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Abstract: Wood formation is the primary biological process through which carbon is durably
sequestered in woody plants, and is thus a major contributor to mitigate climate change. We analyzed
the tree growth patterns of four conifer species across the Iberian Peninsula (IP) based on a dense
dendrochronological network (179 sites) combined with a high resolution climate dataset. Generalized
linear-mixed models were used to predict the potential tree growth of different pine species under
different climate conditions considering different age classes. We found a strong age dependency
of tree growth, significant variations across the climate gradients, and a significant interaction of
both age and climate effects on the four species considered. Overall, Pinus halepensis was the species
with the highest climate sensitivity and the highest growth rates in all age classes and across its
distribution area. Due to its stronger plastic character and its potential adaptability, Pinus halepensis
was demonstrated to be the most suitable species in terms of tree growth and potentiality to enhance
carbon sequestration in the IP. Since its potential distribution largely exceeds its actual distribution,
P. halepensis arises as a key species to cope with future climate conditions and to keep fixing carbon
regardless of the climatic circumstances.

Keywords: tree-rings; dendrochronology; basal area increment; Generalized Linear Mixed-Effects
models; Pinus halepensis; Pinus sylvestris; Pinus uncinata; Pinus nigra; climate; age-effects

1. Introduction

Forests world-wide are known as major biotic long-term storage for carbon and therefore play
an important role in the global carbon cycle. Biomass formation is the primary biological process
through which carbon is sequestered by plants via photosynthesis. Specifically, wood formation is
the main contributor to the global net of the forest carbon sink of about 2.5 petagrams of carbon per
year [1]. As the forest grows and produces wood, around 15% of the anthropogenic carbon dioxide
(CO2) emissions are absorbed in the process, helping to mitigate climate change [1–3]. However,
the patterns of terrestrial carbon exchange may already be changing as a consequence of land-cover
and use modifications and large-scale environmental changes [4]. Higher rates of forest growth and
enhanced wood production are projected to occur in northern boreal and temperate zones due to
increasing temperatures and CO2 and nitrogen fertilization [5–7]. Contrarily, predictions forecast
a decrease in forest productivity over Mediterranean climates, because the tree growth enhancement
produced by fertilization is not expected to compensate for the possible constrains resulting from
changes in temperature and rainfall [8]. Despite recent advances, large uncertainties and knowledge
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gaps remain in the response of the global carbon cycle to continuing climate change [9] and the exact
estimation of forest productivity is currently hampered by our limited understanding of the climatic
drivers of wood formation as a function of species, ecological conditions, and geographic location [10].

Tree secondary growth as annual basal area increments represents a direct proxy for forest
ecosystem performance, and can be derived from dendrochronological records [11]. Growth
measurements obtained from increment cores are tightly linked with stem productivity and with
the stand-level net primary growth, and their analysis provides key information for understanding
the carbon-location within trees [12]. In addition, tree secondary growth data is shown to be
broadly compatible with productivity estimations from forest inventory data [13], eddy-covariance
measurements [14], and carbon budget models [15]. Moreover, dendroclimatological studies provide
insights on the actual influence of environmental constraints on tree biomass, the species-specific
influence of climate drivers in tree growth, and how such influences can vary during their life
trajectory [16]. Furthermore, the establishment of regional-scale networks allowed the spatial and
species-specific growth response patterns to be connected with thermal and moisture variations within
particular climatic zones [17–23].

In this regard, numerous dendroclimatological studies have provided new insights on the
influence of climate variability on different forest species across the Mediterranean area, particularly
in the Iberian Peninsula [24–29]. Species-specific climatic drivers have been identified and their
influence has been quantified. Also, the geographical variations in climate influences have been
highlighted [23,30–32]. However, tree-ring chronology classical procedures include standardizations to
remove biological trends and non-climate signals in tree-ring measurements by transforming growth
width into growth indices [33–35]. As a consequence, despite the fact that the patterns of growth are
well known to vary over the life span of trees, a detailed quantification of how aging effects growth
and how this differs between species or across the geographical range of the distribution of species is
rare in dendrochronological studies [16,36]. Similarly, growth magnitude is removed from tree-ring
series by the detrending process and so studies focused on comparisons of growth rates between
species or variations in growth rates across environmental gradients are also rare.

Here, we perform an Iberian peninsula-wide analysis of tree growth patterns based on an extensive
dendrochronological network of 179 tree stands of four key coniferous species. The sampling points
are spread along the complete climatic gradients present on the different species distribution, including
a wide range of age classes. The dendrochronological network is combined with a high resolution
climate dataset [37,38] to assess (1) how tree-growth and the influence of the climate drivers vary
with tree age; (2) how climate-growth relationships vary across species’ distribution; and (3) how
growth and climate influence (and its variations) differ between species. The final aim is to successfully
quantify the nature of those effects (i.e., age, climatic gradient, and species) on tree growth to improve
the knowledge on their potential impact on forest productivity.

2. Methods

2.1. Study Area and Dendroclimatic Dataset

The study region essentially comprises the Mediterranean climate region of the Iberian Peninsula
where we sampled and compiled raw tree-ring width information from a total of 179 study sites
(Figure 1) of four different Pinaceae species (Pinus halepensis Mill., Pinus sylvestris L., Pinus uncinata
Ram., and Pinus nigra Arnold.). Over all the study sites, 39 were free-access sites downloaded from
The International Tree-Ring Data Bank (ITRDB), 19 came from the Spanish National Research Council
(CSIC) and the University of Zaragoza, and the rest (i.e., 121) were sampled by the University of
Zaragoza. Altogether, the tree-rings of 2982 trees and 5637 cores have been analyzed. A catalogue of
179 sites is available in Table S1.
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covered by the sampling ranged from 1 m a.s.l. (in the case of Pinus halepensis growing close to 
Mediterranean shore) to 2100 m a.s.l. (in the case of Pinus uncinata sampling point in the Pyrenees). 
Trees were cored from two to three times each using Pressler increment borers. The cores were 
air-dried, mounted on wooden supports, and sanded to obtain a radial section. Later, the cores were 
scanned and cross-dated using CooRecorder v8.0 software (Cybis Elektronik & Data AB. 
Saltsjöbaden, Sweden) [39] and verified using COFECHA software [33]. The tree-ring width 
measurement was done to the nearest 0.01 mm with the TSAP-Win program and a LINTAB™ 5 
measuring device (Rinntech, Heidelberg, Germany) 

In the case of cores were the pith was reached, the cambial age at breast height of each 
individual tree-ring was directly calculated from counts of the annual growth rings in the sample. In 
cores without pith or those measurements obtained from external sources, the pith-offset 
estimations were calculated by fitting a geometric pith locator to the innermost ring [40]. Then, after 
calculating the missing rings to the pith, the cambial age was estimated by adding the counted 
tree-rings in the oldest sample of the tree and the estimated missing rings. Then, the tree-ring width 
series were converted into basal area increment (BAI), which accounts for the geometrical constraint 
of adding a volume of wood to a stem of an increasing radius [41]. Locally absent tree-rings in the 
cores were previously assigned to have a width of 1/100 mm. The BAI series for each tree was 
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The monthly mean temperature and total monthly precipitation from the closest gridpoint to 
each forest site were obtained from the high resolution SPREAD (Spanish PREcipitation At Daily 
scale) climate dataset [37]. Annual precipitation and mean annual temperature, calculated from the 
previous September to the current August, were calculated for each site and year to describe the 

Figure 1. Sampling points location map.

At each site sampled by the University of Zaragoza, five to 88 mature, healthy, and dominant trees
were selected and cored at breast height (1.3 m) between 2000 and 2016. The range of altitudes covered
by the sampling ranged from 1 m a.s.l. (in the case of Pinus halepensis growing close to Mediterranean
shore) to 2100 m a.s.l. (in the case of Pinus uncinata sampling point in the Pyrenees). Trees were cored
from two to three times each using Pressler increment borers. The cores were air-dried, mounted on
wooden supports, and sanded to obtain a radial section. Later, the cores were scanned and cross-dated
using CooRecorder v8.0 software (Cybis Elektronik & Data AB. Saltsjöbaden, Sweden) [39] and verified
using COFECHA software [33]. The tree-ring width measurement was done to the nearest 0.01 mm
with the TSAP-Win program and a LINTAB™ 5 measuring device (Rinntech, Heidelberg, Germany).

In the case of cores were the pith was reached, the cambial age at breast height of each individual
tree-ring was directly calculated from counts of the annual growth rings in the sample. In cores without
pith or those measurements obtained from external sources, the pith-offset estimations were calculated
by fitting a geometric pith locator to the innermost ring [40]. Then, after calculating the missing rings
to the pith, the cambial age was estimated by adding the counted tree-rings in the oldest sample of the
tree and the estimated missing rings. Then, the tree-ring width series were converted into basal area
increment (BAI), which accounts for the geometrical constraint of adding a volume of wood to a stem
of an increasing radius [41]. Locally absent tree-rings in the cores were previously assigned to have
a width of 1/100 mm. The BAI series for each tree was obtained by using the formula:

BAIt,y = π
(

r2
t,y − r2

t,y−1

)
(1)

where rt,y and rt,y−1 are the stem radii corresponding to the tree t for years y and y − 1, respectively.
Finally, a mean BAI series for each individual tree was calculated by averaging BAI series of the cores
corresponding to each tree.

The monthly mean temperature and total monthly precipitation from the closest gridpoint to
each forest site were obtained from the high resolution SPREAD (Spanish PREcipitation At Daily
scale) climate dataset [37]. Annual precipitation and mean annual temperature, calculated from the
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previous September to the current August, were calculated for each site and year to describe the
climate conditions which occurred during the year of each tree-ring formation. Since SPREAD spans
from 1950 to 2014, the dendroclimatic dataset was limited to the common period.

In order to highlight the most distinct climate gradient across the study area, mean annual
temperature and total annual precipitation were combined into a single simple parameter representing
a measure of the precipitation effectiveness. We used the aridity index (AI) proposed by De Martonne
(1926) [42], which is calculated by using the formula:

AIs,y =
Ps,y

10 + Ts,y
(2)

where Ps,y is the total precipitation (in mm) which occurred in site s in the year y and Ts,y is the mean
annual temperature (in ◦C) which occurred in site s in the year y. Climate types defined by AI ranges
from arid (0–10) to semi-arid (10–20), Mediterranean (20–24), semi-humid (24–28), humid (28–35), very
humid (35–55), and extremely humid (>55).

2.2. Analyzed Variables

For the study period 1950–2014, a total of 147,337 tree-rings were used. The age structure of
analyzed tree-rings is shown in Figure 2b. For all four analyzed species, the juvenile phase of tree
growth was well represented in the dendroclimatological dataset. The cambial age of the tree-rings
of P. halepensis (PIHA) ranged from 1 to 215, with a median of 42 years. The oldest tree-rings for
P. sylvestris (PISY), P. uncinata (PIUN), and P. nigra (PINI) are 505, 528, and 939 years, with a median of
82, 124, and 220 years, respectively.
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Figure 2. Density distribution of tree-rings with regards to (a) their distribution in different aridity
conditions, (b) their cambial age, and (c) the basal area increment that they represent.

Density profiles were calculated using the density generic function in R computing environment,
which computes kernel density estimates. Globally, the climate range represented in the dendroclimatic
dataset largely included all climate types defined by the aridity index (Figure 2a). PIHA populations
are located in the more xeric sites of the study area, where mean annual precipitation can be lower
than 210 mm, and in extremely dry years, even lower than 60 mm. Mean annual temperatures can
be, in contrast, higher than 18.2 ◦C, with extremely warm years that can reach 19.6 ◦C. Consequently,
PIHA tree-rings included in our dataset have, on average, lower AI values (median of 18.11) compared
with other studied species (i.e., 50.2 for PINI, 51.8 for PISY, and 85.0 for PIUN). In the case of PIHA,
tree rings formed under arid conditions (AI < 10) are well represented in our dataset (n = 7599),
including nearly all age classes of the species (tree-rings from one to 211 years old). The presence of
PIHA tree-rings with well represented age classes extended up to extremely humid conditions (of AI
up to 86). The presence of tree-rings that formed under arid conditions is much lower in the other
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pine species (PISY: n = 325; PINI: n = 228; PIUN: n = 0) including, in addition, a limited number of
age classes. A representative number of tree-rings of PISY span from semiarid conditions (AI = 10)
to extremely humid conditions, (AI = 142), while tree-rings of PINI and PIUN are restricted to the
Mediterranean AI climate type (AI > 20 in PINI and AI > 22 in PIUN), but also reach the extremely
humid type climate (AI = 122 in PINI and AI up to 299 in PIUN).

Individual tree annual basal area increments, as recorded in the dendroclimatic dataset, have
been used as the primary variable of interest for the tests identifying differences among species and to
test for the effect of tree age and the aridity gradient in tree growth. BAI shows a skewness distribution
in all four species analyzed. The median annual BAI in the tree-rings included in the dataset are 753,
1086, 999, and 589 mm2 for PIUN, PISY, PIHA, and PINI, respectively. Density profiles of the BAI of
each species are shown in Figure 2c.

2.3. Statistical Procedures

Generalized linear-mixed models were used to evaluate the effect of tree-age (AGE) and aridity
gradient on BAI and their differential effects on studied species (SPECIES). The annual BAI value was
used as a dependent variable and their corresponding SPECIES, AI, and AGE values as predictors (fixed
factors). The interaction between them was also considered in the models. Since both dependent and
independent variables have a skewed distribution, all variables have been logarithmically transformed
before model computation. Then, log transformed AGE and AI were standardized to have a zero mean
and a standard deviation of one to ensure that the predictors used will be on the same scales. In addition,
since BAI represents repeated measures over the same individuals, tree identity was also included in the
models as a random factor. Analyses were performed in R environment and the lme4 package was used
to produce Generalized Linear Mixed-Effect models [43]. Since Log (BAI) cannot obtain negative values,
the model was constructed using the Poisson family to describe the error distribution. Then, a final full
model was constructed according to the equations (formula in R language).

glmer(log(BAI) ∼ SPECIES ∗ log(AI)std ∗ log(AGE)std ∗ (1|TREE), (3)

f amily = poisson(link = “ log ”)

The accuracy of the model was evaluated using a likelihood ratio test by comparing the obtained
model (full model) with a set of restricted models where the explanatory variables of interest are
sequentially omitted (leave-one-out validation analysis) until it only includes the intercept term (null
model). The p-value of the likelihood ratio test that compares the full and reduced models was
calculated using the chi-square test and its related probability level (P) [44]. In addition, the explained
variance (r2) of each model was also computed.

Then, the model with the better performance was selected and applied to obtain BAI predictions
for a theoretical tree across the matrix-range of AI and AGE values where each species is present in the
original dataset (Figure 3). Finally, the predicted cumulative BAI was calculated for a theoretical tree
from age one to age 100 years growing in the different climate type AI classes as a general overview of
species performance.
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Figure 3. Matrix range of aridity gradient and age (AI-AGE) describing the space where species are
present and/or coexist.

3. Results

3.1. Accuracy of Predictive Models

Generalized mixed models constructed to predict BAI using AGE, AI, and SPECIES as fixed
factors were strongly significant, and all three factors included and the interactions between them
were also significant (Table 1). The performance of full models significantly differed from null models,
showing lower AIC (Akaike information criterion) weight and significantly higher explained variance.

Table 1. Accuracy assessment of the models. Parameters: Df (number of parameters in the
model), AIC (Akaike information criterion), BIC or SBC (Schwarz’s Bayesian criterion), logLiK
(log-likelihood function), Chisq (Chi-squared test), Chi_Df (Chi-squared degrees of fredom), and
Pr(>Chisq) (significance level).

Df AIC BIC LogLik Deviance Chisq Chi_Df Pr(>Chisq)

AI*AGE model 5 5,543,529 5,543,579 −2,771,760 5,543,519
SPECIES*AI*AGE 17 5,298,138 5,298,307 −2,649,052 5,298,104 245,415 12 <2 × 10−16

Null model 2 6,361,579 6,361,598 −3,180,787 6,361,575
SPECIES*AI*AGE 17 5,298,138 5,298,307 −2,649,052 5,298,104 1,063,470 15 <2 × 10−16

Parameters of the final models obtained for each species are shown in Table 2. The observed and
the predicted values for BAI according to these models, including the explained variance (r2) in each
case, are shown in Figure 4.

Table 2. Parameters of Basal Area Index models of the analyzed species. AI, AGE, and AI:AGE
(interaction between the aridity index and the tree age).

Estimate Std. Error z Value Pr(>|z|)

PISY

(Intercept) 9.68e+00 1.69e-03 5718 <2e-16
AI 1.04e-02 1.04e-04 101 <2e-16

AGE 3.54e-02 1.06e-04 335 <2e-16
AI:AGE 4.22e-03 9.48e-05 45 <2e-16

PIUN
(Intercept) 9.65e+00 2.68e-03 3595 <2e-16

AI 4.97e-03 1.48e-04 34 <2e-16
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Table 2. Cont.

Estimate Std. Error z Value Pr(>|z|)

AGE 4.87e-02 2.41e-04 202 <2e-16
AI:AGE 7.12e-03 1.45e-04 49 <2e-16

PIHA

(Intercept) 9.74e+00 1.64e-03 5945 <2e-16
AI 6.04e-02 9.47e-05 638 <2e-16

AGE 5.12e-02 9.43e-05 543 <2e-16
AI*AGE 1.71e-02 8.41e-05 203 <2e-16

PINI

(Intercept) 9.60e+00 2.64e-03 3640 <2e-16
AI 3.49e-03 1.63e-04 21 <2e-16

AGE 6.15e-02 2.14e-04 287 <2e-16
AI:AGE 7.69e-04 1.40e-04 6 3.79e-08
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Figure 4. Basal Area Index predicted (log) using the Generalized Linear Mixed-Effects models versus
the observed BAI (log). The explained variance of the models (r2) is shown. The asterisk indicates
a significance level p < 0.001.

The analysis confirms a strong dependency effect of the annual BAI of the four species in relation
to AGE and also strong and significant variations across the aridity gradient (Table 2). Altogether,
variations in AI and AGE are able to explain 58% of the total variance in BAI in the case of PIHA and
68%, 76%, and 77% in the case of PINI, PISY, and PIUN, respectively (Figure 4a–d).

3.2. Age Effect on BAI Performance and Differences Along AI Gradient

In all four species, annual BAI significantly increases as trees became older and as aridity
conditions decrease (higher AI values). The interaction between these two factors is, in addition,
significant in all four species, suggesting that the AGE effects differ across the aridity gradient (see
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models estimates in Table 2). Patterns of variation of BAI for all existing age classes and AI conditions
of each species are shown in Figure 5.Forests 2018, 9, x FOR PEER REVIEW  8 of 15 
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In general, the lower predicted BAI values are observed for juvenile PINI trees with values even
lower than 0.14 cm2/year. Low annual growth rates (<0.25 cm2/year) are also described for juvenile
PIUN trees, especially those growing under humid conditions (high AI). In PISY, lower growth rates
are also observed during the juvenile phase, but growth is higher than in the previous species, with BAI
always being higher than 1 cm2/year. In the case of PIHA, juvenile trees and mature ones growing
at arid conditions (AI < 10) exhibit lower annual growth rates, but these were always higher than
1.1 cm2/year. Contrarily, higher growth rates are observed in mature trees of PIHA growing under
very humid and extremely humid conditions (AI > 35), where BAI can reach values even higher than
75 cm2/year. PISY and PIUN reach a maximum BAI of around 35 cm2/year, but this is also restricted
to extremely humid conditions and older trees (higher than 200 years old). The maximum growth
rate of PINI is the lowest observed in all four species, with a BAI of 24.4 cm2/year also described for
extremely humid conditions and very old trees (>500 years old) (Figure 5a–d).

3.3. Differences between Species’ BAI

Model predictions allow direct comparisons of BAI of all analyzed species under equivalent age
classes and climate conditions. The annual mean BAI from the juvenile (one year old) to adult phase
(100 years old) averaged by AI climate types existing in the study area allows for a summary of species
behavior in relation to their growth rates and, therefore, their efficiency in the use of water (Figure 6).

Several clear findings emerged from this analysis. The presence of PIHA extended from arid
(AI < 10) to extremely humid climate types (AI > 55). Across this wide range of conditions, PIHA is
the species with higher growth rates and a higher sensitivity to AI variations. On the other extreme,
PINI is the species with the lowest growth rates and the lowest variations across the AI climate
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type classes where it is present. The BAI of PISY is just slightly lower than that of PIHA in xeric
conditions, but differences between species increase in favor of PIHA as aridity decreases. PIUN
exhibits an intermediate behavior, showing higher BAI than PINI but lower than PISY in all climate
type classes.Forests 2018, 9, x FOR PEER REVIEW  9 of 15 
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4. Discussion

4.1. Age Effects on Carbon Uptake

The Mediterranean forest has suffered continuous changes in its distribution throughout the past
millennia, mainly due to the combined action of human activities on the landscape and as the effects
of the recent warming and droughts increase [45]. Although forest cover has increased during the last
decades in Mediterranean areas, the changes suffered are related to a reduction in forest health and
productivity [1,45].

The capacity to resist drought by long-term adaptation and evolution in drought environments
is a demonstrated characteristic of Mediterranean species that can contribute to their persistence
under projected increases of drought in the Mediterranean regions of the Iberian Peninsula [45].
Heterogeneous responses of species to climate variability across their range are directly connected to
the phenomena of local adaptation and phenotypic plasticity and are the basis of potential adaptability
to future climate conditions [23]. A detailed knowledge of the relationship between climate and growth
during the tree life span and across the range of the distribution of species is then essential to predict
and mitigate the effects of climate change [46].

In this context, our results generally showed that the stem basal area increment was initially
small, but rapidly increased with tree age. The existence of this growing pattern during the tree life
span is well-known in scientific literature [47,48], but the results we provided allow, for first time,
an exact quantification of the magnitude of the age effect on BAI for four representative conifers in
the Mediterranean area of the Iberian Peninsula. Moreover, we found that biological trends in tree
growth showed significant variations across species distribution over diverse aridity conditions where
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populations are developed. This finding is especially relevant for future growth and carbon sink
predictions under climate change scenarios, since aridity conditions are expected to increase in the
future, and consequently, biological growth trajectories can be expected to change.

The significant interaction between tree-age and climate drivers recorded in this analysis may
be considered as a new challenge in dendroclimatic reconstructions, since it could contribute to
solving the divergence problem observed in other latitudes [49]. The detrending methods typically
applied in those reconstructions are supported by the assumption of the independency of the age over
the climate signals, which disagrees with our findings. Our results are limited to four pine species
growing in a specific geographical area, but if such patterns may occur elsewhere, it may have serious
implications by affecting the reliability of tree-ring based climate reconstructions. Future efforts need
to be done in relation to this, and mixed models could be tested as an alternative detrending tool for
dendroclimatological research.

4.2. Future of Forest Growth in the Iberian Peninsula

Irrespective of the aridity conditions, P. halepensis was the species with a better growth
performance across its distribution range, including the areas shared with the other species analyzed
(e.g., in Teruel and Cuenca provinces). This species is traditionally described as a pioneer, opportunistic,
and the most drought tolerant conifer species. Therefore, the higher growth rates observed in arid
and semiarid conditions do not represent a novelty in scientific literature [50]. However, we found
that these higher growth rates are extended and even magnified under humid and extremely humid
conditions (i.e., close to the main East ranges of the Iberian Peninsula: the Pyrenees, the Iberian Range,
and the Baetic mountains). On the other hand, drought and frosts are the major constrains of plant
functioning and distribution in the Mediterranean area, but recent research suggests that limits for
P. halepensis distribution in juvenile phases are especially related to the frost tolerance of foliage rather
than other environmental stresses. In this sense, P. halepensis was described as the least frost tolerant
species, while P. sylvestris, P. uncinata, and P. nigra, which inhabit the coldest locations, are significantly
more frost tolerant species [51]. Controversially, other studies suggest that winter and spring rainfalls
are the most important predictor for the main pine species distribution, whereas temperature was
a secondary or tertiary factor [52]. Our study suggests that drought, instead of frost, was the key
climatic factor explaining variations in growth patterns. However, we also highlight that the influence
of different climate stressors significantly differed depending on tree cambial age.

Moreover, the results provided new evidence of pines’ high plastic character in terms of growth
rhythm adaptations to climate variability. P. sylvestris, P. uncinata, and specially P. nigra, showed
lower growth rates than P. halepensis across their common distribution areas but, more importantly,
they showed lower variations in their growth patterns under their climate distribution range. Several
recent studies highlight the substantial phenotypic plasticity of P. halepensis in relation to different
anatomical, reproductive, and vegetative traits [28,53–58]. As with the majority of species, cambial
activity can stop for several months during the winter [59]. Nevertheless, under favorable growing
conditions, the vascular cambium may be active throughout the entire year [59,60]. Besides, this species
can also adapt to double stress conditions, also ceasing cambial activity during summer (i.e., by high
temperatures and lack of precipitation) [61,62] or ceasing secondary tree growth completely during
a year with extreme limiting conditions [63].

Forests can play a role in mitigating climate change through the capture and storage of carbon [45].
Appropriate reforestation is the main way to contribute to this challenge and our study suggests that
P. halepensis can be a suitable species for this purpose, especially aged forests of this species growing
in moist environments. Indeed, P. halepensis is the most common tree species occupying large areas
with harsh environmental conditions where other tree species are not able to survive [50]. However,
its potential distribution largely exceeds the actual distribution [52] and is expected to increase in the
future [64]. Meanwhile, the suitability of other conifers is expected to decrease [65].
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Tree-ring data have been useful in developing stand-level biomass reconstructions to investigate
long-term trends in aboveground productivity [66–68]. There are, however, several limitations to
using tree-ring records to infer climate sensitivities of carbon uptake [69]. In most tree-ring analyses,
and also in our study, the mean basal area increment across different individuals is used to represent
growth at the site level. Factors such as competition, topography, and especially stand density are not
captured by sampling and only through dominant and codominant individual trees, as is common
in dendrochronological studies [69]. Therefore, ecological sampling designs where all individuals
in a fixed plot or a random sub-sample are included would need to be considered to estimate forest
productivity at a landscape level (e.g., [68,70]).

The evaluation of the sensitivity of carbon uptake to climate, however, is also challenging using
alternative approaches. Methods such as forest inventories, eddy-covariance towers, or the use of
remote sensing techniques are limited to estimating the carbon uptake of a fraction of the lifespan
of trees and in response to the current or recent climate. Furthermore, harmonized continental- or
regional-scale estimates often rely on simplifying assumptions, such as the use of global, non-species,
or site-specific allometric equations that complicate comparisons with field data [69].

In this paper, we advocated for a tree-centered approach [71] as a complementary method to
improve the mechanistic understanding of physiological and growth responses of trees growing under
various conditions. This knowledge complements other approaches and can, for instance, support
forest managers in tree species and/or provenance selection to better prepare specific forest stands to
cope with expected challenges.

5. Conclusions

The patterns of tree growth of the main Mediterranean pine species in the Iberian Peninsula
were characterized by a high variability across the territory. The variability found in the tree basal
area increment was highly influenced by tree age and climate. Moreover, the interaction of age and
climate conditions is a determinant for tree growth, showing a distinct influence between the different
species. In this sense, the stronger plastic capacity and the potential adaptability of P. halepensis makes
it the key species to cope with uncertain climate conditions and to keep fixing carbon regardless of the
climatic circumstances.
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