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Abstract: Understanding the response of flood frequency to impact factors could help water resource
managers make better decisions. This study applied an integrated approach of a hydrological model
and partial least squares (PLS) regression to quantify the influences of rainfall and forest landscape
on flood frequency dynamics in the Upper Honganjian watershed (981 km2) in China, the flood
events of flood seasons in return periods from two to 100 years, wet seasons in return periods from
two to 20 years, and dry seasons in return periods from two to five years show similar dynamics.
Our study suggests that rainfall and the forest landscape are pivotal factors triggering flood event
alterations in lower return periods, that flood event dynamics in higher return periods are attributed
to hydrological regulations of water infrastructures, and that the influence of rainfall on flood events
is much greater than that of land use in the dry season. This effective and simple approach could be
applied to a variety of other watersheds for which a digital spatial database is available, hydrological
data are lacking, and the hydroclimate context is variable.

Keywords: frequency analysis; flood; hydrological model; probability distribution; partial least
squares (PLS) regression

1. Introduction

Flood frequency is the probability of a flood event in a certain period, which is relevant to
planning and decision processes related to hydraulic works or flood alleviation programs [1]. Thorough
knowledge of flood frequency dynamics is crucial in a watershed [2–4]. Variations in flood frequencies
result from meteorological factors and underlying surface properties, including rainfall, flood control
facilities, topography, soil and land use types [3,5]. Among these factors, flood control facilities
represent passive defense structures against floods; topography and soil are relatively constant in short
periods, whereas rainfall and land use are variable [3,5–8]. Therefore, determining the response of
flood frequencies to rainfall and land use is crucial for water resource management in watersheds [5,9].
However, major challenges are associated with flood frequency response research, including failed
estimation of flood frequencies, lack of data, and the high collinearity of rainfall and land use types [8,10].
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To quantify the factors controlling flood frequency, estimation for flood frequencies is a
prerequisite. Frequency analysis (FA) is a method used to fit the frequency of extreme hydrological
events to their magnitudes by using probability distributions [6,10,11]. FA has played an important
role in increasing the prediction accuracy of flood frequencies [2,10,11]. Other methods, such as
empirical relationships and the fuzzy logic approach, have also been applied to a few watersheds [10].
Many FA methods have been developed and tested, including the index flood method, the rational
method, and various regression-based methods [2], the disadvantages of conventional FA could be
the significant uncertainties and bias, which are due to limited historical recorded data with sufficient
spatial and temporal coverage and acceptable quality, sampling variability, model errors, and the errors
in projections into the future [12,13]. In addition, this traditional technology is based on the assumption
that the hydrological observations are independently and identically distributed and the conditions
remain stationary [11,14]. Lastly, FA focuses on flood peak values; however, the severity of a flood
is defined not only by the flood peak value but also by flood volume, duration, etc. [15]. In practical
applications, the flood series are always not independent and exist in a nonstationary context, and the
watershed always contains a large number of ungauged areas [16]. Overall, conventional FA provides
a limited assessment of flood frequencies [14]. Using conventional FA on nonstationary flow series
may lead to uncertain flood frequency predictions [11,17].

To overcome these limitations, a nonstationary FA framework combined with lognormal or
generalized extreme value distribution models and hydrological models has been developed [5,18].
Nonstationary FA coupled probability distribution has been considered an effective improvement
in flood frequency analysis, with observations that are not independent under nonstationary
circumstances [2,11,14]. To address these challenges of data scarcity, hydrological models have
the ability to complement available datasets from local gauging stations with a spatial extension.
This modeling approach provides some advantages: (1) planned alterations in rainfall and land
use can be considered, and hydrological modeling allows one to obtain the full hydrograph for the
design, and (2) the estimation of design flows can be performed for ungauged watersheds if the
parameters of the hydrological model are regionalized [4]. Recently, many studies have reported the
use of hydrological models, such as the HECHMS, WRF/DHSVM, and SWAT models, to simulate
floods [4,17,19], the SWAT model can divide a watershed into sub-watersheds and then discretize them
into a series of hydrologic response units (HRUs), which are spatially identified as unique soil–land
use combination areas. SWAT can also provide a wide range of flexibility for model formulation
and calibration [20–22]. A nonstationary FA framework incorporated with SWAT is a relatively
new modeling approach and has been shown to provide acceptable prediction results when the
hydroclimate context is variable, data are lacking, or the spatiotemporal analysis is complex [20,21,23].

Multivariate regression approaches have great potential for quantifying the relative importance
of rainfall and land use types in controlling flood frequencies. However, traditional multivariate
approaches cannot easily overcome the limitations of rainfall and land use types, which are highly
collinear predictors [8,22,24,25]. Therefore, non-independent data must be handled cautiously in
quantitative analyses. Partial least squares (PLS) regression is an advanced method that combines the
features of principal component analysis and multiple linear regressions. It has been widely used to
overcome the issue of multicollinearity and noisy data in quantitative analyses by projecting variables
on high-dimensional spaces [26], the importance of a predictor to variations in model fitting is given
by the variable influence on projection (VIP) value. VIP values reflect the importance of terms in a
model with respect to both Y, i.e., a variable’s correlation to all responses, and X, i.e., the projection [27].
Variations with higher VIP values are considered more important [28]. PLS regression can be used to
evaluate rainfall, forest, and other land use influences on flood events [8,22,26].

The objective of this paper is to study the influences of forest land use and precipitation on flood
frequencies in the Upper Honganjian watershed in China. This investigation is separated into two
parts: (1) revealing flood frequency destruction based on a nonstationary FA method and SWAT model,
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and (2) illuminating the response of flood frequency distribution to land use and precipitation based
on PLS regression.

2. Materials and Methods

2.1. Study Area

The Upper Honganjian watershed, with a total area of 981 km2, is located in the Yellow River
Basin and lies between 36◦2’ N to 36◦34’ N and 110◦50’ E to 112◦10’ E, the average annual temperature
is approximately 11.8 ◦C, and the average annual precipitation is approximately 558.5 mm. A large
portion of precipitation occurs during the monsoon season from May to October. Floods occur
primarily in July, August, and September [29], the topography of the watershed is undulating and
characterized by mountain ranges, steep slopes, and deep valleys, the elevation varies from 572 m at
the Dongzhuang gauging station to 2259 m at the highest point in the watershed (Figure 1), the main
soil types are yellow loamy soil (50.3%) and brown soil (18.8%), which correspond to Alfisols and
Entisols in the USA Soil Taxonomy [30], respectively. Most areas are covered by forest (43.4%) and
farmland (34.3%).
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Figure 1. Location of Upper Honganjian watershed with observation stations.

2.2. Data Collection and Pretreatment

Hydrometeorological data: Forty-six years (1965–2010) of daily streamflow data were collected at
the Dongzhuang station (the outlet of the Upper Honganjian watershed). Daily precipitation, solar
radiation, wind speed, relative humidity, and max/min temperatures were attained from six weather
stations (Figure 1). To account for seasonal variations, the streamflow data series were split into a
wet season (i.e., May, June, and October), a flood season (i.e., July–September), and a dry season
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(i.e., November–April), the precipitation data were interpolated over the delineated sub-watersheds
using a skewed normal distribution.

Topographical and soil coverage data for the model setup: The topographical data required by
the SWAT model were derived from a digital elevation model (DEM) with a resolution of 25 × 25 m,
which was obtained from the National Geomatics Center of China, the soil data, including a soil type
map (1:100,000) and information on the related soil properties, were obtained from the Hydrological
Bureau of Shanxi Province.

Land use data: The land use data for the 1980s were obtained from the Hydrological Bureau
of Shanxi Province. Four land use domains were identified, namely, forest, farmland, urban,
and grassland (Figure 2). Land use and soil data were extracted using ArcGIS Version 10.2.
(Esri, Redlands, CA, USA).

Sub-watersheds and HRUs: In ArcSWAT 2012 (Esri, Redlands, CA, USA), the Upper Honganjian
watershed was discretized into 33 sub-watersheds (Figure 3), which were then further subdivided into
207 HRUs based on land use, soil, and slopes.
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2.3. SWAT Model Calibration for Ungauged Sub-Watershed Streamflow

Before using the SWAT model to predict the streamflow in ungauged sub-watersheds, calibration
and validation of the model were performed. Calibration was performed with automated and manual
techniques, the first step in the calibration process was determination of the most sensitive parameters
for studying the watershed. Sensitivity analysis of the parameters in the SWAT model was performed
using the LH–OAT analysis method, which combines the Latin hypercube (LH) sampling method
and the one-factor-at-a-time (OAT) sensitivity analysis method. After 350 runs, the most sensitive
parameters were detected. Autocalibration was the second step. This procedure was based on
shuffled complex evolution (SCE–UA), which allows calibration of model parameters based on a single
objective function [31]. In the last step, the SWAT model was manually calibrated against monthly
and daily streamflow data, which were observed at the Dongzhuang gauge station, the calibration
period was from January 1972 to December 1981. Manual calibration was performed to minimize total
flow (minimized average annual percent bias), accompanied by visual inspection of the hydrographs,
the parameters governing the surface runoff response were first calibrated, followed by those governing
the fraction of streamflow that transform to baseflow. This preliminary calibration was followed by
a fine-tuning at the daily time scale to ensure that the predicted versus measured peak flows and
recession curves on a daily time step matched as closely as possible.
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The validation period was from January 1982 to December 1991. Nash–Sutcliffe efficiency (ENS),
percent bias (PBIAS), and coefficient of determination (R2) were used to evaluate the performance of
the model. ENS was calculated as follows [8,32]:

ENS = 1− ∑n
i=1 (Oi − Si)

2

∑n
i=1 (Oi −O)

2 , (1)

where n is the discrete time step and Oi and Si are the measured and simulated values, respectively.
PBIAS is defined as follows [8,32]:

PBIAS =
∑n

i=1 (Oi − Si)

∑n
i=1 Oi

× 100, (2)

where Oi and Si are the measured and simulated values, respectively, and n is the total number of
paired values. R2 was calculated as follows [8,32]:

R2 =

 ∑n
i=1 (Oi −O)(Si − S)[

∑n
i=1 (Oi −O)

2
]0.5[

∑n
i=1 (Si − S)2

]0.5


2

, (3)

where n is the number of events, Oi and Si are the measured and simulated streamflow values,
respectively, and O and S are the mean observed and simulated values, respectively, the performance
of the SWAT model (1) is considered acceptable when R2 and ENS are greater than 0.5 and PBIAS
ranges from±15% to±25%; (2) is good when R2 is greater than 0.5, ENS is greater than 0.65, and PBIAS
ranges from ±10% to ±15%; and (3) is very good when R2 is greater than 0.5, ENS is greater than 0.75,
and PBIAS is smaller than ±10% [8,32].

2.4. Evaluation of the Quantiles of Maximum Streamflow

Based on previous studies, the annual maximum (AM) series model was used in the multistep
nonstationary FA in this study [2,18], the AM model is a framework that uses annual maximum
values as appropriate estimators with a preferred distribution [10]. First, the AM series model
was applied to identify the annual seasonal extreme streamflow. To identify the low and high
outliers for the flow series, the Grubbs and Beck (1972) statistical test (see Appendix A.1 for more
technical details) was used after the data were transformed to be normally distributed [33]. Second,
to perform FA, several statistical tests were used, including the Wald–Wolfowitz test for randomness
or autocorrelation and the Mann–Kendall test for stationarity (see Appendix A.2 and A.3 for more
technical details), the Wald–Wolfowitz test and Mann–Kendall test were performed by SPSS 20
(IBM SPSS Inc., Chicago, IL, USA) and MATLAB 8.4 (The MathWorks Inc., Natick, MA, USA),
respectively. Third, the appropriate probability distribution for the sub-watershed streamflow
frequencies was identified. In this study, for the nonstationary modeling, a generalized extreme
value (GEV) distribution model and a lognormal (LN2) distribution model (see Appendix A.4 and
A.5 for more technical details) were chosen because the principles of the models are incorporated
in the regional frequency analysis, although some of the parameters are allowed to change with
time [18,34], the parameters were estimated using the maximum likelihood (ML) estimation method in
MATLAB 8.4. To identify an appropriate probability distribution for fitting the observed hydrological
data, goodness-of-fit tests were used in this study (similar methods were used by [10]), the Akaike
information criterion (AIC), based on the principle of maximum entropy, and the Bayesian information
criterion (BIC), proposed for use in the Bayesian framework, were used to assess the performance of
the two models [35–38], the equations of the AIC and BIC are given as follows:

AIC = −2 log (L) + 2 k (4)
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BIC = −2 log (L) + 2 k log (N), (5)

where L is the likelihood function, k is the number of parameters of the distribution, and N is the
sample size. Finally, the quantiles of maximum streamflow and return periods were obtained and
evaluated. Details on estimating the quantiles for the used distribution and return periods can be
found in [18].

2.5. Determination of Flood Events and Return Periods

The flood events of the Upper Honganjian watershed were derived from the daily streamflow
data collected at the Dongzhuang gauge station, the number of extreme streamflow events was
calculated by counting the number of days in a year or season for which daily values exceed the
quantiles of maximum streamflow. A flood event was identified when extreme streamflow events
were continuous for six or more days in high streamflow periods [39], the notion of return period for
extreme hydrological events is commonly used in hydrological nonstationary FA, the return period T
is an event magnitude having a probability 1/T of being exceeded during any single event [10].

3. Results

3.1. SWAT Model Calibration and Validation

The calibrated SWAT parameters are listed in Table 1, the ENS, R2, and PBIAS values for the
monthly and daily streamflow calibration and validation are listed in Table 2. All of the ENS and R2

values for monthly streamflow were greater than 0.8, and the PBIAS values were in the range of ±10%,
the statistical comparison between the measured daily streamflow and the simulation results showed
good agreement, and the parameters that were calibrated for the daily streamflow of the model could
be used to simulate every sub-watershed.

Table 1. Parameters for streamflow calibration of the SWAT in the Upper Honganjian watershed.

Parameter Definition Calibrated Value

basin.bsn ESCO Soil evaporation compensation factor 0.19
basin.bsn EPCO Plant water uptake compensation factor 1
basin.bsn SURLAG Surface runoff lag time 4

.GW GW_DELAY Groundwater delay 31

.GW GW_REVAP Groundwater revap 0.06

.GW ALPHA_BF Baseflow alpha factor 0.043
.soil SOL_AWC Available water capacity of the soil layer 0.2
.sub CH_N1 Manning’s ‘n’ value for tributary channels 0.014
.rte CH_N2 Manning’s ‘n’ value for the main channel 0.014

.mgt CN2 SCS curve number 62 (Forest)
77 (Grassland)
78 (Farmland)

79 (Urban)

Table 2. Accuracy of the SWAT model calibration and validation in the Upper Honganjian watershed.

Station Period ENS
a PBIAS b R2

Monthly–Streamflow Calibration (1972–1981) 0.80 –0.10 0.81
Validation (1982–1991) 0.77 –0.09 0.87
Validation (1992–2001) 0.75 –0.13 0.80

Overall (1972–2001) 0.77 –0.11 0.83

Daily–Streamflow Calibration (1971–1980) 0.58 –0.10 0.62
Validation (1981–1990) 0.56 –0.09 0.67
Validation (1991–2000) 0.52 –0.11 0.62

Overall (1971–2000) 0.55 –0.10 0.64
a ENS = Nash–Sutcliffe efficiency; b PBIAS = Percent Bias.
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3.2. Annual Extreme Streamflow and Appropriate Distribution

Figure 4 displays a box plot for the annual seasonal extreme streamflow data for each decade,
the total annual number of days with extreme streamflow for the entire watershed for the 1970s, 1980s,
1990s, and 2000s were 306, 321, 291, and 196, respectively, the peak in the 1980s was well defined due
to the frequency of the hydrometeorological days, which represented approximately 28.8% of all the
data, while the low value in the 2000s represented approximately 17.6% of all the data.
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Figure 4. Box plot for the monthly extreme streamflow data in the flood season (July, August,
and September), wet season (May, June, and October), and dry season (November–April) in the
1970s (A), 1980s (B), 1990s (C), and 2000s (D).

The Wald–Wolfowitz test results (Z =−1.054, p-value = 0.387) of the streamflow at the Dongzhuang
station showed that the data were independent at p < 0.05, the Mann–Kendall test results (K = −2.256,
p-value = 0.021) showed that the yearly maximum streamflow increased significantly after 1999
at p < 0.05, the corresponding parameters were estimated by the ML methods, the results of the
goodness-of-fit tests for selecting an appropriate probability distribution for the sub-watershed
streamflow frequency analysis using the AIC and BIC criteria are summarized in Table 3. Out of
66 cases (two model selection criteria × 33 sub-watersheds), the LN2 distribution model was preferred
for 53 cases (i.e., 80.3%), whereas the GEV distribution model was favored in the remaining 13 cases
(i.e., 19.7%). Both model selection criteria favored the LN2 distribution over the GEV distribution,
as shown in Table 3. These results demonstrated that the LN2 distribution was preferable to the GEV
distribution for modeling the partial time series data for the selected watersheds, the empirical
probability curves as well as the confidence intervals of the LN2 distribution for the observed
streamflow at the watershed scale are presented in Figure 5.
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Table 3. Summary of the goodness–of–fit tests for the 33 sub-watersheds.

Distribution
AIC BIC

LN2 a GEV b LN2 GEV

No. of sub-watersheds being selected 26 7 27 6
Percentage of sub-watersheds (%) 78.8 21.2 81.8 18.2

a Sampling LN2 = lognormal; b Sampling GEV = generalized extreme value.
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Figure 5. Empirical probability curves and confidence intervals (Conf. Int.) of the LN2 distributions
for the observed stream flows at the watershed scale, the scale of y-axis is normal probability.

3.3. Nonstationary Regional Frequency Analysis

By fitting the LN2 distribution with the ML parameter estimation method to the sub-watershed
streamflow data, the maximum streamflow quantiles at each sub-watershed were estimated for average
recurrence intervals (ARIs) of two, five, 10, 20, 100, and 1000 years to analyze the flood events in
each sub-watershed.

To analyze the seasonal variation in flood events at the watershed scale during different decades,
the annual average number of flood events in different decades (1970s, 1980s, 1990s, and 2000s) were
computed under different return levels (2–5, 5–20, 20–100, 100–1000, and >1000 years), the results are
shown in Figure 6, the number of flood events during flood seasons for return periods covering two
to 100 years, wet seasons for return periods covering two to 20 years, and dry seasons for the return
periods of two to five years shows similar fluctuations. Similar variations can also be found for return
periods that exceed 100, 20, and five years in flood seasons, wet seasons, and dry seasons, respectively.
Compared with the lower and higher return periods, a significantly different flood event distribution
is identified. As the seasons change (i.e., from the flood to dry season), the total number of flood events
in each return periods change and the maximum and minimum numbers diminish and shift to shorter
return periods.

For the return periods from two to five years, the flood events were most frequent during the
1980s in all seasons, and the flood events were least frequent in the 1990s for each season. For the return
periods of five to 20 years, the maximum values occurred in the 1980s, whereas the minimum values
occurred in the 1990s for both the flood and wet seasons. For the return periods of 20 to 100 years,
the maximum values occurred in the 1980s for both the flood and dry seasons and in the 1970s for
the wet season, and the minimum values were recorded in the 1990s for the flood season, the lowest
values occurred in the 1980s, 1990s, and 2000s for the wet season, and the total number for the three
decades was four. For the return periods of 100–1000 and >1000 years, the maximum values occurred
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in the 1970s for both the flood and wet seasons, whereas the minimum values were recorded in the
1990s for the flood season. Compared with the baseline return periods of two to five years, in the
flood season, the mean annual number of flood events for the four decades increased for the return
periods of five to 20 years and then showed a decreasing gradient for larger return periods. Similar
variations occurred in each decade. In the wet season, compared with the baseline, the mean annual
number of flood events over the four decades indicated a decreasing trend for return periods below
1000 years. Each decade exhibited similar dynamics. In the dry season, a strong gradient existed in the
total number of events over the four decades.

Among the four decades, in the flood season, the highest number of events was found for
the return periods of five to 20 years, and the lowest number was found for the return periods of
>1000 years, the highest numbers were found for the return periods of two to five years in both the
wet and dry seasons, while the lowest numbers were found for the return periods of 100 to 1000 years
and the return periods of 20 to 100 years in the wet and dry seasons, respectively. Among the three
seasons, the flood events in the flood season were more severe than in the other two seasons.
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3.4. Contribution of Rainfall and Land Use to Flood Events

The performance of the PLS regression models is shown in Table 4. For the flood season, in the
return periods of two to five years, the first component was dominated by forest on the negative
side and explained 74.3% of the variation in flood events, the addition of the second component
was dominated by rainfall, urban land, and farmland on the positive side and made the explanation
approached 81.2% of the variation and generated the minimum mean square error of cross-validation
(RMSECV) value, the addition of more components to the PLS regression models did not substantially
improve the explanatory power but resulted in a higher RMSECV, indicating that the subsequent
components were not strongly correlated with the residuals of the predicted variable according to [26].
For return periods of five to 20 years model, the first component was dominated by forest on the
negative side, which explained 71.8% of the flood events variance in the dataset, the addition of the
second component, dominated by rainfall, farmland, and urban land on the positive side, increased
the model–explained variance to 78.0%. For the return periods of 20 to 100 and 100–1000 years, the first
component was dominated by forest on the negative side, and the second component was dominated
by urban land on the positive side. For the wet season, in return periods of two to five and five to
20 years, the first component was dominated by forest on the negative side, and the second component
was dominated by rainfall, urban land, and farmland on the positive side. For the dry season, in the
return periods of two to five years, the first component was dominated by forest on the negative side
and farmland on the positive side, and the second component was dominated by rainfall and urban
land on the positive side. In return periods > 5 years, the rainfall became to the dominate factor.

The relationship between the number of seasonal flood events (in the 1980s) and the proportion
of land use types (1980s) was analyzed at the sub-watershed scale. Figure 7 shows the relative
contributions of impact factors under different return periods, the influence of land use types on flood
events decreased with increasing return periods. Farmland and urban areas had a positive effect on
the number of events, while forest land had a negative effect. No statistically significant relationships
were detected between grassland and flood events. For the flood and wet season, in the return periods
of 2–5 and 5–20 years, the forest area had a significant negative effect on the number of flood events,
while significant positive correlations were detected between both farmland and urban areas and flood
events. VIP values of forest, farmland, and urban land (VIP > 1) were higher than those of grassland
and rainfall. For the flood season, in the return periods of 20 to 100 and 100–1000 years, forest and
urban land had VIP scores greater than 1, and rainfall, farmland, and grassland had VIP value less
than 1, as shown in Figure 7. In the wet seasons, no statistically significant relationships between
land use types and flood events were detected when the return period exceeded 100 years. For the
dry season, in the return periods of two to five years, rainfall had the highest VIP score (1.337) and a
larger positive regression (0.679), followed by the farmland (coefficient = 0.723; VIP = 1.301), forest
(coefficient = −0.685; VIP = 1.246), and urban land (coefficient = 0.324; VIP = 1.129). These results show
a significant negative correlation between the forest area and the number of flood events. Rainfall,
farmland, and urban area had remarkable positive effects on the number of flood events, the VIP
value (greater than 1) of rainfall was highest in return periods > 5 years in the dry season, followed by
farmland, forest, urban land, and grassland with VIP values less than 1 (ranging from 0.428 to 0.087).
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Table 4. Summary of PLS regression for floods in each season.

Response Y

R2 a Component Explained
in Y (%)

Cumulative
Explained

in Y (%)
RMSECV b

Seasons
Return
Periods
(Years)

Flood 2–5 0.81 1 74.3 74.3 0.89
2 6.9 81.2 0.80
3 0.1 81.3 0.81

5–20 0.79 1 71.8 71.8 4.17
2 6.2 78.0 3.97
3 1.4 79.4 4.05

20–100 0.70 1 67.9 67.9 0.75
2 2.4 70.3 0.73
3 0.1 70.4 0.74

100–1000 0.64 1 60.2 60.2 5.55
2 3.1 63.3 5.28
3 0.8 64.1 5.47

Wet 2–5 0.82 1 75.1 75.1 0.71
2 5.6 80.7 0.64
3 1.3 82.0 0.61
4 0.4 82.4 0.65

5–20 0.79 1 71.3 71.3 0.85
2 6.6 77.9 0.80
3 1.2 79.1 0.81

Wet 20–100 0.34 1 28.3 28.3 0.79
2 3.9 32.2 0.69
3 1.6 33.8 0.71

100–1000 0.27 1 22.2 22.2 0.65
2 4.5 26.7 0.59
3 0.3 27.0 0.63

Dry 2–5 0.84 1 78.5 78.5 0.91
2 3.9 82.4 0.88
3 1.6 84.0 0.84
4 0.2 84.2 0.85

5–20 0.61 1 60.0 60.0 0.74
2 0.9 60.9 0.68
3 0.1 61.0 0.69

20–100 0.69 1 67.2 67.2 0.65
2 1.6 68.8 0.54
3 0.1 68.9 0.58

100–1000 0.76 1 74.2 74.2 0.54
2 1.6 75.8 0.49
3 0.2 76.0 0.52

a Sampling R2 = goodness of fit; b RMSECV = cross-validated root mean squared error.
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4. Discussion

The ability of the SWAT model to simulate the daily streamflow data in the frequency analysis
has been demonstrated by many papers [21,23,40]. A high goodness-of-fit value for the monthly and
daily streamflow suggests good model performance in our study. Table 2 shows good modeling results
for the monthly streamflow, with a maximum Nash–Sutcliffe efficiency (ENS) of 0.80. In our study,
daily streamflow ENS is less satisfactory than that of monthly streamflow, which is similar to other
SWAT modeling studies [41,42]. For hydrologic evaluations performed at a monthly time interval,
the model results are satisfactory when ENS values exceed 0.5. However, appropriate relaxing of the
standard may be performed for daily time–step evaluations [32]. Thus, a daily ENS of 0.5 corresponds
to a monthly ENS of approximately >0.8, as suggested by [43]. Therefore, the performance measures for
the simulations range from satisfactory to good in all studied sub-watersheds according to [32]. This
evaluation methodology is suggested by many studies [8,41,43,44]. Previously, we studied the Upper
Du River watershed, which is a forest watershed similar to the Upper Honganjian watershed in China,
using the same method and the results confirmed the satisfactory performance of SWAT [22,43,44],
the results of this study are consistent with Liu [45], which was a study of a runoff simulation in the
Upper Honganjian watershed.

We address the relative importance of precipitation and land use types for flood events in
33 sub-watersheds, the most convenient and comprehensive description of the relative importance
of predictors can be derived from exploring their VIP values [26]. For different return periods in
each season, relevant fluctuations in the total number of events in each decade are found. These
fluctuations are consistent with the variations in flood events in the Upper Honganjian watershed,
implying that a similar pattern of the flood events seasonal distribution exists in specific return periods.
However, there are significantly different dynamics for return periods that exceed 100 years in the
flood season, return periods that exceed 20 years in the wet season, and return periods that exceed five
years in the dry season. These results may be related to the coupling of precipitation, land use types,
and anthropogenic construction [5,46].

The results in Figure 7 show that precipitation changes will influence flood events, especially at a
two- to five-year return period in the flood and wet seasons. Precipitation could trigger a higher risk
of floods in a watershed, and many complex factors (temperature, reservoirs, and drainage system)
may also influence the streamflow volume [47]. Similar conclusions were reported by Zhang et al. [5],
who showed that precipitation is one of the pivotal factors triggering hydrological alterations of flood
events, the flood dynamics at return periods > 5 years may be attributed to the hydrological regulations
of water reservoirs. Anthropogenic construction and management, such as dams and reservoirs, river
training, and human water use affect the seasonality of flood events in these periods [48,49]. Reservoirs,
dams, irrigation flow diversions, and flood control structures have been developed and generate
significant hydrogeomorphic alterations with impacts occurring in both streams and catchments of
the watershed [50]. Reservoirs and dams result in increased evapotranspiration (ET) and lead to
fewer flood events, while seasonal withdrawals affect the seasonality of flood events [48]. Small
reservoirs may lose up to 50% of their stored volume due to evaporation in many regions due to the
high ratio of surface/volume area. Evaporation constitutes a major component of the water balance
in the reservoirs and may significantly decrease flood events [51]. Moreover, in order to sustain and
maintain the ecological integrity of watershed, numerous watershed management measures, such as
management of flood utilization, establishing and maintaining minimum flow releases, or permitting
controlled “flushing” releases that establish the necessary high flows for sediment transport have
been applied. These hydrogeomorphic and watershed management practice impacts have profoundly
influenced flood evolution and frequency [50]. In the dry season, the correlations between flood events
and the precipitation amount shift from low to high values as the return period increases. This anomaly
can be interpreted as follows: for a longer return period, the flood frequency depends on the initial
soil moisture conditions [21]; therefore, the precipitation amount in the dry season determines the
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initial soil moisture conditions and indirectly influences the flood events that occur in the wet and
flood seasons.

For each season, the influence of land use on flood events decreases with an increasing return
period. Water management facilities have led to variations in hydrological events for a longer return
period [4]. Our results reveal a strong influence of land use types on flood events for specific return
periods; the number of flood events is also highly influenced by land use type, namely, forest, urban,
and farmland areas. Farmland and urban areas are found to increase the number of flood events, while
forest land results in fewer flood events. Similar results were reported by [47,52]. Farmland reduces
evapotranspiration, enhances infiltration, increases the initial moisture stored in the soil, eventually
increases the number of flood events [21], the increased number of flood events associated with the
expansion of urban areas can be explained as follows. With urbanization, infiltration is reduced by soil
compaction and impervious surface additions, and water flushes more quickly through the watershed
as a result of decreases in the hydraulic resistance of land surfaces and channels [53]. However, forest
land increases evapotranspiration and tends to decrease the number of flood events [21]. For return
periods of two to five years, the number of flood events is most closely related to the land use types of
forest, urban, and farmland in the dry season, followed by the wet and flood seasons. This conclusion
was also drawn by Liu et al. [54], who indicated that the impact of deforestation or reforestation
on hydrological events is more significant in the dry season than in other seasons. In dry season,
the effects of rainfall are greater than those of land use type. This phenomenon can be explained as
follows, the dry season is not a growth period for most vegetation, and ET of forest and other land
use types associated with flood events can be ignored [22]. In addition, compared with flood and wet
seasons, interception of the forest canopy and undergrowth vegetation associated with throughfall in
the dry season is generally lower, which mitigates the negative influences of forests on flood [53].

5. Conclusions

The SWAT model was used to estimate the daily streamflow for ungauged sub-watersheds.
Exploratory data analysis and outlier detection were performed using box plots. Based on the
maximum likelihood (ML) estimation method, Akaike information criterion (AIC), and Bayesian
information criterion (BIC), the lognormal (LN2) distribution was preferable to the generalized extreme
value (GEV) distribution to fit the partial time series streamflow data.

In low return periods, similar patterns existed for the flood event distribution. Significantly
different patterns existed for return periods that exceeded 100 years in the flood season, return
periods that exceeded 20 years in the wet season, and return periods that exceeded five years in the
dry season. Rainfall and forest are pivotal factors triggering flood event alterations in lower return
periods, and the flood events in higher return periods are attributed to the hydrological regulations
of water management facilities. Farmland and urban areas were related to fewer flood events, while
the presence of forest land was found to decrease the number of flood events. In the dry season,
the influence of rainfall on flood events is much greater than that of land use.

The approach used in this study can help to easily select the optimal distributions for watersheds
using ungauged sub-watersheds, the return periods and flood events can be simulated more precisely
using optimal distributions. Moreover, flood-prone regions can be identified, which can provide a
scientific foundation to determine flood-resistant measures by comparing the increased flood risk at
different return levels.

Author Contributions: X.H. and P.H. conceived and designed the experiments; X.H. and L.W. performed the
experiments; W.W. and P.H. analyzed the data; X.H. wrote the paper.

Funding: Financial support for this research was provided by the Project of Hydraulic Science and Technology
of Jiang Xi province, China (KT201615); National Natural Science Foundation of China (No: 51509088); Henan
province university scientific and technological innovation team (18IRTSTHN009); the Key Scientific Research
Projects of Higher Education Institutions (18A170010); Henan Key Laboratory of Water Environment Simulation
and Treatment (2017016).



Forests 2018, 9, 339 16 of 20

Acknowledgments: We are truly grateful to editors and the anonymous reviewers for providing critical comments
and thoughtful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix

Appendix A.1 Grubbs and Beck (1972) Statistical Test

The observations are arranged in ascending order: x1 ≤ x2 ≤ . . . ≤ xn. Therefore, to test whether
the largest observation, xn, in normal samples is too large, we compute

Tn = (xn − x)/S, (A1)

and
S = [∑ (xi − x)2/(n− 1)]

1/2
=

{[
n∑ xi

2 − (∑ xi)
2
]
/n(n− 1)

}1/2
, (A2)

and refer the result to the table of Grubbs test [31], which provides various upper probability levels for
Tn. A significance test of the smallest observation for normal samples is obtained by computing

T1 = (x− x1)/S, (A3)

To test the significance of the two largest observations, xn−1 and xn we compute

S2
n−1,n/S2

O, (A4)

in which

S2
O =

n

∑
i=1

(xi − x)2, (A5)

S2
n−1,n =

n−2

∑
i=1

(xi − xn−1,n)
2, (A6)

in which

xn−1,n =
n−2

∑
i=1

xi/(n− 2), (A7)

Appendix A.2 Wald–Wolfowitz Test

This test is used to compare two unmatched, supposedly continuous distributions, and the null
hypothesis is that the two samples are distributed identically [55]. A run is a set of sequential values
that are either all above or below the mean. To simplify computations, the data are first centered
around their mean. To carry out the test, the total number of runs is computed along with the number
of positive and negative values. A positive run is a sequence of values greater than zero, and a negative
run is a sequence of values less than zero. We can then test whether the numbers of positive and
negative runs are distributed equally in time, the test statistic is asymptotically normally distributed,
and therefore, this test computes Z, the large sample test statistic, as follows:

Z =
R− ( 2n1n2

n1+n2
+ 1)√

2n1n2(2n1n2−n1−n2)

(n1+n2)
2(n1+n2−1)

, (A8)

in which R is the number of runs.
The null and alternative hypotheses are as follows:
H0: X and Y come from two identical populations [55].
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When the large sample approach is in question, the test statistic calculated by the average of this
formula will be compared with the values obtained from the standard normal table for the previously
determined level of significance [55]. If the Z value is lower than or equal to the table value, then the
H0 hypothesis must be rejected at the significance level of α.

Appendix A.3 Mann–Kendall Test

The Mann–Kendall (MK) statistic, S, is defined as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(Xj − Xi), (A9)

where Xj represents the sequential data values, n is the length of the dataset, and

sgn(θ) =


1 i f θ > 0
0 i f θ = 0
−1 i f θ = 0

, (A10)

The statistic S is approximately normally distributed when n ≥ 8, with the mean and the variance
as follows:

E[S] = 0, (A11)

V(S) =
n(n− 1)(2n + 5)−

n
∑

i−1
tii(i− 1)(2i + 5)

18
, (A12)

where ti is the number of ties of extent i.
The standardized test statistic (Z) of the MK test and the corresponding p-value (p) for the

one–tailed test are given by

Z =


S−1√
Var(S)

S > 0

0 S = 0
S+1√
Var(S)

S < 0
, (A13)

p = 0.5−Φ(|Z|), (A14)

Φ(|Z|) = 1√
2π

∫ |Z|
0

e−
t2
2 dt, (A15)

If the p-value is small enough, then the trend is unlikely to be caused by random sampling. Positive
and negative Z values indicate upward and downward trends, respectively. At the significance level
of 0.05, if p ≤ 0.05, then the existing trend is considered statistically significant [56,57].

Appendix A.4 GEV Distributions

The distributions of extreme values (EV) were developed by Fisher and Tippett [58]. Families
(Gumbel, Fréchet, and Weibull) of traditional EV were combined into the generalized extreme values
(GEV) distribution with a cumulative distribution function by Jenkinson [59]:

FGEV(x) =

 exp
{
−(1− k

a (x− u)]
1/k}

k 6= 0

exp[− exp(− (x−u)
a )] k = 0

, (A16)

where u + a/k ≤ x < +∞ when k < 0 (Fre’chet), −∞ < x < +∞ when k = 0 (Gumbel) and
+∞ < x ≤ u + a/k when k > 0 (Weibull). u(∈ R), a (>0), and k(∈ R) are the location, the scale
and the shape parameters, respectively.
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Appendix A.5 LN2

In probability theory, a log-normal distribution (LN) is a continuous probability distribution of a
random variable the logarithm of which is normally distributed, the probability density function of
the two–parameter log–normal distribution (LN2) is:

f (k) =
1√

2πσk
exp[−1

2
(

ln k− u
σ

)
2
] k > 0 (A17)

in which −∞ < u < +∞, 0 ≤ σ < +∞.
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