
RETRACTED

Article

Spatio-Temporal Patterns of Urban Forest Basal Area
under China’s Rapid Urban Expansion and Greening:
Implications for Urban Green
Infrastructure Management

Zhibin Ren, Xingyuan He, Haifeng Zheng and Hongxu Wei * ID

Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology,
Chinese Academy of Sciences, Changchun 130102, China; renzhibin1985@163.com (Z.R.);
hexingyuan@iga.ac.cn (X.H.); zhenghaifeng@iga.ac.cn (H.Z.)
* Correspondence: weihongxu@iga.ac.cn; Tel.: +86-431-8253-6084; Fax: +86-431-8253-6084

Received: 13 April 2018; Accepted: 11 May 2018; Published: 17 May 2018
����������
�������

Abstract: Urban forest (UF) basal area is an important parameter of UF structures, which can influence
the functions of the UF ecosystem. However, the spatio-temporal pattern of the basal area in a given
UF in regions under rapid urbanization and greening is still not well documented. Our study explores
the potential of estimating spatio-temporal UF basal area by using Thematic Mapper (TM) imagery.
In our study, the predicting model was established to produce spatiotemporal maps of the urban
forest basal area index in Changchun, China for the years 1984, 1995, 2005, and 2014. Our results
showed that urban forests became more and more fragmented due to rapid urbanization from 1984
to 1995. Along with rapid urban greening after 1995, urban forest patches became larger and larger,
creating a more homogeneous landscape. Urban forest and its basal area in the whole study area
increased gradually from 1984 to 2014, especially in the outer belts of the city with urban sprawl.
UF basal area was 27.3 × 103 m2, 41.3 × 103 m2, 45.8 × 103 m2, and 65.1 × 103 m2 of the entire
study area for the year 1984, 1995, 2005, and 2014, respectively. The class distribution of the UF
basal area index was skewed toward low values across all four years. In contrast, the frequency
of a higher UF basal area index increased gradually from 1984 to 2014. Besides, the UF basal area
index showed a decreasing trend along the gradient from suburban areas to urban center areas.
Our results demonstrate the capability of TM remote sensing for understanding spatio-temporal
changing patterns of UF basal area under China’s rapid urban expansion and greening.
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1. Introduction

During the last three decades, many serious urban environmental problems have evoked
considerable social concerns in China [1]. Many cities in China have set up a lot of environmental
improvement strategies such as a focus on urban forest (UF) establishment [2]. UFs in cities are the most
important parts of urban ecosystems [3]. The establishment of UFs can be considered as an important
way to improve the urban environment [3]. Urban forests could provide many ecological functions to
resolve urban environmental problems [4,5], such as reducing urban air pollutant concentrations [6,7],
sequestering atmospheric CO2 [8,9], reducing storm water runoff [10,11], mitigating the urban heat
island [12,13], and providing a habitat for organisms [14,15].

UF basal area is considered as an important component of UF structures, which can influence
UF ecosystem functions [16,17]. In the past six decades, China has experienced rapid urbanization
and urban greening [18]. The urban population in China is predicted to reach 1.5 billion with an

Forests 2018, 9, 272; doi:10.3390/f9050272
This paper has been retracted. A Retraction notice was published on 20 November 2018
at Forests 2018, 9, 721; doi:10.3390/f9110721.

www.mdpi.com/journal/forests

http://www.mdpi.com/journal/forests
http://www.mdpi.com
https://orcid.org/0000-0002-7108-5342
http://www.mdpi.com/journal/forests
http://www.mdpi.com/1999-4907/9/5/272?type=check_update&version=3


RETRACTED

Forests 2018, 9, 272 2 of 18

urbanization level of 50% by the end of 2020 [19]. With the continuous development of urbanization,
UF has great development potential in China [20]. The Chinese government have placed an increasing
emphasis on UF development in recent decades [21,22]. UF City Programs were proposed by the
Chinese government from 2004. Many governmental regulations relating to urban greening have
been introduced. Urban forests in China could experience a dramatic change due to intensive
human activities, such as urbanization and urban greening. However, the comprehensive effects
of urbanization and greening on the spatio-temporal patterns of UF basal area have still not been
understood. Therefore, the accurate and timely estimation of spatiotemporal UF basal area is necessary
and useful for urban managers to understand UF functions and maximize the environmental benefits
of UFs under China’s rapid urban expansion and greening. To the best of our our knowledge,
the spatiotemporal dynamic patterns of the UF basal area under China’s rapid urbanization and
greening have rarely been studied and are not yet fully understood.

As we know, the acquisition of spatial-temporal UF basal area often depends on conventional
intensive and costly plot-based field work [23–25]. In addition, it is very tough to obtain spatial-temporal
patterns of UF basal area at the urban landscape scale through direct field sampling measurements.
The lack of a consistent area-wide UF basal area would impact our ability to conduct the ecological
analyses of UF functions at a landscape level. Using remote sensing techniques, the estimation of UF
basal area should be connected with various vegetation indices developed from remote sensing data
to overcome these limitations [26]. Among these remote sensing data, the higher resolution remote
sensing dates such as QiuckBird remote sensing and Systeme Probatoire d’Observation dela Tarre
(SPOT) or eye-level photography can be used for extracting urban forest structures with a high accuracy.
However, these data are often more expensive. While Landsat Thematic Mapper (TM or Enhanced
Thematic Mapper (ETM+)) imagery has a poorer resolution and issues with mixed pixels, it is easily
accessed, less expensive, and widely used all over the world to estimate forest structural attributes.
Many researchers have demonstrated that some indices obtained from TM or ETM+ imagery data
such as the Normalized Difference Vegetation Index (NDVI), simple ratio (SR), and green normalized
difference vegetation (GNDVI), are significantly correlated with forest structural attributes measured
on the ground such as canopy cover, stem density, diameter at breast height, tree height, base area, leaf
area index, biomass, etc. [26–30]. The most commonly used spectral indicator extracted from TM or
ETM+ imagery is the Normalized Difference Vegetation Index (NDVI). Some researchers have showed
that the NDVI has a significant relationship with ground measured natural forest structures [28,29].
Previous studies have achieved some degrees of success in estimating the forest basal area index
from TM or ETM+ data in natural areas worldwide. However, the conclusions about relationships
between forest basal area and NDVI vary, depending on the characteristics of the study areas [30].
UFs are usually very different from natural forests, which are heterogeneous, fragmented and scattered,
and surrounded by many impervious surfaces [16,17]. Therefore, the relationships found between
vegetation indices and natural forest structures may be different from the relationships between
vegetation indices and urban forest structural attributes. Whether NDVI extracted from TM or ETM+

imagery can still be used for estimating UF basal area is still unknown. Based on our literature
review [23–29], there have been few studies on estimating spatiotemporal patterns of UF basal area
with TM or ETM+ imagery.

Based on field measurements and TM remote sensing data acquired in four different years (1984,
1995, 2005, and 2014) from the City of Changchun, China, our study aims to characterize the changing
patterns of UF basal area from Landsat TM imagery from 1984 to 2014 under two key forces: the fast
urbanization process and the urban greening policies. The purposes of our research are to: (1) examine
the usefulness of TM remote sensing at different times in estimating spatio-temporal changes of UF
basal area; (2) develop a model for predicting UF basal area by coupling field measurements with
TM remote sensing; (3) explore the dynamic spatio-temporal patterns of UF basal area in the City of
Changchun, China from 1984 to 2014; and (4) study the implications of UF establishments for urban
environmental improvement under China’s rapid urban expansion and greening.
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2. Methods

2.1. Study Area

Our study was conducted within the fifth-ring road of Changchun (125◦09′–125◦48′ E,
43◦46′–43◦58′ N) (Figure 1), which is the capital of Jilin Province and an important social-economic
center of northeastern China. Changchun is located in the hinterland of the Northeast Plain and had a
total population of 3.6 million by the end of 2010. The average total yearly precipitation in Changchun
is 567 mm and the average temperatures of the cold winter and hot summer are −14 ◦C and 24 ◦C,
respectively. Changchun is called the “Forest city”, with an average forest cover rate of 45%. Urban
forest species are the most abundant with 43 families, 86 genera, and 211 species [24]. Since 1980,
Changchun has experienced an accelerated progress of urbanization in temperate regions of Northern
China [31], which might have caused dramatic changes of UF structure and species composition.
Therefore, Changchun is an ideal city for analyzing the spatiotemporal patterns of UF basal area under
China’s rapid urban expansion and greening.
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Figure 1. The study area located within the fifth-loop road in the City of Changchun, China.
AF: attached forest; EF: ecological and public welfare forest; LF: landscape and relaxation forest;
PF: production and management forest; RF: road forest.

2.2. Image Data and Processing

The four scenes of TM images with a resolution of 30 m were collected on 14 September 1984,
29 September 1995, 8 September 2005, and 3 October 2014 with a cloud cover less than 5% of
scenes. These four Landsat scenes across three decades were within the same phenological stage.
In Changchun, the trees began shedding their leaves in early November and the leaves were still on
the trees on 3 October. Therefore, the four scenes of TM images can be used in our study for urban
forest research. The atmospheric correction for the TM images was first undertaken and then the TM
raw digital numbers (DN) were converted into surface radiance values by following the procedures
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provided by Chander and Markham [32]. Finally, the TM images were geo-referenced to the Universal
Transverse Mercator (UTM) coordinate system with a root mean square error (RMSE) of less than
0.5 pixel by using 33 ground control points taken from topographic maps. Based on four scenes of TM
images, the Normalized Difference Vegetation Index (NDVI) index was further calculated in ENVI
4.6 through the equation of NDVI = (b4 − b3)/(b4 + b3), where b3 and b4 are the surface reflectance
values in TM bands 3 and 4, respectively. To conduct a spatiotemporal analysis of UF basal area with
multitemporal TM images, it is necessary to normalize NDVI maps calculated from the multitemporal
TM images to eliminate environmentally introduced radiometric effects. The relative radiometric
correction method of pseudo-invariant features (PIF) was applied in our study [33,34]. This procedure
uses one image as a reference image (2014) and adjusts the radiometric properties of all other images
(1984, 1995, and 2005) to it by the analysis of invariant features, such as roads, rooftops, and deep
water. In our study, seventy-five spatial evenly distributed regions of interest for invariant features
(including 25 from roads, 30 from rooftops, and 20 from water bodies) located on the mul-titemporal
images were manually selected. The average NDVI in each interest region was then used to develop
a linear normalization model between the reference image (2014) and the subject (i.e., uncorrected)
images (1984, 1995, and 2005). The normalized subject images (Figure 2) were obtained using the
following equation:

NDVIref = a NDVIsub + b

where NDVIref is the reference image (i.e., 2014 image); and NDVIsub is the subject image (i.e., 1984,
1995, and 2005 images). The scene normalization coefficients of NDVI before and after normalization
are listed in Table 1.
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Figure 2. The NDVI images before and after normalization.

Table 1. The image normalization coefficients and the correction coefficients for each subject image.

1984 1995 2005

a 0.712 ** 0.745 ** 0.876 **
b −0.154 ** −0.103 ** −0.095 **

R2 0.725 0.712 0.842
p-value 0.00 0.00 0.00

** Significant at the 0.01 probability level.
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2.3. Sampling Design and UF Basal Area Calculation

Plot measurements: 159 random plots (sampling plots) throughout the study area were established
in this study by using the methods from the Urban Forest Effects (UFORE) Model [35]. Field measurements
of UFs were conducted during July and August 2013 and 2014 (Figure 3).The sampling plots were
randomly selected to ensure that they were representative of the major types of urban landcover such
as residential areas, road areas, park areas, and commercial areas in Changchun. Besides, sampling
plots were required to be located in relatively homogenous patches greater than 1600 m2, and in this
study, each of the 159 sampling plots was defined as a 30 m × 30 m (0.09 ha) area to represent a TM
pixel size. The coordinates of each sampling plot were recorded with a global positioning system
(MG838GPS, UniStrong Company, Beijing, China) with the high-accuracy better than 1 m, which were
used to extract the NDVI value from multi-temporal TM derived NDVI maps. A total of 5693 tree
individuals were measured from the 159 sampling plots. At each sampling plot, some UF structural
attributes including tree species, vegetation types, stem density, diameter at breast height (DBH), tree
height (H), and crown size, were measured or collected. Finally, UF basal area (m2) was considered as
the cross-sectional area of all trees in a sampling plot and calculated at each plot in this study. The basal
area index (in m2/ha) is defined as the ratio of the cross-sectional area of all trees in a sampling plot to
the plot ground area, as shown in Equation (1).

Basal Area index
(

m2/ha
)

=

(
N
∑
i

π(DBHi/2)2
)

0.09
(1)

where N is the number of trees in a sampling plot for the equation.
After the calculation of UF basal area, NDVI values were extracted from the normalized TM

images in ArcGIS 9.3 software (Environmental Systems Research Institute, Redlands, CA, USA) with
the latitude and longitude of each sampling plot for later statistical analyses.
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2.4. Spatio-Temporal Patterns of UF and Its Basal Area with TM Images

UF can be defined as a synthesis between an organism and abiotic environment, which should
reach a big enough area (>0.5 ha) and coverage with trees as the main body, considerably influence the
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surrounding environment, and provide ecological values and human landscape values [36]. In our
study, it should be noted that only patches of urban vegetation with an area larger than 0.5 ha were
extracted as UF. Based on four scenes of TM images, an object-based approach was used for UF
extraction [37]. This approach did not classify single pixels, but groups of pixels that represent already
existing objects in ArcGIS software (Environmental Systems Research Institute, Redlands, CA, USA),
which is based on a supervised maximum likelihood classification. The TM images were firstly
segmented into objects by an object-based approach and then assigned to a UFs class. An object-based
approach is superior to traditional pixel-based classification [38]. For example, the salt-and-pepper
noise is a form of noise sometimes seen on images, which can be caused by sharp and sudden
disturbances from the image signal. It presents itself as sparsely occurring white and black pixels.
The “salt-and-pepper” effect frequently found in pixel-based classification can be largely avoided when
using an object-based approach for land cover classification. The historical high spatial resolution
images in Google Earth were used as reference data for the accuracy assessment. An accuracy estimate
was conducted based on 200 checkpoints for every respective year with historical high spatial resolution
images in Google Earth as references for 1984, 1995, 2005, and 2014. The overall accuracies of UF
extraction for 1984, 1995, 2005, and 2014 were 89.24%, 90.43%, 91.58%, and 93.12%, respectively.

In order to produce the spatiotemporal maps of UF basal area index from historical TM imagery,
NDVI was used to build the prediction model for UF basal area index. The corresponding regression
model between UF basal area index collected from the 129 plots and NDVI extracted from the 2014
TM image was established to uncover quantitative relationships between them. In the analyses,
the plot-based NDVI was used as the independent variable, while UF basal area index was used as a
dependent variable. In this study, coefficient of determination (R2) for regression analysis between
NDVI and UF basal area index was calculated to assess the relationship. To evaluate the reliability
and accuracy of the established models, plot-based measured UF basal area index data at 30 plots
(Figure 3) were used for validation. The variability is represented by the standard error. R2 and RMSE
were used to test the fitness of the predicting model at plots. A well-calibrated model should have a
root mean square error (RMSE) that is small relative to the total observed variation and an R2 close to
one. All statistical analyses were carried out with standard statistical software, SPSS (Version 19.0, IBM
Company., Chicago, IL, USA).

Mapping UF basal area index: a vector layer data of UF was first used to extract the NDVI of UF
from 1984, 1995, 2005, and 2014 TM images in our study, and then the map of UF basal area index in
2014 was created by calculating pixel-based values of UF basal area index using the regression model
developed with NDVI extracted from the 2014 NDVI image at the 129 plots and 2013–2014 field survey
data. We also created spatio-temporal maps of UF basal area index from normalized NDVI images
calculated from 1984, 1995, and 2005 TM images using the regression model of UF basal area index,
developed with the 2014 NDVI image.

3. Results

3.1. Urbanization in Changchun from 1980 to 2014

Some variables of urbanization in Changchun were collected from the Statistics Yearbook of Cities
in China (National Bureau of Statistics of China, 1980–2014). These variables include urban population,
built-up area, and gross domestic product (GDP) per capita, which were used to assess the urbanization
level in our study. The results showed that Changchun has experienced rapid urbanization during
the last 30 years (1984–2014) (Figure 4). Compared to 89 km2 in 1984, urban build-up area reached
430 km2 in 2014, with a rapid increment during last three decades. Urban population increased from
110 × 104 in 1984 to 410 × 104 in 2014, with an increment of 9 × 104 for each year. Meanwhile, GDP
area per Capita also showed a rapid increase from 1984 to 2014.
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Figure 4. Urbanization process in Changchun city from 1980 to 2014. (a) GDP; (b) Population;
(c) Build-up area.

3.2. Spatial Assessment Model for UF Basal Area Index

In order to produce the spatio-temporal maps of UF basal area index from historical TM imagery,
NDVI was used to build the prediction model for UF basal area index. The results showed that the UF
basal area index had a positive non-linear relationship with NDVI (Figure 5), which suggested that the
UF basal area index increases non-linearly with the increase of NDVI. As seen in Figure 5, when NDVI
was lower than 0.5, the UF basal area index increased slowly with the increase of NDVI. However,
when NDVI was larger than 0.5, the UF basal area index increased sharply (Figure 5). The non-linear
model with NDVI as the independent variable could explain 69.2% of total variance of UF basal
area index. Finally, the established regression model was then applied to produce the maps of UF
basal area index from normalized historical NDVI images in 1984, 1995, 2005, and 2014, respectively.
To evaluate the reliability and accuracy of the predicted model, 30 plot-based measured UF basal area
index data were used for validation. A well-calibrated model should have a root mean square error
(RMSE) that is small relative to the total observed variation and an R2 close to one. Our results showed
that the modeled UF basal area index compared closely with the plot-measured UF basal area index
(RMSE = 1.3 m2/ha; R2 = 0.90) (Figure 6). Ninety percent of the variance of UF basal area index among
the 30 plots can be captured by the model. However, high UF basal area index values were slightly
underestimated. Therefore, the established model is accurate and can be used to predict the UF basal
area index.
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Figure 5. Regression analyses of NDVI with UF basal area index (n = 129, p < 0.01).
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Figure 6. Comparisons between plot-based measured UF basal area index and the modeled UF basal
area index at the 30 sites (n = 30).

3.3. Spatio-Temporal Distribution of UF and Its Basal Area

The spatio-temporal patterns of UF over the past three decades (1984–2014) have changed
dramatically (Figure 7), mirroring the intense urbanization and rapid development of urban greening
in China. It is obvious that UF gradually expanded from downtown to the suburban area during the
study period. UF coverage steadily increased from 15% in 1984 to 25% in 2014 (Table 2). The UF area
in 2014 increased by 63.1% (52.4 km2) compared to 1984. Our results revealed the clear changes of
UF spatial configuration. The total number of UF patches in the Municipality area approximately
increased by 99% from 1984 to 1995, and then decreased by 2.6% from 1995 to 2005 and 27.8% from
1995 to 2014 (Table 2). Correspondingly, the values of mean UF patch size showed a decline of 43.4%
from 1984 to 1995, but exhibited an increase of 14.9% from 1995 to 2005, and the increase was doubled
from 2005 to 2014. These changes in landscape configuration suggest that the UF became increasingly
fragmented due to intense urbanization from 1984 to 1995. Along with rapid urban greening after 1995
(Figures 7 and 8, Table 2), the UF patches became larger and larger, creating a more homogeneous
landscape when compared with the spatial patterns in 1995. UF was mostly located in the urban
central area in 1984 (Figures 7 and 8) and then distributed more evenly across the whole urban area in
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more recent years (2005 and 2014). In the study years of 1984, 1995, and 2005 (Figures 7 and 8), the UF
coverage was higher in the two-ring area than that in the other-ring area. In 2014, the highest value
of UF coverage occurred in the three/four-ring area. Spatial heterogeneity of UF change also existed
from 1984 to 2014. Our results showed that UF coverage in the suburban area (four to five-ring area)
increased gradually from 1984 to 2014, but decreased sharply in the urban central area (one/ two-ring
area) of the city (Figures 7 and 8). UF Patch numbers showed a decreasing trend from suburban areas
to downtown for all the study years (Figures 7 and 8). From 1984 to 2014, UF patch numbers increased
in all ring areas, especially in the five-ring area. Mean patch area of UF showed an increasing trend
from suburban areas to the downtown area for the years 1995, 2005, and 2014 (Figures 7 and 8). Mean
patch area of UF in the suburban area (five-ring) increased gradually from 1984 to 2014, but decreased
sharply in the downtown area (one/two-ring area) of the city.
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Table 2. Summary of UF attributes within the study area in the City of Changchun, China.

Year Total UF Area
(103 m2)

Coverage
(%)

Patch
Number (n)

Mean Patch
Area (103 m2)

Patch Density
(n/km2)

Basal
Area (m2)

BA Index
(m2/ha)

1984 78,585.612 0.152 1014 77.501 12.912 27,294.725 0.521
1995 89,084.842 0.174 3013 29.621 33.842 41,338.945 0.793
2005 104,800.523 0.242 2934 35.719 27.934 45,760.852 0.874
2014 133,564.224 0.251 2174 61.337 16.325 65,139.626 1.245

Note: UF basal area (m2) was considered as the cross-sectional area of all trees in this study area. Basal area index
(m2/ha) = Total basal area/study area.
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Figure 8. Urban forest coverage, patch characteristics, and basal area across ring road-based
urban gradient.

By analyzing the pixel-based maps of UF basal area index in a GIS format, we found that they
were highly dynamic among the years 1984, 1995, 2005, and 2014 (Figures 9 and 10). UF basal area
was 27.3 × 103 m2, 41.3 × 103 m2, 45.8 × 103 m2, and 65.1 × 103 m2 of the entire study area in 1984,
1995, 2005, and 2014, respectively. UF basal area in Changchun increased gradually from 1984, 1995,
and 2005 to 2014, mirroring the intense urbanization and rapid development of urban greening in the
city. In addition, the high spatial heterogeneity of the basal area was observed across the city. In 1984,
pixels with values of UF basal area were mostly concentrated in downtown areas (Figures 9 and 10)
and then distributed more evenly across the whole urban area in more recent years (2005 and 2014).
UF basal area showed a decreasing trend from suburban areas to downtown areas in the years 1995,
2005, and 2014 (Figure 10). Meanwhile, the UF basal area index was higher in the two-ring area than
that in the other-ring area in the city of Changchun for the years 1984, 1995, 2005, and 2014 (Figure 10).
Our results also show that the different spatial changes of UF basal area have occurred across different
urban gradients from 1984 to 2014. The UF basal area increased more in the suburban area than that in
the downtown area (Figure 10). However, the UF basal area index exhibited a greater increase in the
downtown area than that in the suburban area.
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Figure 10. UF basal area across urban gradient: UF basal area (m2) = the cross-sectional area of all trees
in the study area. Basal area index (m2/ha) = Total basal area/study area.

The class distributions of UF basal area index were all skewed toward low values in 1984, 1995,
2005, and 2014. The results showed that the UF basal area index in 1984, 1995, 2005, and 2014 with the
highest frequency was 2.5–5 m2/ha (Figure 11). The frequency of UF basal area index from 2.5–5 m2/ha
was 59%, 71%, 56%, and 45% in 1984, 1995, 2005, and 2014, respectively. However, the frequency of
a lower UF basal area index (2.5–5 m2/ha) decreased gradually from 1984, 1995, and 2005 to 2014.
Meanwhile, the frequency of a higher UF basal area index (>5 m2/ha) increased gradually from 14% in
1997 to 48% in 2014. About 14% of UF basal area index values were above 7.5 m2/ha in 2014, but there
were just a few of pixels with a UF basal area index >7.5 m2/ha in 1984, 1995, and 2005.
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Figure 11. Histograms of the frequency statistics for UF basal area index, calculated from pixels with
UF in the study area of Changchun, China.

4. Discussion

4.1. The Spatio-Temporal Estimation of UF Basal Area Index

Our results demonstrated the potential of using mul-titemporal TM imagery to characterize
spatiotemporal changing patterns of UF basal area in practice. UF basal area could be still estimated
by NDVI extracted from TM imagery just like natural forest basal area that could be predicted well by
NDVI [27,30]. However, the relationship between forest basal area and NDVI was weaker in the urban
area than that in the natural area [8,28]. One possible reason for this might be that the environment
of UFs is very different from that of natural forests. Usually, urban heterogeneous and fragmented
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environments may result in a mixed pixel problem. Therefore, the mixed pixel issue might be the main
reason for the confusion of estimating UF basal area by NDVI. The approach of establishing a model to
predict UF basal area has been successful, but has serious limitations. The major limitations of using
vegetation indices (VIs) to estimate forest basal area are that VIs frequently lose sensitivity and saturate
at a moderately high above-ground biomass (AGB) or leaf area index (LAI). Many studies [39–41]
have reported that models between VIs and basal area or biomass are curvilinear and there is a trend
of saturation in the VIs [42]. The nonlinear equations between NDVI and UF basal area or biomass
found in this study also implied this limitation. Our results show that the saturation effect of the
NDVI still existed in UFs similar to that in natural vegetations. However, such a kind of limitation
could be ignored because UF basal area values from most urban vegetated-areas in this study were
much lower than that in natural forest areas and few of the UFs had a canopy density above 60%.
In addition, it should be noticed that there are some limitations of our study. The different climatic
conditions, specifically precipitation and temperature, may also influence relationships between NDVI
and urban vegetation structural attributes. This should be taken into account when applying the
method developed in this study to other cities or at different seasons. More research on the relationships
between vegetation indices and urban forest structural attributes for different seasons and cities should
be conducted in the future.

4.2. Spatio-Temporal Changes of UF Basal Area under China’s Rapid Urbanization and Urban Greening

In this study, we found that UF increased gradually from 1984, 1995, and 2005 and to 2014 (Table 2
and Figures 7 and 8). The UF changing patterns in the metropolitan area of Changchun, China from
1984 to 2014 responded to combined effects of rapid urbanization and greening policies (Figure 7). UF in
China rapidly developed, especially in suburban areas, with the accelerating urban sprawl. This is why
we found the gradual increases of UF from 1984 to 2014. The opposite phenomenon was reported in
other regions, like most Eastern European cities and the USA [43–46]. This difference might be caused
by different urban development patterns in different countries. There are two main patterns of urban
development in the world [43]. The first pattern is to sprawl into the wider countryside for urbanized
lands and the second is to be densified by urbanization level with development of the existing
urbanized area. However, in Europe and the USA, some cities developed by “densifying” through the
extension of urban area, which might result in the UF decline. In China, most cities are extending by
“sprawl” into the wider countryside. Consequently, more new UFs were established. After having
realized the important environmental function of UF in urban ecosystems, local governments in
China have set out a series of policies such as “constructing forest cities” (designated by the State
Forestry Administration of the People’s Republic of China) and invested a large amount of money to
introduce green elements into urban central areas in order to resolve such environmental problems [47].
In addition, among these are establishing more new UF parks and community gardens, planting more
trees along roads, and especially paying more attention to the establishment of many national UF parks
in suburban areas. Therefore, this contributed to the sharp increase of suburban forest UF in the study
area from 1984 to 1995 that we can see from our results. Although UF amount increased gradually
with the development of urbanization, UF in central urban areas became more and more fragmented
due to intense urbanization from 1984 to 1995. However, along with rapid urban greening in recent
years, UF patches became larger and larger, creating a more homogeneous landscape when compared
with the spatial patterns in 1995. In spite of the increasing UF amount, some planning strategies are
still needed. Conservation or construction plans for the forests in the urban core areas of Changchun
are desirable to protect forests from potential loss caused by urbanization, particularly in the first-ring
road area in the city where built-up land has increased [22].

4.3. Implications for Urban Green Infrastructure Management and Planning

Since 1978 (Chinese reform and opening policies), China has experienced a rapid and
unprecedented process of urbanization (Figure 4). For instance, the urban built-up area in Changchun
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increased by 363.5% from 85 km2 in the 1980s to 394 km2 in the 2010s over a 30-year period. With the
rapid urbanization, many environmental problems in cities have arisen in China, affecting human
health, the quality of urban life, and the sustainability of the urban ecosystem [48]. Urban forests
considered as an important part of urban ecosystems have many important ecological effects and
make a great contribution to the improvement of urban environments [16,17,49]. The good spatial
and landscape planning can help urban patterns to protect ecosystems and thus support the provision
of a needed service and solve urban environmental problems [50]. However, the environmental
consequences of planning decisions on the landscape are often undervalued. There might be a lack
of adequate information about urban forest at the landscape level. With the development of remote
sensing technology, the estimation of spatiotemporal basal area by UF from the remotely sensed
imagery is very important for us to enhance understanding the dynamics of UF basal area and has
important implications for UF development under China’s rapid urbanization and urban greening,
providing information about how to establish UF to maximize their ecological functions, particularly
for cities where UFs are still under construction. In this study, we found that the spatial distribution of
UF basal area was very dynamic, mirroring the intense urbanization and rapid development of urban
greening in the city. UF basal area increased gradually from 1984 to 2014 (Figures 10 and 12), especially
in suburban areas. With the urban expansion, an obvious change of UF basal area first occurred in an
urban fringe and suburban area (Figure 12). UF basal area in China underwent a rapid development,
especially in suburban areas with the accelerating urban sprawl. Therefore, gradual increases of UF
basal area were observed from 1984 to 2014. The UF basal area was also found to be heterogeneous
across the different urban gradients (Figure 10). The decreasing trend of UF basal area from suburban
areas to downtown areas for all study years is consistent with the decreasing urbanization intensity
from downtown areas to suburban areas in China [20]. The changing patterns of UF basal area in the
metropolitan area of Changchun, China from 1984 to 2014 responded to combined effects of rapid
urbanization and greening policies (Figures 4 and 10).With urban sprawl, UFs developed rapidly,
and could serve as important green infrastructure in cities. UF basal area increased from 68 × 103

in 1984 to 224 × 103 in 2014, with an increment of 5.2 × 103 for each year. Meanwhile, our results
also showed that most areas in our study area were still covered by the low UF basal area or biomass
values. These results may suggest that there is still great potential to increase the capacity of UF
basal area and improve urban environments in Changchun. This has some important management
implications for urban greening. Firstly, there is still great potential to increase the total area of UFs
in Changchun. Currently, the UF cover is only 25%. More trees can be planted and more C can be
stored and sequestered. In addition, researchers still need to take some measures for local urban
managers to increase UF basal area or biomass. We should seek practical approaches to optimize
UF structure to enhance the capacity of these UFs in ecological functions. Some measures could be
suggested such as tree species selecting, pruning, and shaping. In practice, native species with fast
growth rates should be planted to improve the capacity of carbon sequestration of UFs. Besides, the
multilayer forest communities with a high canopy density and LAI are also the most effective in terms
of the ecological effect. In our study, our results also show that the UF patterns are uneven in the
study area. UF cover in suburban areas was higher than that in urban core areas, especially within
the first-loop road in Changchun, which could lead to the environmental inequity [51,52]. Therefore,
urban planners and policy makers should be concerned with the distribution inequity of UFs and plant
more trees to increase the amount of UFs in urban central areas. In recent years, China has selected
ecological civilization as the national strategy to build a beautiful China. It will be a great chance
for UF development in China. The government should strengthen the building of UF. UF quality
also needs to be further improved, especially in terms of the structure and function for secure good
dwelling environments. Our work presented here suggests that the use of UF under China’s rapid
urbanization and urban greening offers significant potential for urban environmental improvement.
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5. Conclusions

Based on multi-temporal Landsat TM data (1984, 1995, 2005, and 2014) and UF field survey data,
this study explored the potential of using TM imagery to estimate spatio-temporal patterns of UF and
its basal area in the City of Changchun, China. The following conclusions could be realized:

(1) Landsat TM imagery could provide a faster and cost-effective method to obtain spatio-temporal
patterns of UF and a 30-m resolution UF basal area. NDVI is still a good predictor to estimate
and map UF basal area.

(2) In the rapid urbanized region (within the study area) of Changchun City, the UF and its basal
area have been found to increase significantly from 1984, 1995, and 2005 to 2014, especially in
the outer belts of the city due to urban sprawl. The UF basal area class distribution was skewed
toward low values in 1984, 1995, 2005, and 2014, but gradually skewed toward relatively high
values from 1984 to 2014.

(3) The results demonstrate that the spatiotemporal pattern of basal area by UF has great implications
for urban forest establishment under China’s rapid urbanization and urban greening.

The results from our study provide needed baseline information at the landscape scale by
producing the relatively high-resolution maps of UF and its basal area. If this study can be used
in practice, more time-saving and labor-saving estimations of spatiotemporal UF basal area could be
possible to assess the actual and potential role of UFs to improve the urban environment. Furthermore,
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the accurate information of UF and its basal area may allow urban planners to conduct more realistic
and better planting designs of UFs at the urban landscape scale.
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