Article
 Detecting and attributing drivers of forest disturbance in the Colombian Andes using Landsat time-series

Paulo J. Murillo-Sandoval 1,2,3, Thomas Hilker ${ }^{1,+,}$, Meg A. Krawchuk ${ }^{4}$ and Jamon Van Den Hoek ${ }^{3}$

${ }^{1}$ Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, OR 97331, USA
${ }^{2}$ Departamento de Topografía, Facultad de Tecnologías, Universidad del Tolima, Ibagué 73000-6299, Colombia
${ }^{3}$ Geography and Geospatial Science, College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
${ }^{4}$ Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
${ }^{\dagger}$ Deceased
*Correspondence: murillop@oregonstate.edu Tel.: +1-541-602-0410
Received: date; Accepted: date; Published: date

Calculating error-adjusted estimator

The area of forest disturbances and land cover obtained directly from a map (i.e. pixel counting) may differ greatly from the true area of change because of map classification error. An error-adjusted estimator is needed once an error matrix is constructed. For instance, in the case of our disturbance class we calculate:

$$
\begin{equation*}
\widehat{A}_{j}=\widehat{A}_{\text {total }} * \widehat{p}_{j} \tag{1}
\end{equation*}
$$

where $\widehat{\boldsymbol{A}}_{\boldsymbol{j}}$ is the adjusted area, $\widehat{\boldsymbol{A}}_{\text {total }}$ is the total mapped area, and $\widehat{\boldsymbol{p}}_{. j}$ is the column sum of the cell area proportion in the error matrix. See Tables S1 and S2 for checking values used.

$$
\begin{gather*}
\widehat{\boldsymbol{p}}_{. j}=\sum_{i=1}^{2} W i \frac{n i 1}{n i .}=0.139 * 204 / 211+0.861 * 15 / 381=0.168 \\
\widehat{A}_{j}=63794.43 * 0.168=10717.46 \tag{1}
\end{gather*}
$$

Table S1. Confusion matrix at pixel-level for disturbances and stable forest

$\sum_{i}^{\text {® }}$	Reference			UA	PA	OA
		Stable Disturbance Forest				
	Disturbance	204	7	0.966	0.926	0.963
	Stable Forest	15	366	0.959	0.981	

Table S2. Full area-weight confusion matrix for disturbances and stable forest

Table S3. Confusion matrix at object-level for drivers of disturbance using 40% data training from Random Forest.

$\sum_{i}^{\text {fu}}$	Reference				UA	PA	OA
	pasture agriculture non-stand						
	pasture	41		1	0.993	0.986	0.956
	agriculture		10	1	0.900	0.500	
	non-stand	2	5	45	0.844	0.956	

Table S4. Full area-weight confusion matrix for drivers of forest disturbance

All areas are in hectares.
${ }^{1}$ The total area disturbed before 1999 was 3495.69 ha (Support Vector Machine classifier). This value is added to area adjusted in Table $2 S$ which is the final value reported in the manuscript.
${ }^{2}$ The total area with pastures before 1999 was 3096.96 ha (Corine Land Cover). This value is added to area adjusted in Table 4 which is the final value reported in the manuscript.

Wi: Proportion of area for a given class. Total area mapped by class / Total Area
UA: User accuracy
PA: Produced accuracy
CI: 95\% confident interval.
OA: Overall accuracy

