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Abstract: An ongoing spruce beetle (Dendroctonus rufipennis Kirby.) epidemic in southern Colorado
has resulted in the death of thousands of acres of forests primarily dominated by Engelmann spruce
(Picea engelmannii Parry.). To evaluate the ecological and economic impacts of this massive mortality
event, researchers and land managers need to efficiently track its progression, spread, and severity
across large spatial extents. In this study, mortality severity (0–100% dead) was successfully mapped
at the Landsat pixel scale (30 × 30 m) across a large (5000 km2), persistently cloud-covered study area
using multi-sensor (Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) and Landsat 8 Operational Land Imager (OLI)) harmonized tasseled cap image composites
as spectral predictors of gray stage spruce beetle mortality. Our maps display the distribution
and severity of this landscape-scale mortality event in 2011 (R2 = 0.48, root mean squared error
(RMSE) = 7.7) and 2015 (R2 = 0.55, RMSE = 11.6). Potential applications of this study include efficient
landscape-scale forest health monitoring, targeted forest and timber management, and assessment of
ecological impacts of bark beetle outbreaks.

Keywords: bark beetle; Landsat; forest health monitoring; remote sensing; harmonization; mortality
severity; LandsatLinkr

1. Introduction

Timely monitoring of forest mortality across large spatial extents is a traditionally complex and
resource-intensive endeavor [1–3]. In the wake of a changing climate, multi-year drought conditions,
and severe insect and disease activity, the complexity of monitoring and understanding change
across vast expanses of public and privately owned forestlands in the western United States has
only increased [4]. A decade-long spruce beetle (Dendroctonus rufipennis Kirby.) outbreak in southern
Colorado has killed Engelmann spruce (Picea engelmannii Parry.) trees across thousands of acres of
spruce and fir dominated forests [5]. With spruce/fir forest types representing approximately 20%
of statewide forest cover [6] and encompassing the largest number of forested acres under public
ownership within the state [7], monitoring and management of these forests are top priorities for both
public and private land managers and owners.

The spruce beetle is one of the most damaging agents in mature spruce stands in Colorado.
A native insect, the spruce beetle primarily attacks Engelmann spruce but can infest any spruce
species found within the Colorado subalpine zone [8]. Spruce beetles generally have a two-year life
cycle; however, one- to three-year life cycles have been recorded [8,9]. Adult female spruce beetles
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bore into a tree and create galleries for their eggs in the tree’s phloem tissue. Once the eggs hatch,
the larvae overwinter in the galleries and eventually tunnel out of the tree, feeding on phloem tissue
as they create additional galleries. These feeding galleries inhibit the flow of nutrients, weakening and
eventually killing a tree [6]. The beetles can be present at both endemic and outbreak (or “epidemic”)
population levels [8], typically beginning in areas that have experienced disturbances, often at sites
affected by blowdown events or where woody debris have accumulated [10]. At endemic levels, adult
beetles attack downed woody material and debris. At outbreak levels, beetles will attack trees of all
sizes; although large (>40 cm DBH) spruce trees are usually attacked first, trees of any size, including
saplings can serve as suitable hosts as an outbreak progresses [6]. Following infestation, the tree’s
needles slowly fade from green to yellowish-green until entering the gray phase where they ultimately
drop. The entirety of this process typically takes less than two years [9,10]. As beetle populations
increase, the majority of suitable host trees within a stand can be killed [8,11].

In Colorado and the Intermountain West, resource managers currently rely on annual forest
monitoring programs, such as the United States Forest Service (USFS) Aerial Detection Survey (ADS),
to evaluate the impacts of bark beetle-induced tree mortality, and in turn, to plan and implement
forest management projects [12], monitor forest carbon dynamics [13] and to help keep the public
informed on the status and health of spruce/fir forest resources [14]. While this program has been an
important component of forest health monitoring in the United States, it is costly and measurements
of insect-induced mortality, particularly the spatial extent, are not highly accurate and report mortality
intensity at coarse spatial scales [15]. As such, researchers have supplemented information provided
by the USFS ADS program by remotely sensing bark beetle-induced tree mortality using moderate
(30 × 30 m2) and high resolution (<5 × 5 m2) satellite imagery in combination with modelling [3].

Remote sensing has long been shown to be an effective method to detect mortality in coniferous
forests [16]. Many studies have employed moderate resolution satellite imagery, such as Landsat
(30 × 30 m2), to map the presence and absence of insect-induced canopy mortality [17–19]. This is a
relatively efficient and cost-effective method when compared to collecting similar data via aerial
or field survey [3], but presence/absence maps of tree mortality do not convey the severity of
an outbreak—information which is needed to accurately quantify spread, intensity, distribution,
or ecosystem impacts of an infestation.

Recent research has improved methodologies for detecting mortality severity (or the percentage
of an area with dead canopy present) at the stand and even single tree level [20] using remotely sensed
imagery. In one such example, Long and Lawrence [21] focused on detecting mountain pine beetle
(Dendroctonus ponderosae) induced tree mortality in Montana and demonstrated that it is possible to
accurately detect mortality severity (0–100% dead) at the Landsat pixel scale. This method offers a
promising opportunity for researchers to supplement information provided by aerial detection surveys
with remotely sensed maps of canopy mortality severity. Applying these methods to larger study
areas and at multiple time steps would allow for an understanding of the progression of outbreaks and
gives a more complete representation of landscape dynamics. However, mapping mortality severity at
larger scales and across time presents additional challenges.

When working with remotely sensed data to detect insect induced mortality, researchers must
weigh the advantages and disadvantages of each available remotely sensed data product’s spectral,
temporal, and spatial resolution [20,22]. Landsat Thematic Mapper (TM), Enhanced Thematic Mapper
Plus (ETM+) and Operational Land Imager’s (OLI) spatial resolution of 30 × 30 m2 has been shown to
be of sufficient resolution for resource managers to explore spatial patterns and trends of bark beetle
outbreaks across landscapes [19]. Although Landsat’s spectral resolution has been shown in many
cases to be sufficient for used in predictive detection models of bark beetle attack, changing sensor
properties through time (TM to ETM+ to OLI within our study period) complicates image selection
and differencing and can result in spectral mismatches between neighboring image collections.

Landsat’s temporal resolution of 16 days can limit image availability, especially in persistently
cloudy areas such as Colorado’s subalpine zone, and the Landsat 7 ETM+ scan line corrector failure [23]
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further limits image availability. In some seasons it is possible that little or no cloud or scan line free
Landsat imagery is available for a study area of interest [24]. In many scenarios, this can be easily
and acceptably rectified by selecting imagery that contain clouds only partially obscuring a study
area of interest and excluding affected areas with a cloud mask. While this process is necessary in
some applications, doing so leaves some areas unmonitored and limits the applicability of methods
to other studies [3]. These challenges with cloud cover and spectral inconsistency across sensors
and space can be overcome through spectral harmonization and compositing of multiple images.
This multi-step process is carried out by collecting all available Landsat imagery (including regularly
discarded cloudy image collections) for a time period and modelling spectral relationships of images
across sensors to ensure spectral alignment and spectral harmonization across time and space [25–27].
The tasseled cap transformation is a particularly powerful transformation that can be employed
in spectral harmonization and compositing procedures because of its reported spectral consistency
through time and its cross-sensor application [28]. Once an index of interest, like tasseled cap, is applied
to available satellite collections and a spectral harmonization between sensors is applied, all available
pixels from multiple dates are composited by taking the mean or median of all cloud and shadow-free
observations for a given pixel [26,27]. The resulting product is a spectrally aligned composited image
that reduces cloudy patches to create the largest study area extent possible. Since gray stage spruce
trees are relatively spectrally static, pixel-by-pixel compositing is a relevant way to increase the area
sampled while concurrently maintaining the spectral information required to detect gray stage spruce
canopy mortality.

The long-lived and spatially extensive spruce beetle outbreak in southern Colorado provides
a unique opportunity to explore methods for detecting bark beetle mortality severity. The primary
objective of this study was to map the severity and progression (2011–2015) of the spruce beetle
outbreak occurring in southern Colorado spruce/fir forests. To achieve this objective, we utilized
harmonized and composited Landsat indices to enhance our ability to monitor large, cloud-covered
study areas. In addition, we tested the effectiveness of using composited Landsat indices to detect
spruce beetle-induced outbreak severity at multiple time steps and of using multiple Landsat sensors.
Existing methods to detect bark beetle canopy mortality severity are thought to be untested in these
particular scenarios.

2. Materials and Methods

2.1. Study Area

We selected a c. 5000 km2 study region (Figure 1) composed principally of Engelmann spruce
(Picea engelmannii Kirby.) and subalpine fir (Abies lasiocarpa Nuttall.) located within and around the Rio
Grande and San Juan National Forests in the southern Colorado Rocky Mountains. The study area was
restricted to spruce/fir forest types using the publicly available LANDFIRE existing vegetation type
layer [29]. Burned areas were excluded from sampling using Monitoring Trends in Burn Severity [30]
fire history records. Elevations in the study area range between ~1800 m and ~4000 m. While average
temperatures and rainfall are quite variable in the study region, Elliot & Baker [31] averaged conditions
reported at three nearby weather stations and found mean annual temperatures to be between −5.9 ◦C
and 12.4 ◦C, with mean annual precipitation of 50.8 cm. Most of the study region is managed by the
USFS for multiple-use objectives, including conservation of public lands, recreational activities, timber
and resource extraction, as well as cattle grazing.

Aerial detection surveys show that spruce/fir forest types in the study region experienced varying
levels of spruce beetle caused tree mortality over the past decade, which was reported at low levels
beginning in 2004, later intensifying to outbreak proportions across the landscape between 2009
and 2015. The study area is an area of ecological interest because of the recent and intense nature
of spruce beetle-induced tree mortality. This study region also emulates challenges encountered
when researchers use satellite data to model ecological phenomena at the landscape level: (1) cloud
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cover obstructing areas of scientific interest, and spectral inconsistencies between imagery caused by
(2) sensor mismatches and (3) working across multiple satellite collection paths. As such, the study
area and period covered portions of two Landsat Worldwide Reference System 2 (WRS-2) path/rows
(P/R), including P034, R034 and P035 R034, spanned multiple sensor periods (TM/ETM+ to OLI),
and was distributed across high elevation spruce/fir forests that are often cloud covered.
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2.2. Data Collection

We randomly distributed 410 sampling locations within the study area to facilitate ocular
estimation of canopy mortality using high-resolution (1 m2) National Agricultural Imagery Program
(NAIP) imagery for 2011 and 2015. We delineated 30 × 30 m Landsat pixel boundaries at the locations
where the 410 sampling points were located and overlaid a 100-square grid to aid in ocular estimation
of four categories: percent gray stage canopy mortality, live canopy, other live vegetation, and “other”
within each of the plots. The sampling strategy was designed so that estimates of percent canopy
mortality would spatially coincide and be at the same spatial scale with the pixel-level spectral values
extracted from Landsat imagery [21,32]. While neither NAIP nor Landsat is geolocated with perfect
precision, their geolocation accuracies have been shown to be sufficient to have a minimal effect on
sampling accuracy, which was supported through ocular comparisons of the image sets. All ocular
estimation of canopy mortality using NAIP imagery was conducted within Google Earth Engine’s
API [33] using a scripted interface that allowed for near instant mosaicking and display of NAIP
orthorectified quarter quad tiles for all years of interest. Ocular estimation was carried out by two
calibrated image interpreters with multiple years of experience working together to conduct image
interpretation. We classified tree mortality as “mortality” only if the tree was characteristic of spruce
beetle-induced mortality in the gray stage. Other types of disturbance that were seen in the study area
(i.e., windthrow, management activities) were not included in estimates of canopy mortality to ensure
our estimates were characteristic of those resulting from spruce beetle attack.



Forests 2018, 9, 336 5 of 14

2.3. Remotely Sensed Data

To derive predictors of spruce beetle outbreak severity, we obtained all available Landsat imagery
for three sensors (TM, ETM+ and OLI) across two primary study periods: 2011 (July–August) and
2015 (July–August). We also obtained all available imagery for the same months in 2000 and 2007
to characterize pre- and mid-outbreak forest conditions, respectively. All products were obtained
pre-processed to surface reflectance through the United States Geological Survey (USGS) Earth
Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA) On Demand
Interface [34]. Imagery was selected without consideration of cloud cover, but the study period was
restricted to these two peak summer months to ensure the high elevation study area was free of
snow and ice and deciduous vegetation was leaf-on so as to not be confused with gray stage spruce.
All imagery was obtained in the Albers equal-area conic projection [35].

The primary predictive indices of focus in this study were Landsat-derived tasseled cap
transformations [28,36] and derivations thereof. The tasseled cap transformation transforms spectral
information from the six reflective Landsat bands into three interpretable bands directly associated
with landscape and vegetative characteristics, including brightness (which represents soil and image
brightness), greenness (which represents vegetative greenness) and wetness (which represents soil
and vegetation wetness) [28]. We selected tasseled cap transformations as the primary set of
predictive indices because of their reported spectral consistency through time and their cross-sensor
application [28], both of which are important when compositing multiple images. In addition, tasseled
cap transformations have strong experimental precedence as robust predictors of forest disturbances
and changes in canopy characteristics [37–39].

We processed all imagery using LandsatLinkr [26,27], an R package, to obtain near cloud-free
tasseled cap brightness, greenness, and wetness (BGW) indices that were used as predictors of spruce
beetle induced tree mortality for both 2011 and 2015 (Figure 2, Table 1). LandsatLinkr automatically
conducts basic image preparation (decompression, stacking, reprojection), masks all cloud covered
pixels within a Landsat scene using Fmask [40], and applies standard reflectance based tasseled cap
transformations [36] to TM/ETM+ sensors. Landsat 8 indices are then created by integrating ETM+
tasseled cap indices with near-date OLI surface reflectance imagery to model spectral relationships and
generate OLI tasseled cap indices, helping to ensure spectral consistency across sensors [25,27]. The tool
then composites unobstructed (cloud and shadow free) portions of all harmonized images using a mean
of overlapping pixel values for all images available in the year, including those areas that overlap across
Landsat WRS-2 scene boundaries. The resulting products are single growing season composites of
tasseled cap BGW indices for each year (hereafter referred to as compositeTCAP products). A detailed
description and workflow for the LandsatLinkr tool is available in Vogeler et al. [27].

We differenced the 2011 and 2015 BGW compositeTCAP with previous years BGW
compositeTCAP products (2015–2011, 2011–2007 and 2015/2011–2000). These differenced layers
captured changes in TCAP values between pre-, mid-, and post-spruce beetle outbreak conditions,
a practice commonly employed in land and forest change studies [41]. Finally, to capture the potential
influence of topography on spruce beetle mortality characteristics, we derived elevation, slope,
and aspect from the 1 arc-second Shuttle Radar Topography Mission v2.0 digital elevation model
product. After all processing was completed, 12 individual predictive data layers were available for
both 2011 and 2015 (Table 1).

Finally, to test the robustness and application of compositeTCAP, which used 16 individual
image collections versus single image date tasseled cap derived indices, we created one additional
set of TCAP BGW indices for 2015 that used only one image date per scene. The two scenes with
the lowest cloud cover for the study period were downloaded pre-processed to surface reflectance,
transformed to TCAP indices using coefficients specifically created for Landsat 8 OLI [42], and using
the top layer values, were mosaicked for analysis and comparison to the compositeTCAP product
(hereafter, this product is referred to as singleTCAP).
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Table 1. A summary of all predictive layers produced for each year (2011 and 2015) using
Landsat-derived tasseled cap transformations. Each predictor was considered in the final RF predictive
models of % canopy mortality.

Predictor(s) Data Sources

2015 and 2011 TCAP Brightness Composites
2015 and 2011 TCAP Greenness Composites
2015 and 2011 TCAP Wetness Composites

• TM/ETM+ (2011)
• ETM+/OLI (2015)

2015–2011 and 2011–2007 Brightness
2015–2011 and 2011–2007 Greenness
2015–2011 and 2011–2007 Wetness

• TM/ETM+ (2011–2007)
• TM/ETM+/OLI (2015–2011)

2015–2000 and 2011–2000 Brightness
2015–2000 and 2011–2000 Greenness
2015–2000 and 2011–2000 Wetness

• TM/ETM+ (2011–2000)
• TM/ETM+/OLI (2015–2000)

Elevation, Slope, Aspect • Shuttle Radar Topography Mission v2.0
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2.4. Mapping Spruce Mortality Severity in 2011 and 2015

We used a combination of the mortality severity data collected at plots in 2011 and 2015 and
extracted associated spectral values from the twelve predictor variables (Table 1) to build two (2011
and 2015) random forest models of spruce mortality severity. Random forests are a robust decision tree
based prediction algorithm that can be used in both classification and regression based problems [43].
Random forests are a particularly powerful tool for remote sensing based analyses [44] because they
are non-parametric and difficult to overfit [43,45]. Random forests also facilitate simple evaluation of
model performance without the use of separate testing data because the model is built with a randomly
selected subset of the predictors and training data, resulting in “built in” cross validation in each
model run [46].

Both models were tested and built in the R statistical software using the randomForest package [45]
using 2000 trees and the remainder of parameters left at default. We conducted model selection
using the rfUtilities package model selection function [47] to achieve a balance of model parsimony
and predictive power. We evaluated the performance of each model using out-of-bag estimates of
variance explained, root mean squared error (RMSE) and percent RMSE of the maximum observation.
After selecting the best performing models for 2011 and 2015, we applied the models to generate
spatial predictions of mortality severity across the entire study area.

2.5. Effectiveness of Composited TCAP Indices

To perform an initial test to determine whether compositeTCAP BGW indices were an effective
substitute for traditional singleTCAP BGW in modelling spruce beetle induced tree mortality,
we compared them in two ways. First, we compared the proportion of the total study area that
remained following cloud and cloud shadow masking. This was completed by simply tabulating within
a GIS the number of pixels remaining following completion of both processing types. Next, we built a
simplistic random forest model for each image type and compared evaluation metrics. The models
used the same plots and the same response variable. The only difference was the predictor variable
used: compositeTCAP or singleTCAP (Table 2). We extracted values of the BGW predictors for the
342 plots (out of 410 original plots) that were still present after cloud masking in both the singleTCAP
and compositeTCAP products and built a random forest model for each dataset.

Table 2. Characteristics of the two predictive layer stacks that were used in the initial comparison
of composited predictors versus single image date predictors and the number of cloud free pixels
remaining in each product following the two processing schemes.

Description
# of Collection
Dates/Sensors

Applied

Response
Variable

Predictor
Variables

Cloud Free
Pixels

2015 Tasseled Cap
July/August Composite

(compositeTCAP)

16 collection dates,
ETM+ and OLI % Mortality TCAP Brightness,

Greenness, Wetness
5,416,792
(99.5%)

2015 Tasseled Cap single
collection per scene

(singleTCAP)

1 collection date
per scene, OLI only % Mortality TCAP Brightness,

Greenness, Wetness
4,544,057
(83.5%)

3. Results and Discussion

3.1. Comparison of Composited TCAP Indices with Single TCAP Indices

The use of composited TCAP indices, which combined 16 tasseled cap transformed predictor
layers of BGW from all available 2015 July and August Landsat imagery, increased the spruce/fir area
that was clear of clouds and available for analysis. The use of the lowest cloud cover single image
dates in the same area and time period reduced the study area size by 16% (Table 2).
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This does, however, represent a snapshot in time and serves only as an example of the power
that compositing imagery can have to expand a study area in a situation where cloud-free imagery is
simply unavailable. While many studies are forced to select suboptimal image dates or to significantly
reduce their study area size because of cloud coverage, compositing allowed us to expand the area of
analysis to cover nearly all (99.5%) spruce/fir forests within the study region, while maintaining the
optimal time period of interest in the peak summer months.

Each of the random forest models performed similarly, with singleTCAP very slightly
outperforming compositeTCAP. Since both models used the same set of observations and are based
upon the same response variable, we can directly compare the two model’s evaluation metrics.
Root mean square error (RMSE), a measure of the differences between the observed and predicted
values of the model, was similar for both at 14.9 (18%) for compositeTCAP and 13.9 (17%) for
singleTCAP. This initial test gave us confidence in the use of compositeTCAP products in the more
refined modelling techniques employed in the final models of spruce mortality, which used an
expanded set of predictors and training dataset. We were satisfied by the increase in study area
size (16%, ~900,000 pixels) produced through compositing and decided it a worthwhile tradeoff for
the very minor reduction in model performance, thoughmore comparisons are needed in additional
modelling scenarios. Gray stage spruce trees are likely spectrally stagnant within a summer season,
so if composited imagery was to be used in an analysis more sensitive to phenological variations,
we recommend additional testing of the suitability of composited imagery or indices.

3.2. Final Models of Spruce/Fir Mortality Severity in 2011/2015

The final models for both 2011 and 2015 performed quite well in predicting spruce mortality
across the expansive and environmentally diverse study area. The 2011 and 2015 models had an RMSE
of 7.7 (14%) and 11.6 (14%) and explained 48% and 55% of variance, respectively. The twelve predictors
for each year were pared down to six in both models after variable selection (Figure 3). The predictor
variables retained and their importance only varied slightly between 2011 and 2015. Brightness and
differenced wetness were the top predictor variables in both the 2011 and 2015 models. The inclusion
of topographic indices provided no additional predictive power to the model in 2011 but, interestingly,
elevation contributed in 2015.
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The 2011 spruce mortality map shows the highest severity outbreaks were located in the
northeastern corner of the study area, between San Luis Peak and Wolf Creek Pass and just west of
this location (Figure 4). Other low severity outbreaks were detected across fairly small spatial extents,
but the vast majority of the study region appeared to have been unaffected or affected at low levels of
severity (10–20% dead) in 2011 (Figure 5). Between the 2011 and 2015 study periods, spruce beetle
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activity in and around the San Juan and Rio Grande National Forests became more severe, with a
much wider spatial distribution of outbreak events.
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By 2015, the spruce beetle attack seemed to expand in all directions from the relatively spatially
isolated mortality events seen in 2011, with areas along the northern border of the Rio Grande National
Forest being attacked very severely (50–70% dead). The outbreak occurring near Wolf Creek Pass
increased in severity, and an additional high severity mortality pocket appeared in the southeastern
portion of the study area. The outbreak dynamics conveyed in these maps are consistent with findings
in other studies showing that spruce beetle outbreaks spread from multiple population centers instead
of from a single “epicenter” [48]. By 2015, outbreaks converged and very little of the study region
had been left unaffected by spruce beetle attack (Figures 4 and 5). These maps are consistent with the
broad patterns of new attacks conveyed through the USFS ADS maps (Figure 6). This lends credence
to the concept that maps such as those produced in this study could be combined with ADS data to
provide an enhanced product that more clearly and precisely conveys information on the severity and
distribution of insect and disease activity.

This study shows that multiyear and multi-sensor Landsat imagery is effective for monitoring
large, persistently cloudy areas. While many studies have focused upon a single year of monitoring,
we have mapped the progression and severity of a bark beetle outbreak across a five-year period using
multi-sensor tasseled cap composites. Updates to this progression can be efficiently reproduced with
little to no field work whenever high-resolution aerial imagery is available. We further show that the
methods are effective across spatially expansive (5000 km2) study regions, a larger size than explored
in previous studies using similar methods [21,49]. In addition, the results show that composited
tasseled cap indices are effective in detecting spectrally subtle, slow-moving disturbances spanning
low to high canopy mortality. While similar predictive indices have been used in studies exploring
deforestation [50], bark beetle induced disturbances are often considered more difficult to detect than
more severe and fast moving disturbances [18], such as fire or forest harvest, when using moderate
resolution imagery like Landsat.
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Figure 6. Spruce beetle-induced mortality as documented by the USFS Aerial Detection Survey
(ADS) between 2004 and 2015. There is a close match between the general location and timing of
mortality events as documented by ADS and our models. Data provided by Pete Barry, Colorado State
Forest Service.

Composited tasseled cap indices and their derivatives were effective predictors of gray stage
spruce mortality when applied within a regression tree based modelling framework. The variable
selection procedure highlighted the important role that differencing indices from different stages of
an outbreak can play in detecting changes in vegetation through time, a finding that is consistent
with similar studies [41]. While the 2011 and 2015 models both slightly overpredict low levels of
mortality and underpredict more severe levels of mortality (Figure S1), we believe the RMSE is within
an acceptable range for the models to be valuable tools to be applied in forest management and in
evaluating ecosystem impacts of spruce beetle outbreaks. The resulting maps represent a significant
improvement over products that display only presence/absence of canopy mortality.

It is important to note that the study period included only the height of the spruce beetle outbreak
(2011–2015) occurring in the region. To understand the full history and progression of spruce beetle
activity within this outbreak, additional sampling from previous years would be required, although
this comes with an additional caveat. This method is successful because we have a wide range of
mortality severity occurring across the landscape. Modelling mortality severity at the beginning of
the outbreak could be less successful because a randomly distributed dataset would contain mostly
absence values, which may be better suited for a classification modelling approach.

Finally, while we took care to exclude disturbances that were not caused by spruce beetle in
sampling and initial pre-processing steps (such as excluding areas affected by fire and by restricting the
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study area to the spruce/fir vegetation class) we are almost certainly capturing disturbances in the final
maps that are not induced by spruce beetle. Forest canopies in the area were observed to be almost
entirely green in scans of pre-outbreak imagery, but other insects, tree diseases, and disturbances are
present in the area, which may be classified by the model as gray stage spruce mortality. Because of
the massive extent and high severity of the ongoing outbreak, we believe it is reasonable to assume
that the vast majority of predicted mortality was the result of spruce beetle attack.

4. Conclusions

This study displayed an effective methodology for detecting gray stage spruce mortality in a
large, cloudy study region spanning multiple Landsat scenes. We have shown that (1) multi-image
date and multi-sensor tasseled cap composites are a powerful tool when working in a cloudy study
area and serve as an effective predictor of gray stage spruce mortality severity across time and in
large study regions; (2) differencing images from multiple time steps is important when attempting to
detect long, slow moving disturbances like spruce beetle outbreaks, and (3) data produced through
models like those in this study can serve as a potential supplement to existing forest management
and monitoring programs, such as the USFS Aerial Detection Survey. Finally, we created a map of an
ongoing outbreak event that supports a better understanding of outbreak progression, spread, and
intensity for this particular spruce beetle outbreak.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/9/6/336/s1,
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