(s,t) ≡ {y(s,t), (s,t) ε D ⊂ R2 × R }, (5)

As we define in the spatial model, we can consider a collection of data points with
presence/absence obtained from the inventory and the sampled points are the set (s1, ..., sn) of
n points; yst is the species presence at each point in space and time, specified as:

yst ~Bernoulli(πst), (6)

where πst is the probability of the species being present.
Then, on the logit(πst) a linear model is specified including the different covariates, xms

(Temperatures, precipitation, soil and elevation) and a spatio-temporal fieldωst:

logit(πst) = ∑M
(m=1) βm xms + ωst, (7)

where ωst refers to the latent spatio-temporal process that changes in time with autoregressive
dynamics and spatial correlation innovations, which we model as follows:
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ωst = aωs(t−1) + ξst, (8)

with t = 2, . . . T, |a| < 1 and ωs1~Normal (0, σ2/(1 − a2)). ξst, is a zero-mean Gaussian field that is
temporally independent with the following spatio-temporal covariance:

Cov(ξst,ξju) = {(0, t 6= u; Cov(ξs,ξj), t = u), (9)

for s 6= j, where Cov(ξs,ξj) is modeled through the Matern spatial covariance function [56].

2.8. Implementation

We have used the Integrated Nested Laplace Approximation (INLA) implemented in R-INLA
within the R statistical software.

The R-INLA package solves models using INLA, which is an approach to statistical inference
for latent Gaussian Markov random field (GMRF). The approximation is divided in three stages. The
first stage approximates the posterior marginal of θ using the Laplace approximation. The second
stage calculates the Laplace approximation, or the simplified Laplace approximation, of π(xi|y,θ),
for selected values of θ, in order to improve on the Gaussian approximation. The third process
combines the previous two using numerical integration [57].

In R-INLA, the first step needed to process the geostatistical spatial model through SPDE, is the
triangulation of the spatial domain of the study. We have used inla.mesh.create providing the spatial
coordinates used for estimation. This function executes a constrained refined Delaunay triangulation
for a set of spatial locations: firstly the vertices of the triangles are placed at the observation coordinates,
and then additional vertices are added, in order to satisfy triangulation quality constraints [56].
Depending on the values selected for the arguments of the function, the total number of vertices
changes, with a trade-off between the accuracy of the spatial field representation and the computational
and time costs.

Given the mesh, we create the SPDE model object, to be used later in the specification of the final
expression in our case, the different spatial and spatio-temporal models.

We consider now the triangulation of National Inventories using the inla.mesh.create(.)function.
The function subdivides the region in the triangles, placing the initial vertices at the 2000 station
locations and adding 1328 additional vertices (see Figure 2).
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3. Results

In this section we show how each of the four species previously described has evolved in different
ways during the last 30 years. Note that we present the maps of the posterior mean of the spatial field
from the spatial model, as this model represents better the evolution of the different species.

3.1. Abies alba

As we can see in Figure 3, A. alba started being located in the western and southwestern area of
Galicia. As time passes, it moves to the northern part and expands in the later years to occupy the
western and northern part of the region. This pattern could be explained by the fact that this species
does not tolerate high temperatures, and the southeast of Galicia is characterized by high temperatures
during the summer, so the introduction of this species in this area should be avoided.
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Figure 3. Maps of the posterior mean of the spatial field from the spatial model of A. alba, II, III, and IV
forest inventories (coordinates in m.).

As we can see in Figure 4, A. alba did seem to be affected by the environmental variables in a
different way, depending on the time (inventory) and model (spatial vs spatio-temporal). In the first
instance, we could see that all the variables, except the soil characteristics, have the same behavior in
all the different models, with small negative point estimates, but with credibility intervals excluding
zero. On the other hand, Soil showed a larger point estimate, but with an interval including zero,
which was narrower in the spatio-temporal model.
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Figure 4. Boxplot diagram for the posterior estimates of the covariates for A. alba models: Spatial
model II inventory (SpII); Spatial model III inventory (SpIII); Spatial model IV inventory (SpIV);
Spatio-temporal model (SpT).
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3.2. Castanea sativa

This species is less clustered than the previous one, being mostly present in the central and
northern parts of the region at the beginning of the period considered; as time passes, its presence
becomes more pronounced (III inventory), but it becomes scattered across the whole Galicia during
the last inventory (see Figure 5).
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This species showed a different relationship with the environmental variables if we analyzed
the different models (see Figure 6 below). In the spatio-temporal model, the average annual
temperature was the most important variable, followed by the temperatures of the coldest and
warmest months. Also, in the spatial models, the type of substrate was an important variable followed
by the temperatures. This could be explained by the adaptability of this species to the substrate:
it generally preferred siliceous substrate, but it could be present also in certain calcareous soils if there
were optimum conditions. Also, in this case, we could see different variables behavior between spatial
and spatio-temporal models. Looking at the Elevation, in the II and III inventories, all the values in
the credible interval were positives, but then in the IV inventory and in the spatio-temporal model,
there were negative and positive values. If we compared the credible intervals for the remaining
variables (Soil, Precipitation, Temperature, Maximum emperature, and Minimum Temperature),
we can see similar behaviors in the spatial models with negative and positive values. Moreover,
the spatio-temporal model showed that Soil has a similar performance than the spatial models,
while the other variables show differences. Precipitation and Temperature show positive values in
the credible interval, with values close to zero in Precipitation; Max and Min Temperature showed
negative values in this interval. These results suggest that this species is affected positively by the
temperature, but extreme temperatures can also affect its presence.
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Figure 6. Boxplot diagram for posterior estimates of the covariates for C. sativa models: Spatial model II
inventory (SpII); Spatial model III inventory (SpIII); Spatial model IV inventory (SpIV); Spatio-temporal
model (SpT).

3.3. Pinus pinaster

This species shows similarities with C. sativa: it starts with a low presence, then it becomes present
in the whole area of analysis, but in this case, the posterior mean in inventory IV shows that this
species becomes concentrated in the southern area, with low presences in the interior (see Figure 7).
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Figure 7. Maps of the posterior mean of the spatial field from the spatial model of P. pinaster, II, III, and
IV forest inventories (coordinates in m.).

Moreover, as we can see in Figure 8 below, not only temperatures, but also soil characteristics
(calcareous) are very important in the different models for this species; we could see interesting
differences between the spatial and the spatio-temporal models: in the latter, Temperature (average)
positively affected the presence of the species, and extreme values (Maximum and Minimum),
participated negatively. On the other hand, in spatial models, the most important variable was that the
type of soil, followed by Temperatures in III and IV inventory. This species had a similar behavior to the
previous one. Elevation and Soil had similar credible intervals in spatial and spatio-temporal models,
while there are some differences in the other variables. Looking at Precipitation, in spatial models,
the credible interval had positive and negative values, but only positive values were represented in
the spatio-temporal model. Finally, the Temperature variables (average, maximum and minimum),
had positive and negative values in the credible interval for the II and III inventories, but in the IV
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inventory and spatio-temporal model, all the values were positive in the average, and negatives in
Max. and Min.
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Figure 8. Boxplot diagram for the posterior estimates of the covariates for P. pinaster models: Spatial
model II inventory (SpII); Spatial model III inventory (SpIII); Spatial model IV inventory (SpIV);
Spatio-temporal model (SpT).

3.4. Quercus robur

This species showed an increasing presence in Galicia. During the third inventory, it was present
in almost all of the areas, except the southeastern area (see Figure 9).
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Figure 9. Maps of the posterior mean of the spatial field from the spatial model of Quercus robur, II, III,
and IV forest inventories (coordinates in m.).

As can see in Figure 10, the variables in Q. robur have a similar behavior to C. sativa, except in the
IV inventory model, where the calcareous soil had a very important part in the species distribution.
As we have seen in most of the other species, Elevation had similar credible intervals in all the
different models, in this case, always showing positive values that were close to zero. As we have
seen in C. sativa, the rest of the variables had similar performances in the spatial models and different
performances in the spatio-temporal model (except the Max. Temperature, with similar credible
intervals in all the models). All the variables had 95% credible intervals, including zeros in the spatial
models, while the spatio-temporal model showed positive values in Min. Temperature and negative
values in the Soil, Precipitation, and Temperature.
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Figure 10. Boxplot diagram for posterior estimates of the covariates for Q. robur models: Spatial
model II inventory (SpII); Spatial model III inventory (SpIII); Spatial model IV inventory (SpIV);
Spatio-temporal model (SpT).

3.5. Summary

As we can see in Table 2, most of the species show different relationships with environmental
and climatic variables between the spatial and spatio-temporal models. The positive symbol (+)
summarizes a positive relationship between the variable and the presence; the negative symbol (−)
represents the opposite; Rn does not show a clear relationship with a credible interval with the positives
and negatives values. Also, if we generalize, species with more presences (see Table 1) show larger
differences between models. Also, if we analyse the results from spatial to spatio-temporal models,
typically variables not showing a clear effect become positively or negatively associated with presence,
depending on the species and the variable.

Table 2. Posterior estimates summary. Comparison between variables and presence of different species
in spatial and spatio-temporal models (+) represents a positive relationship, (−) a negative relationship,
and (Rn) not a clear relationship.

Abies alba Castanea sativa Pinus pinaster Quercus robur

Spatial Spatio-Temporal Spatial Spatio-Temporal Spatial Spatio-Temporal Spatial Spatio-Temporal

Elevation − − Rn Rn + + + +
Soil Rn Rn Rn Rn Rn Rn Rn −

Precipitation − − Rn Rn Rn + Rn −
Temperature − − Rn Rn Rn + Rn −

Max. Temperature − − Rn − Rn − Rn Rn
Min. Temperature − − Rn − Rn − Rn −

An usual way to estimate out-of-sample prediction error is cross-validation (see [67,68] for a
Bayesian approach), but scientists have always looked for alternative methods, as cross-validation
involves repeated model fits and it can run into trouble with sparse data [69]. When the aim is
model comparison, the most common index is the DIC [70,71], which, in the same way to the Akaike
information criterion AIC involves two components, a term that measures the goodness of fit, and
a penalty term for growing model complexity. More recently, the Watanabe-Akaike information
criterion WAIC [72] has been suggested as an appropriate alternative for estimating the out-of-sample
expectation in a fully Bayesian approach. This method starts with the calculated log pointwise
posterior predictive density, and then adds a correction for the effective number of parameters to
adjust for overfitting [69]. WAIC works on predictive probability density of observed variables rather
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than on model parameter; hence, it can be applied in singular statistical models (i.e., models with
non-identifiable parameterization, see [73].

We have also considered the conditional predictive ordinate (CPO) [74] to perform model
evaluation. The conditional predictive ordinate (CPO) is established on leave-one-out cross-validation.
CPO estimates the probability of observing a value, after having already observed the others. The mean
logarithmic score (LCPO) was calculated as a measure of the predictive quality of the model [75,76].
High LCPO values indicate possible outliers, high-leverage, and influential observations.

In Table 3, we can see the summary of the WAIC and LCPO values obtained in the different
models for each species (spatial and spatio-temporal models); this shows that, looking at the WAIC,
most of the species have a better fit for the spatio-temporal model with vegetation (except C. sativa),
also looking at LCPO spatial model has more outliers than spatio-temporal models.

Table 3. Watanabe-Akaike information criterion (WAIC) and logarithmic score of conditional predictive
ordinate (LCPO) comparison in species models.

Abies alba Castanea sativa Pinus pinaster Quercus robur

Spatial Spatio-Temporal Spatial Spatio-Temporal Spatial Spatio-Temporal Spatial Spatio-Temporal

WAIC 15.54 12.73 5.435 10.629 4.621 3.385 9.676 1.837
LCPO 1.531 1.251 2.327 2.986 3.725 2.327 2.382 1.965

Summarizing the computational costs of performing the different models, all the models were
executed from the same terminal (laptop Core i7 with 12 GB RAM). Spatial models need between 10
and 30 min to obtain the results. However, spatio-temporal models need between 5 and 12 h to finish
the process.

4. Conclusions

We have built spatial and spatio-temporal models to predict the distributions of four different
species present in the Spanish Forest Inventory. We have compared the different models and show
the relationship between species and environmental variables. We have shown that this relationship
changes between spatial and spatio-temporal models. Most of the spatial models show a vague
relationship with the environmental variables, which becomes more clear when we analyzed all of the
time series when developing the spatio-temporal model. Also, we have shown how the species evolve
in space along time, changing their distributions between the II to the IV inventory.

Initially our aim in this project was to apply these models to the whole of Spain, assuming that
the spatial continuity is essential to understand species distribution. However due to technical issues,
we were not able to finalize this. Currently not all the data from the last inventory are available for
all the provinces, and also some of the areas have different reference systems to locate the parcels.
Another problem was the computational cost; the available resources were not powerful enough to
work with this data volume (more than 90,000 points per inventory).

There are interesting differences between spatial and spatio-temporal models for the different
species. As we have shown, not all the same variables have the same weight in the different models.

Several factors can affect spatial distribution of species. Environmental factors are not the only
variables that can affect this distribution, but socioeconomic factors, policies, and management criteria
can also be important agents that have different impacts in the species presence.

Analysing the models, we can affirm that the use of spatio-temporal models is an advantage for
the understanding of the different ecological dynamics, given the the temporal perspective is not very
frequent in environmental research projects.

We have analyzed the credible interval of the different variables in order to understand the
relationship between the environmental variables and species presence. We can see that some variables
change their “weight” depending of the inventory, and several variables also have the same behavior
in all the inventories, and also along the spatio-temporal model.
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Summarizing, we can generalize that permanent and theoretical inalterable variables have similar
performances in spatial and spatio-temporal models, showing a similar relationship between the
presence of species and these variables along time. Moreover, species presence does not always have a
similar relationship with “non static” variables. This relationship is changing, not only due to changes
in environmental factors, but also based on species management and possible human disturbances.

Spatio-temporal models and the R-INLA package appear to offer additional benefits beyond the
common SDM or spatially-explicit modeling. The combination of using a complex spatial latent field to
capture spatial processes and an underlying simple additive regression model for the response variables
relationship to environmental factors, means that the fixed effects are potentially more straightforward
to interpret [77]. Another benefit of a Bayesian approach is the capture of uncertainty for each predicted
value, with predictive uncertainty being an often ignored aspect of SDM modeling and prediction.
R-INLA models are extremely flexible in their specifications, with spatial autocorrelation and observer
bias being straightforwardly incorporated as random effects, while standard error distributions, such
as Gaussian, Poisson, binomial, and a variety of zero-inflated models, can be used interchangeably [57].
This method, therefore, has a built-in potential for extending SDM analysis away from simple binomial
models by, for example, incorporating two or more types of data [78], hierarchical seasonal models [79],
or fitting point-process models [80]. We hope that our research will aid in the uptake of such fast
spatial Bayesian methods, as this approach shows great promise for other analyses in ecology.

Author Contributions: Conceptualization, O.R.d.R., A.L.-Q. and M.B.; Methodology, O.R.d.R., A.L.-Q and M.B.;
Formal Analysis, O.R.d.R.; Investigation, O.R.d.R.; Data Curation, O.R.d.R.; Writing-Original Draft Preparation,
O.R.d.R.; Writing-Review & Editing, A.L.-Q. and M.B.; Supervision, A.L.-Q. and M.B.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous
satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. [CrossRef]

2. Boisvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity–evidence since the
middle of the 20th century. Glob. Chang. Biol. 2006, 12, 862–882. [CrossRef]

3. Davis, M.B.; Shaw, R.G. Range shifts and adaptive responses to Quaternary climate change. Science 2001,
292, 673–679. [CrossRef] [PubMed]

4. Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems.
Nature 2003, 421, 37–42. [CrossRef] [PubMed]

5. Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008,
320, 1444–1449. [CrossRef] [PubMed]

6. Adams, H.D.; Macalady, A.K.; Breshears, D.D.; Allen, C.D.; Stephenson, N.L.; Saleska, S.R.; Huxman, T.E.;
McDowell, N.G. Climate-induced tree mortality: Earth system consequences. Eos 2010, 91, 153–154.
[CrossRef]

7. Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.;
Carter, T.R.; Gracia, C.A.; et al. Ecosystem service supply and vulnerability to global change in Europe.
Science 2005, 310, 1333–1337. [CrossRef] [PubMed]

8. Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.;
Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European
forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [CrossRef]

9. Spathelf, P.; van der Maaten, E.; van der Maaten-Theunissen, M.; Campioli, M.; Dobrowolska, D. Climate
change impacts in European forests: The expert views of local observers. Ann. For. Sci. 2014, 71, 131–137.
[CrossRef]

10. de Rivera, O.R.; Blangiardo, M.; López-Quílez, A.; Martín-Sanz, I. Species distribution modelling through
Bayesian hierarchical approach. Theor. Ecol. 2018. [CrossRef]

http://dx.doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
http://dx.doi.org/10.1111/j.1365-2486.2006.01134.x
http://dx.doi.org/10.1126/science.292.5517.673
http://www.ncbi.nlm.nih.gov/pubmed/11326089
http://dx.doi.org/10.1038/nature01286
http://www.ncbi.nlm.nih.gov/pubmed/12511946
http://dx.doi.org/10.1126/science.1155121
http://www.ncbi.nlm.nih.gov/pubmed/18556546
http://dx.doi.org/10.1029/2010EO170003
http://dx.doi.org/10.1126/science.1115233
http://www.ncbi.nlm.nih.gov/pubmed/16254151
http://dx.doi.org/10.1016/j.foreco.2009.09.023
http://dx.doi.org/10.1007/s13595-013-0280-1
http://dx.doi.org/10.1007/s12080-018-0387-y


Forests 2018, 9, 573 15 of 17

11. Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; Maaten, E.; Schelhaas, M.J.; Lasch, P.;
Eggers, J.; Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are
the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83.
[CrossRef] [PubMed]

12. Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.J.; Nabuurs, G.J.; Zimmermann, N.E. Climate change may
cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2013, 3, 203–207.
[CrossRef]

13. Maaten, E.; Hamann, A.; Maaten-Theunissen, M.; Bergsma, A.; Hengeveld, G.; Lammeren, R.; Mohren, F.;
Nabuurs, G.J.; Terhürne, R.; Sterck, F. Species distribution models predict temporal but not spatial variation
in forest growth. Ecol. Evol. 2017, 7, 2585–2594. [CrossRef] [PubMed]

14. Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and
time. Ann. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [CrossRef]

15. O’Neill, G.A.; Hamann, A.; Wang, T. Accounting for population variation improves estimates of the impact
of climate change on species’ growth and distribution. J. Appl. Ecol. 2008, 45, 1040–1049. [CrossRef]

16. Gray, L.K.; Hamann, A. Strategies for reforestation under uncertain future climates: Guidelines for Alberta,
Canada. PLoS ONE 2011, 6, e22977. [CrossRef] [PubMed]

17. Gray, L.K.; Hamann, A. Tracking suitable habitat for tree populations under climate change in western North
America. Clim. Chang. 2013, 117, 289–303. [CrossRef]

18. Hamann, A.; Aitken, S.N. Conservation planning under climate change: Accounting for adaptive potential
and migration capacity in species distribution models. Divers. Distrib. 2013, 19, 268–280. [CrossRef]

19. Schelhaas, M.J.; Nabuurs, G.J.; Hengeveld, G.; Reyer, C.; Hanewinkel, M.; Zimmermann, N.E.; Cullmann, D.
Alternative forest management strategies to account for climate change-induced productivity and species
suitability changes in Europe. Reg. Environ. Chang. 2015, 15, 1581–1594. [CrossRef]

20. Hijmans, R.J.; Elith, J.; Species Distribution Modelling with R. The R Foundation for Statistical
Computing. Available online: http://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf
(accessed on 5 May 2018).

21. Simpson, D.; Lindgren, F.; Rue, H. Fast approximate inference with INLA: The past, the present and the
future. arXiv 2011, arXiv:1105.2982.

22. Chakraborty, A.; Gelfand, A.E.; Wilson, A.M.; Latimer, A.M.; Silander, J.A., Jr. Modeling large scale species
abundance with latent spatial processes. Ann. Appl. Stat. 2010, 4, 1403–1429. [CrossRef]

23. Pressey, R.L.; Cabeza, M.; Watts, M.E.; Cowling, R.M.; Wilson, K.A. Conservation planning in a changing
world. Trends Ecol. Evol. 2007, 22, 583–592. [CrossRef] [PubMed]

24. Midgley, G.F.; Thuiller, W. Potential vulnerability of Namaqualand plant diversity to anthropogenic climate
change. J. Arid Environ. 2007, 70, 615–628. [CrossRef]

25. Loarie, S.R.; Carter, B.E.; Hayhoe, K.; McMahon, S.; Moe, R.; Knight, C.A.; Ackerly, D.D. Climate change and
the future of California’s endemic flora. PLoS ONE 2008, 3, e2502. [CrossRef] [PubMed]

26. Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett.
2005, 8, 993–1009. [CrossRef]

27. Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on
species distributions. Glob. Chang. Biol. 2006, 12, 2272–2281. [CrossRef]

28. Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. Effects of sample size on the
performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [CrossRef]

29. Rivera, Ó.R.; López-Quílez, A. Development and Comparison of Species Distribution Models for Forest
Inventories. ISPRS Int. J. Geo-Inf. 2017, 6, 176. [CrossRef]

30. Guisan, A.; Edwards, T.C.; Hastie, T. Generalized linear and generalized additive models in studies of species
distributions: Setting the scene. Ecol. Model. 2002, 157, 89–100. [CrossRef]

31. Busby, J. BIOCLIM—A bioclimate analysis and prediction system. Plant Prot. Q. (Aust.) 1991, 6, 64–68.
32. Leathwick, J.R.; Rowe, D.; Richardson, J.; Elith, J.; Hastie, T. Using multivariate adaptive regression splines

to predict the distributions of New Zealand’s freshwater diadromous fish. Freshw. Biol. 2005, 50, 2034–2052.
[CrossRef]

33. Munoz, F.; Pennino, M.G.; Conesa, D.; López-Quílez, A.; Bellido, J.M. Estimation and prediction of the
spatial occurrence of fish species using Bayesian latent Gaussian models. Stoch. Environ. Res. Risk Assess.
2013, 27, 1171–1180. [CrossRef]

http://dx.doi.org/10.1016/j.jenvman.2014.07.030
http://www.ncbi.nlm.nih.gov/pubmed/25156267
http://dx.doi.org/10.1038/nclimate1687
http://dx.doi.org/10.1002/ece3.2696
http://www.ncbi.nlm.nih.gov/pubmed/28428849
http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159
http://dx.doi.org/10.1111/j.1365-2664.2008.01472.x
http://dx.doi.org/10.1371/journal.pone.0022977
http://www.ncbi.nlm.nih.gov/pubmed/21853061
http://dx.doi.org/10.1007/s10584-012-0548-8
http://dx.doi.org/10.1111/j.1472-4642.2012.00945.x
http://dx.doi.org/10.1007/s10113-015-0788-z
http://cran.r-project.org/ web/packages/dismo/vignettes/sdm.pdf
http://dx.doi.org/10.1214/10-AOAS335
http://dx.doi.org/10.1016/j.tree.2007.10.001
http://www.ncbi.nlm.nih.gov/pubmed/17981360
http://dx.doi.org/10.1016/j.jaridenv.2006.11.020
http://dx.doi.org/10.1371/journal.pone.0002502
http://www.ncbi.nlm.nih.gov/pubmed/18648541
http://dx.doi.org/10.1111/j.1461-0248.2005.00792.x
http://dx.doi.org/10.1111/j.1365-2486.2006.01256.x
http://dx.doi.org/10.1111/j.1472-4642.2008.00482.x
http://dx.doi.org/10.3390/ijgi6060176
http://dx.doi.org/10.1016/S0304-3800(02)00204-1
http://dx.doi.org/10.1111/j.1365-2427.2005.01448.x
http://dx.doi.org/10.1007/s00477-012-0652-3


Forests 2018, 9, 573 16 of 17

34. Underwood, A.J. Techniques of analysis of variance in experimental marine biology and ecology.
Oceanography and marine biology: An annual review. Ann. Rev. Oceanogr. Mar. Biol. 1981, 19, 513–605.

35. Hurlbert, S.H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 1984, 54,
187–211. [CrossRef]

36. Royle, J.A.; Kéry, M.; Gautier, R.; Schmid, H. Hierarchical spatial models of abundance and occurrence from
imperfect survey data. Ecol. Monogr. 2007, 77, 465–481. [CrossRef]

37. Cressie, N.; Calder, C.A.; Clark, J.S.; Hoef, J.M.V.; Wikle, C.K. Accounting for uncertainty in ecological
analysis: The strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 2009, 19, 553–570.
[CrossRef] [PubMed]

38. Gelfand, A.E.; Diggle, P.J.; Fuentes, M.; Guttorp, P. (Eds.) Handbook of Spatial Statistics; CRC Press: Boca Raton,
FL, USA, 2010.

39. Svenning, J.C.; Normand, S.; Kageyama, M. Glacial refugia of temperate trees in Europe: Insights from
species distribution modelling. J. Ecol. 2008, 96, 1117–1127. [CrossRef]

40. López Sáez, J.A.; López García, P.; López Merino, L. La transición Mesolítico-Neolítico en el Valle Medio del
Ebro y en el Prepirineo aragonés desde una perspectiva paleoambiental: Dinámica de la antropización y
origen de la agricultura. Rev. Iberoam. Hist. 2006, 1, 4–11.

41. López Sáez, J.A.; López García, P.; López Merino, L. El impacto humano en la Cordillera Cantábrica: Estudios
palinológicos durante el Holoceno medio. Zona Arqueol. 2006, 7, 122–131.

42. López Sáez, J.A.; Galop, D.; Iriarte Chiapusso, M.J.; López Merino, L. Paleoambiente y antropización en los
Pirineos de Navarra durante el Holoceno medio (VI–IV milenios cal. BC): Una perspectiva palinológica.
Veleia 2008, 24–25, 645–653.

43. Carrión, J.S.; Fuentes, N.; González-Sampériz, P.; Quirante, L.S.; Finlayson, J.C.; Fernández, S.; Andrade, A.
Holocene environmental change in a montane region of southern Europe with a long history of human
settlement. Quat. Sci. Rev. 2007, 26, 1455–1475. [CrossRef]

44. Matejicek, L.; Vavrova, E.; Cudlin, P. Spatio-temporal modelling of ground vegetation development in
mountain spruce forests. Ecol. Model. 2011, 222, 2584–2592. [CrossRef]

45. Gratzer, G.; Canham, C.; Dieckmann, U.; Fischer, A.; Iwasa, Y.; Law, R.; Lexer, M.J.; Sandmann, H.; Spies, T.A.;
Splechtna, B.E.; et al. Spatio-temporal development of forests–current trends in field methods and models.
Oikos 2004, 107, 3–15. [CrossRef]

46. O’Rourke, S.; Kelly, G.E. Spatio-temporal modelling of forest growth spanning 50 years—The effects of
different thinning strategies. Procedia Environ. Sci. 2015, 26, 101–104. [CrossRef]

47. Diggle, P.J. Statistical Analysis of Spatial Point Patterns; Arnold: London, UK, 2003.
48. Stoyan, D.; Penttinen, A. Recent applications of point process methods in forestry statistics. Stat. Sci. 2000,

15, 61–78.
49. Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns;

John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 70.
50. Grabarnik, P.; Särkkä, A. Modelling the spatial structure of forest stands by multivariate point processes

with hierarchical interactions. Ecol. Model. 2009, 220, 1232–1240. [CrossRef]
51. Cosandey-Godin, A.; Krainski, E.T.; Worm, B.; Flemming, J.M. Applying Bayesian spatiotemporal models to

fisheries bycatch in the Canadian Arctic. Can. J. Fish. Aquat. Sci. 2014, 72, 186–197. [CrossRef]
52. Wade, P.R. Bayesian methods in conservation biology. Conserv. Biol. 2000, 14, 1308–1316. [CrossRef]
53. Wintle, B.A.; McCarthy, M.A.; Volinsky, C.T.; Kavanagh, R.P. The use of Bayesian model averaging to better

represent uncertainty in ecological models. Conserv. Biol. 2003, 17, 1579–1590. [CrossRef]
54. Illian, J.B.; Martino, S.; Sørbye, S.H.; Gallego-Fernández, J.B.; Zunzunegui, M.; Esquivias, M.P.; Travis, J.M.

Fitting complex ecological point process models with integrated nested Laplace approximation. Methods Ecol.
Evol. 2013, 4, 305–315. [CrossRef]

55. Rue, H.; Martino, S. Approximate Bayesian inference for hierarchical Gaussian Markov random field models.
J. Stat. Plan. Inference 2007, 137, 3177–3192. [CrossRef]

56. Lindgren, F.; Rue, H.; Lindström, J. An explicit link between Gaussian fields and Gaussian Markov random
fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B 2011, 73, 423–498. [CrossRef]

57. Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using
integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B 2009, 71, 319–392. [CrossRef]

http://dx.doi.org/10.2307/1942661
http://dx.doi.org/10.1890/06-0912.1
http://dx.doi.org/10.1890/07-0744.1
http://www.ncbi.nlm.nih.gov/pubmed/19425416
http://dx.doi.org/10.1111/j.1365-2745.2008.01422.x
http://dx.doi.org/10.1016/j.quascirev.2007.03.013
http://dx.doi.org/10.1016/j.ecolmodel.2010.11.010
http://dx.doi.org/10.1111/j.0030-1299.2004.13063.x
http://dx.doi.org/10.1016/j.proenv.2015.05.008
http://dx.doi.org/10.1016/j.ecolmodel.2009.02.021
http://dx.doi.org/10.1139/cjfas-2014-0159
http://dx.doi.org/10.1046/j.1523-1739.2000.99415.x
http://dx.doi.org/10.1111/j.1523-1739.2003.00614.x
http://dx.doi.org/10.1111/2041-210x.12017
http://dx.doi.org/10.1016/j.jspi.2006.07.016
http://dx.doi.org/10.1111/j.1467-9868.2011.00777.x
http://dx.doi.org/10.1111/j.1467-9868.2008.00700.x


Forests 2018, 9, 573 17 of 17

58. Beguin, J.; Martino, S.; Rue, H.; Cumming, S.G. Hierarchical analysis of spatially autocorrelated ecological
data using integrated nested Laplace approximation. Methods Ecol. Evol. 2012, 3, 921–929. [CrossRef]

59. Dutra Silva, L.; Brito de Azevedo, E.; Bento Elias, R.; Silva, L. Species Distribution Modeling: Comparison of
Fixed and Mixed Effects Models Using INLA. ISPRS Int. J. Geo-Inf. 2017, 6, 391. [CrossRef]

60. San-Miguel-Ayanz, J.; Rigo, D.D.; Caudullo, G.; Houston Durrant, T.; Mauri, A. European Atlas of Forest Tree
Species; European Commission, Joint Research Centre: Brussels, Belgium, 2016.

61. Herrera, S.; Gutiérrez, J.M.; Ancell, R.; Pons, M.R.; Frías, M.D.; Fernández, J. Development and analysis of a
50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int. J. Climatol. 2012, 32,
74–85. [CrossRef]

62. Herrera, S.; Fernández, J.; Gutiérrez, J.M. Update of the Spain02 gridded observational dataset for
EURO-CORDEX evaluation: Assessing the effect of the interpolation methodology. Int. J. Climatol. 2016, 36,
900–908. [CrossRef]

63. Gastón, A.; Soriano, C.; Gómez-Miguel, V. Lithologic data improve plant species distribution models based
on coarse-grained occurrence data. For. Syst. 2009, 18, 42–49.

64. Van Liedekerke, M.; Jones, A.; Panagos, P. ESDBv2 Raster Library—A Set of Rasters Derived from the European
Soil Database Distribution v2.0; European Commission and the European Soil Bureau Network, CDROM,
EUR, 19945; European Commission: Brussels, Belgium, 2006.

65. Gelfand, A.E.; Silander, J.A.; Wu, S.; Latimer, A.; Lewis, P.O.; Rebelo, A.G.; Holder, M. Explaining species
distribution patterns through hierarchical modeling. Bayesian Anal. 2006, 1, 41–92. [CrossRef]

66. Blangiardo, M.; Cameletti, M. Spatial and Spatio-Temporal Bayesian Models with R-INLA; John Wiley & Sons:
Hoboken, NJ, USA, 2015.

67. Geisser, S.; Eddy, W.F. A predictive approach to model selection. J. Am. Stat. Assoc. 1979, 74, 153–160.
[CrossRef]

68. Vehtari, A.; Lampinen, J. Bayesian model assessment and comparison using cross-validation predictive
densities. Neural Comput. 2002, 14, 2439–2468. [CrossRef] [PubMed]

69. Gelman, A.; Shalizi, C.R. Philosophy and the practice of Bayesian statistics. Br. J. Math. Stat. Psychol. 2013,
66, 8–38. [CrossRef] [PubMed]

70. Spiegelhalter, D.; Best, N.G.; Carlin, B.P.; Van der Linde, A. Bayesian measures of model complexity and fit.
Qual. Control Appl. Stat. 2003, 48, 431–432. [CrossRef]

71. Van Der Linde, A. DIC in variable selection. Stat. Neerl. 2005, 59, 45–56. [CrossRef]
72. Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion

in singular learning theory. J. Mach. Learn. Res. 2010, 11, 3571–3594.
73. Li, L.; Qiu, S.; Zhang, B.; Feng, C.X. Approximating cross-validatory predictive evaluation in Bayesian latent

variable models with integrated IS and WAIC. Stat. Comput. 2016, 26, 881–897. [CrossRef]
74. Pettit, L.I. The conditional predictive ordinate for the normal distribution. J. R. Stat. Soc. Ser. B 1990, 52,

175–184.
75. Gneiting, T.; Raftery, A.E. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 2007,

102, 359–378. [CrossRef]
76. Roos, M.; Held, L. Sensitivity analysis in Bayesian generalized linear mixed models for binary data.

Bayesian Anal. 2011, 6, 259–278. [CrossRef]
77. Golding, N.; Purse, B.V. Fast and flexible Bayesian species distribution modelling using Gaussian processes.

Methods Ecol. Evol. 2016, 7, 598–608. [CrossRef]
78. Warton, D.I.; Blanchet, F.G.; O’Hara, R.B.; Ovaskainen, O.; Taskinen, S.; Walker, S.C.; Hui, F.K. So Many

Variables: Joint Modeling in Community Ecology. Trends Ecol. Evol. 2015, 30, 766–779. [CrossRef] [PubMed]
79. Redding, D.W.; Cunningham, A.A.; Woods, J.; Jones, K.E. Spatial and seasonal predictive models of Rift

Valley Fever disease. Philos. Trans. R. Soc. Lond. B 2016, 372, 20160165. [CrossRef] [PubMed]
80. Renner, I.W.; Warton, D.I. Equivalence of MAXENT and Poisson Point Process Models for Species

Distribution Modeling in Ecology. Biometrics 2013, 69, 274–281. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.2041-210X.2012.00211.x
http://dx.doi.org/10.3390/ijgi6120391
http://dx.doi.org/10.1002/joc.2256
http://dx.doi.org/10.1002/joc.4391
http://dx.doi.org/10.1214/06-BA102
http://dx.doi.org/10.1080/01621459.1979.10481632
http://dx.doi.org/10.1162/08997660260293292
http://www.ncbi.nlm.nih.gov/pubmed/12396570
http://dx.doi.org/10.1111/j.2044-8317.2011.02037.x
http://www.ncbi.nlm.nih.gov/pubmed/22364575
http://dx.doi.org/10.1111/1467-9868.00353
http://dx.doi.org/10.1111/j.1467-9574.2005.00278.x
http://dx.doi.org/10.1007/s11222-015-9577-2
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1214/11-BA609
http://dx.doi.org/10.1111/2041-210X.12523
http://dx.doi.org/10.1016/j.tree.2015.09.007
http://www.ncbi.nlm.nih.gov/pubmed/26519235
http://dx.doi.org/10.1098/rstb.2016.0165
http://www.ncbi.nlm.nih.gov/pubmed/28584173
http://dx.doi.org/10.1111/j.1541-0420.2012.01824.x
http://www.ncbi.nlm.nih.gov/pubmed/23379623
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Abies alba Mill. 
	Castanea sativa Mill. 
	Pinus pinaster Ait. 
	Quercus robur L. 
	Environmental Variables 
	Spatial Model 
	Spatio-Temporal Model 
	Implementation 

	Results 
	Abies alba 
	Castanea sativa 
	Pinus pinaster 
	Quercus robur 
	Summary 

	Conclusions 
	References

