Supplementary Material

Table S1. List of the species studied in the Rebio União and their respective identification codes (ID code), family, number of observed individuals (No. ind.), basal area (DBA), dispersal syndrome (ane = anemochory; zoo = zoochory), and flowering and fruiting times, from August 2006 to August 2008.

						Flowering			Green Frui]	Mature Fruit	
Family	Species	No. ind.	DBA	Dispersal syndrome	2006	2007	2008	2006	2007	2008	2006	2007	2008
ANACARDIACEAE	Astronium sp.	4	0.110	ane									
ANACARDIACEAE	Tapirira guianensis Aubl.	2	0.023	Z00		Dec	Jan		Jul-Aug				
ANNONACEAE	Annona dolapripetala Raddi	3	0.006	Z00	Nov	Nov							
ANNONACEAE	Annonaceae sp.	1	0.045										
ANNONACEAE	Oxandra nitida R.E. Fr.	3	0.046	Z00									
ANNONACEAE	Trigynaea axilliflora D.M.Johnson & N.A.Murray	4	0.090	Z00		Nov	Jun						
ANNONACEAE	Unonopsis sp.	2	0.069	Z00	Sep	Dec	Jan						
ANNONACEAE	Xylopia sericea A.StHil.	1	0.024	Z00	Dec					Jan-May		Jan. Mar, May-Sep	Jan
APOCYNACEAE	Geissospermum laeve (Vell.) Miers	5	0.110	Z00									
ARALIACEAE	Schefflera morototoni (Aubl.) Maguire et al.	1	0.007	Z00									
ARECACEAE	Astrocaryum aculeatissimum (Schott) Burret	6	0.120	Z00		Mar-May	Jan, Mar- May		May- Aug	Apr	Aug	Jun-Sep	
ARECACEAE	Euterpe edulis Mart.	8	0.099	ZOO									
BIGNONIACEAE	Tabebuia sp.	1	0.010	ane									
BURSERACEAE	Protium sp.	2	0.088	ZOO		Nov				Aug	Nov-Dec		
CARICACEAE	Jacaratia sp.	3	0.028	ZOO									
CELASTRACEAE	Maytenus communis Reissek	2	0.029	Z00									
CELASTRACEAE	Maytenus obtusifolia Mart.	1	0.029	Z00		Nov							
CELASTRACEAE	Maytenus sp.	1	0.024	ZOO									
CHRYSOBALANACEAE	Chysobalanaceae sp. 1	1	0.004										
CHRYSOBALANACEAE	Chysobalanaceae sp. 2	1	0.016				Jun		Oct	Jun		Nov	Jul
CHRYSOBALANACEAE	Chysobalanaceae sp. 3	1	0.000										

CHRYSOBALANACEAE	Chysobalanaceae sp. 4	1	0.058										
CHRYSOBALANACEAE	Couepia schottii Fritsch	1	0.012	zoo									
CHRYSOBALANACEAE	Couepia sp.	1	0.007	zoo					Sep				
CHRYSOBALANACEAE	Hirtella hebeclada Moric. ex DC.	1	0.008	zoo									
CHRYSOBALANACEAE	<i>Hirtella</i> sp.	1	0.007	zoo									
CLETHRACEAE	Clethra scapra Pers.	1	0.009	ane	Dec	Jan-Feb, Dec	Jan	Oct	Jan-May	Jan-Jul	Nov	Feb-Jun	Feb-Aug
CLUSIACEAE	Tovomita sp.	1	0.007	zoo		Mar							
CUNONIACEAE	Lamanonia ternata Vell.	1	0.007	ane		Apr, Jun	May, Jul						
ELAEOCARPACEAE	Sloanea hirsuta (Schott) Planch ex Benth.	1	0.012	Z00		Jan-Feb, Dec	Jan	Sep			Sep-Dec	May-Jul, Sep-Oct,	Mar-Aug
ERYTHROXYLACEAE	Erythroxylum pulchrum A.StHil.	1	0.005	zoo									
EUPHORBIACEAE	Actinostemon verticillatus (Klotzsch) Baill.	5	0.029	aut		Apr-Jun, Sep		Oct	Sep		Nov	Oct	
EUPHORBIACEAE	Alchornea glandulosa Pöpp.	2	0.015	zoo									
EUPHORBIACEAE	Euphorbiaceae sp. 1	1	0.006	aut									
EUPHORBIACEAE	Euphorbiaceae sp. 2	3	0.051	aut	Aug	Aug-Oct							
EUPHORBIACEAE	Euphorbiaceae sp. 3	1	0.010										
EUPHORBIACEAE	Hieronyma alchorneoides Allemão	2	0.039	zoo		Dec							
EUPHORBIACEAE	Mabea ffistulifera Mart.	9	0.246	zoo	Aug	Sep-Oct	Jun, Aug	Aug-Nov		Mar-Jul	Aug-Nov		Mar-Jul
EUPHORBIACEAE	Pogonophora schomburgkiana Benth.	3	0.016	aut			Aug	Aug					
EUPHORBIACEAE	Senefeldera verticillata (Vell.) Croizat	22	0.274	aut	Aug-Oct	Aug-Sep, Nov	Aug	Sep-Nov	Feb-Mar	Oct-Nov	Oct-Dec	Nov-Dec	
EUPHORBIACEAE	Tetraplandra leandrii Baill.	1	0.006	Z00									
FABACEAE	Abarema sp.	3	0.074	Z00			Jan					Jun,Dec	
FABACEAE	Albizia pedicellaris (DC.) L.Rico	1	0.022	Z00		Jan, Sep			Mar, Nov				
FABACEAE	Apuleia leiocarpa (Vogel) J.F.Macbr.	1	0.066	aut			Aug	Dec	Feb-Apr, Aug, Nov-Dec			Jan, Mar- May, Sen Dec	Jan
FABACEAE	Bauhinia forficata Link	1	0.006	aut			Feb		May-Jun, Aug	Mar, May-Jul		Jun-Nov	Apr, Jun- Aug

FABACEAE	Chamaecrista ensiformis (Vell.) H.S.Irwin &	4	0.045			Oct Nov		Oct Nov	4	Dee			
	Barneby	4	0.043	ane		Oct-Nov		Oct-Nov	Apr	Dec			
FABACEAE	Fabaceae sp.	1	0.008	ane									
FABACEAE	Hymenolobium janeirense Kuhlm.	1	0.005	ane									
FABACEAE	Inga capitata Desv.	3	0.061	ane									
FABACEAE	Machaerium incorruptibile (Vell.) Benth.	1	0.004	ane						Jan-Feb			
FABACEAE	Moldenhawera polysperma (Vell.) Stellfeld	3	0.029	ane									
FABACEAE	Peltogyne angustiflora Ducke	4	0.054	ane						Aug			
FABACEAE	Poecilanthe falcata (Vell.) Heringer	1	0.007	ane									
	Pseudopiptadenia contorta (DC.) G.P.Lewis &	5	0.208	200	Son	Aug		Aug,	Ian Dog	Ion Iun	Aug Dog	Ian Fob	Jan, May-
FABACEAE	M.P.Lima	5	0.298	ane	Sep	Aug		Oct-Dec	Jan-Dec	Jan-Jun	Aug-Dec	Jan-reb	Aug
	Pseudopiptadenia warmingii (Benth.) G.P.Lewis	1	0.025	200		Dec							
FABACEAE	& M.P.Lima	1	0.025	ane		Dec							
FABACEAE	Pterocarpus rohrii Vahl	2	0.015	Z00									
FABACEAE	Swartzia apetala Raddi	2	0.010	Z00					Nov				
FABACEAE	Tachigali denudata (Vogel) Oliveira-Filho	5	4.032	zoo		Dec							
FABACEAE	Zollernia glabra (Spreng.) Yakovlev	1	0.005	Z00									
LAURACEAE	Anibafirmula (Nees & Mart. ex Nees) Mez	4	0.105	Z00		Nov	Jan, Apr	Oct					Feb-Aug
LAURACEAE	Beilschmiedia fluminensis Kosterm.	7	0.154	Z00									
LAURACEAE	<i>Cryptocarya moschata</i> Nees & Mart. ex Nees	3	0.032	Z00		Sep							
LAURACEAE	Cryptocarya saligna Mez	2	0.048	Z00									
LAURACEAE	Lauraceae sp. 1	1	0.005										
LAURACEAE	Lauraceae sp. 2	1	0.007	ZOO									
LAURACEAE	Licaria sp.	4	0.034	Z00	Nov	Aug-Sep, Nov-Dec	Aug		Dec				
LAURACEAE	Nectandra puberula (Schott) Nees	3	0.009	Z00									
LAURACEAE	Ocotea aciphylla (Nees & Mart. ex Nees) Mez	3	0.029	Z00									
LAURACEAE	Ocotea argentea Mez	1	0.012	Z00			Jan						
LAURACEAE	Ocotea diospyrifolia (Meisn.) Mez	3	0.038	ZOO									Aug
LAURACEAE	Ocotea dispersa (Nees & Mart. ex Nees) Mez	4	0.047	Z00	Aug	Aug-Sep			Dec	May- Aug			
LAURACEAE	Ocotea divaricata (Nees) Mez	1	0.027	Z00						-			
LAURACEAE	Ocotea glaziovii Mez	3	0.043	ZOO		Mar							

	$O (\cdot \cdot \cdot \cdot \cdot M)$	1	0.0/0			A C			0.1			NT	
LAUKACEAE	Ocotea insignis Mez	1	0.062	Z00		Aug-Sep			Oct			Nov	
LAURACEAE	Ocotea laxa (Nees) Mez	1	0.014	Z00									
LAURACEAE	Ocotea odorifera (Vell.) Rohwer	4	0.067	ZOO				Sep-Nov	Dec	Aug			
LAURACEAE	Ocotea silvestris Vattimo-Gil	1	0.005	zoo									
LAURACEAE	Ocotea sp. 1	3	0.061	Z00									
LAURACEAE	Ocotea sp. 2	1	0.018	Z00	Oct						Dec		
LAURACEAE	Ocotea teleiandra (Meisn.) Mez	2	0.064	zoo		Dec		Sep-Nov					Jan
LAURACEAE	Pleurothyrium bahiense (Meisn.) Barroso						Mar,						
		6	0.033	ZOO			May,		Jun			Jan-Sep	Jun-Jul
							Aug						
LAURACEAE	Urbanodendron verrucosum (Nees) Mez	2	0.015	zoo		Dec							
LECYTHIDACEAE	Lecythidaceae sp. 1	1	0.005	zoo		Aug-Sep					Sep, Nov	Nov	
LECYTHIDACEAE	Lecythidaceae sp. 2	2	0.011			M	M M	A	Jul-Sep,	T	Cara Oat	Jul-Oct,	L.1
		3	0.011	200		May	Mar-May	Aug-Sep,	Nov	Jun	Sep-Oct	Dec	Jui
LECYTHIDACEAE	Lecythidaceae sp. 3	1	0.009	zoo									
LECYTHIDACEAE	Lecythis lanceolata Poir.					Jan-Feb,						M T	
		1	0.017	ane	Dec	May-Jun,				Mar-Apr		May-Jun,	
						Dec						Oct	
MALVACEAE	Eriotheca pentaphylla (Vell. emend. K.Schum.)	2	0.004		6 0 1		т	N			D		
	A.Robyns	3	0.204	ane	Sep-Oct	Oct-Dec	Jan	NOV			Dec		
MALVACEAE	Sterculia curiosa (Vell.) Taroda	1	0.058	ane		Feb, Nov				Jan-Jul			
		0	0.4.40		0.01	0.10		.		Jan-Apr,			
MELASTOMATACEAE	Miconia cinnamomifolia (DC.) Naudin	9	0.140	Z00	Oct-Nov	Oct-Dec		Oct	Jan-May	Aug	Nov	Feb-Jun	Feb-May
MELASTOMATACEAE	Miconia lepidota DC.	6	0.027	ane	Aug	May	Jun	Oct-Dec	Dec				
		-			-	Feb, Sep-	Feb-Mar,				-		
MELASTOMATACEAE	Tibouchina estrellensis (Raddi) Cogn.	2	0.023	Z00	Sep-Oct	Dec	May	Nov	Mar		Dec	Apr	
MELIACEAE	Capralea canjerana (Vell.) Mart.	7	0.267	zoo			-						
MELIACEAE	Meliaceae sp.1	1	0.010	zoo									
MELIACEAE	Trichilia lepidota Mart.	5	0.088	zoo	Sep	Dec		Sep		Jan-Jul			
MELIACEAE	Trichilia sp.	1	0.004	Z00	T			1					
	Mallinadia alianutha Darkina	r	0.010	700		Sen							

MORACEAE	Brosimum quianense (Aubl.) Huber	4	0.116	Z00		Dec	Jan, May- Aug		Dec	Jan, May- Aug		Dec	Jan, May- Aug
MORACEAE	Brosimum lactescens (S.Moore) C.C.Berg	1	0.004	Z00			0						
MORACEAE	Brosimum glaziovii Taub.	5	0.142	Z00	Sep	Oct, Dec		Sep	Oct, Dec		Sep	Oct, Dec	
MORACEAE	Ficus gomelleira Kunth & C.D.Bouché	2	4.315	Z00	1	,		1	,		1	,	
MORACEAE	Ficus maxima Mill.	1	0.017	Z00									
MORACEAE	Helicostylis tomentosa (Poepp. & Endl.) Rusby	10	0.202	Z00		Dec	Jan-Apr		Dec	Jan-Apr		Dec	Jan-Apr
MORACEAE	Moraceae sp.	1	0.009			Nov	· •			· 1			
MORACEAE	Pseudolmedia hirtula Kuhlm.	2	0.081	Z00									
MYRISTICACEAE	<i>Virola bicuhyba</i> (Schott ex Spreng.) Warb.	9	0.270	Z00	Dec	May	Feb-Mar. May	Aug	Jun, Sep- Oct		Aug-Sep	Aug-Nov	
MYRISTICACEAE	Virola garaneri (A.DC.) Warb.	4	0.066	200									M
MYRIACEAE	Calyptrantnes concinna DC.	1	0.007	Z00									мау
MYKIACEAE	D.Legrand ex Landrum	2	0,081	Z00		Nov							Feb
MYRTACEAE	Eugenia sp.	1	0.008	Z00									
MYRTACEAE	Eugenia excelsa O.Berg	2	0.015	Z00	Sep	Oct	Jul						
MYRTACEAE	Eugenia macahensis O.Berg	4	0.044	Z00		Dec	Jan						
MYRTACEAE	Eugenia rostrata O.Berg	1	0.292	Z00	Sep								
MYRTACEAE	Eugenia villaenovae Kiaersk.	1	0.027	Z00			Apr-May			Apr-May			Aug
MYRTACEAE	Marlierea sp. 1	1	0.006	Z00									
MYRTACEAE	Marlierea sp. 2	1	0.006	Z00									
MYRTACEAE	Marlierea sp. 3	1	0.006	Z00									
MYRTACEAE	Marlierea excoriata Mart.	1	0.008	Z00					Dec	Jan, Jun			
MYRTACEAE	Myrcia splendens (Sw.) DC.	2	0.114	Z00	Dec	Dec	Feb						May-Jun
MYRTACEAE	Myrcia tijucensis Kiaersk.	3	0.110	Z00									
MYRTACEAE	Myrtaceae sp. 1	1	0.004	Z00	Aug-Sep	Sep, Dec	Jan	Oct-Dec	Sep-Oct			Oct-Nov	Oct-Dec
MYRTACEAE	Myrtaceae sp. 2	1	0.008	Z00									
MYRTACEAE	Myrtaceae sp. 3	1	0.005	Z00									
MYRTACEAE	Myrtaceae sp. 4	1	0.004	Z00									
MYRTACEAE	Myrtaceae sp. 5	1	0.004	Z00									
MYRTACEAE	Myrtaceae sp. 6	1	0.016	Z00									

MYRTACEAE	Myrtaceae sp. 7	3	0.004	Z00		Dec	Jan, Jun			Mar, Jun		Apr, Jul	
MYRTACEAE	Myrtaceae sp. 8	1	0.020	Z00					Apr, Sep			May, Oct	
MYRTACEAE	Myrtaceae sp. 9	1	0.004	Z00									
MYRTACEAE	Myrtaceae sp. 10	1	0.038	Z00		Nov-Dec				Mar-Apr			
NYCTAGINACEAE	Guapira opposita (Vell.) Reitz	9	0.186	Z00									
OLACACEAE	Heisteria ovata Benth.	4	0.019	Z00									
OLACACEAE	Heisteria sp.	1	0.003	Z00	Oct-Nov	Oct-Dec		Aug-Dec	Jan-Oct	Jan, Apr- Jun		Feb-Apr Aug-Nov	May-Jul
OLACACEAE	Olacaceae sp.	1	0.006	zoo	Sep, Nov	Dec	Jan				Nov-Dec	Jan	
ROSACEAE	Prunus brasiliensis Dietrich	1	0.036	aut	-	Mar				May			
RUBIACEAE	Bathysa mendoncae K.Schum.	4	0.025	Z00	Dec	Mar-Jun	Jan-Aug						
RUBIACEAE	Psychotria carthagenensis Jacq.								Jan-Mar,			T T 1	
		1	0.013	Z00				Dec	May-Jun, Aug	Mar-Jul		Jun-Jul, Sep	Jun-Aug
RUBIACEAE	Psychotria vellosiana Benth.	2	0.014	Z00	Oct-Dec	Jan, Oct- Nov	Jan, May						
RUBIACEAE	Rubiaceae sp.	1	0.006	Z00				Nov-Dec	Feb-May	Feb, Apr- Jul, May	Dec	Jan, Mar- Jun	Mar, May- Aug
RUBIACEAE	Rudgea erythrocarpa Müll.Arg.	1	0.004	Z00									- 0
RUTACEAE	Rutaceae sp.	2	0.043	Z00			Aug						
SALICACEAE	<i>Casearia arborea</i> (L.C.Rich.) Urb.	7	0.142	Z00	Nov-Dec	Jan, Sep- Dec	Jan			Jan			Feb
SALICACEAE	Casearia commersoniana Cambess.	2	0.015	200		200				Aug			Aug
SAPINDACEAE	Cupania furfuracea Radlk.	1	0.009	ZOO		Iun	Iun		Iun	8		Iul	8
SAPINDACEAE	Cupania racemosa (Vell.) Radlk.	7	0.263	zoo		May, Sep Dec	Feb-May	Aug-Oct	Aug-Oct		Sep-Nov	Sep-Nov	
SAPINDACEAE	<i>Cupania</i> sp. 1	1	0.010	Z00		эср, Dee		Aug-Sep	May-Sep	Apr, Jul	Sep-Oct	Jun-Oct	May, Aug
SAPINDACEAE	Cupania sp. 2	1	0.038	Z00		Sep	Feb-Mar, May	Aug			Sep		
SAPINDACEAE	Sapindaceae sp. 1	1	0.012				Feb	Aug-Sep	Sep		Sep-Oct	Oct	

SAPINDACEAE	Sapindaceae sp. 2	2	0.145					Aug-Oct	Sep-Oct	Apr, Jul	Sep-Nov	Oct-Nov	May, Aug
SAPINDACEAE	<i>Talisia</i> sp.	1	0.006	Z00									
SAPOTACEAE	Chrysophyllum splendens Spreng.	6	0.153	Z00									
SAPOTACEAE	Ecclinusa ramiflora Mart.	7	4.306	Z00		Nov	Jan			Mar			Apr
SAPOTACEAE	<i>Micropholis crassipedicellata</i> (Mart. & Eichler ex Miq.) Pierre	5	4.003	Z00		Dec	Jun						
SAPOTACEAE	Micropholis guyanensis (A.DC.) Pierre	2	0.037	Z00		Mar-Jul			Oct				Jan
SAPOTACEAE	Micropholis sp.	2	0.084	Z00							Aug		
SAPOTACEAE	Pocteria bangii (Rusby) T.D.Penn.	4	0.062	Z00	Oct-Nov	Oct-Dec	Mar, Jul						
SAPOTACEAE	Pocteria gardneriana (A.DC.) Radlk.	1	0.013	Z00								Jul-Sep	
SAPOTACEAE	Pocteria guianensis Aubl.	5	0.115	Z00	Dec	Nov		Sep-Nov					
SAPOTACEAE	Pocteria sp. 1	3	0.054	Z00								Jan	
SAPOTACEAE	Pocteria sp. 2	2	0.005	Z00									
SAPOTACEAE	Pocteria sp. 3	1	0.071	Z00						Aug			
SAPOTACEAE	Pocteria sp. 4	1	0.005	Z00									
SAPOTACEAE	Pradosiakuhlmannii Toledo	3	0.207	Z00		Oct-Nov			Oct			Nov	
SAPOTACEAE	Sapotaceae sp. 1	1	0.020								Nov		Jan
SAPOTACEAE	Sapotaceae sp. 2	2	0.034										
SAPOTACEAE	Sapotaceae sp. 3	1	0.030										
SAPOTACEAE	Sapotaceae sp. 4	1	0.026		Sep-Nov				Jul-Dec	Jul-Aug		Aug-Nov	Jan, Aug
SAPOTACEAE	Sapotaceae sp. 5	1	0.029	Z00							Dec	Jan	
SAPOTACEAE	Sarcaulus brasiliensis (A. DC.) Eyma	5	0.068	Z00				Aug	Apr-May	Jan, Apr- Jul			
SIMAROUBACEAE	Simaba sp.	3	0.035	Z00				Oct		Aug	Nov		
SIMAROUBACEAE	Simarouba amara Aubl.	4	0.087	Z00	Sep	Aug-Oct, Dec							
SIPARUNACEAE	Siparuna guianensis Aubl.	5	0.044	Z00			Jul-Aug		Nov-Dec	Jan			
SIPARUNACEAE	Siparuna sp.	1	0.011	Z00		Apr- May. Jul, Dec	Jan, Apr- Aug				Aug		
SOLANACEAE	Acnistus arborescens (L.) Schltdl.	1	0.014	Z00			Jan		Apr-Jul, Dec	Apr-Aug	Apr-Jul	Jan	Apr-Aug

SOLANACEAE	Solanum sp.	1	0.014	Z00									
URTICACEAE	Cecropia hololeuca Miq.	6	0.099	zoo	Aug-Sep	Mar-Dec	Jan-Aug	Aug-Sep	Mar-Dec	Jan-Aug	Aug-Sep	Mar-Dec	Jan-Aug
URTICACEAE	Cecropia pachystachya Trécul	3	0.044	Z00	Aug-Oct	Dec	Jan-Jul	Aug-Oct	Dec	Jan-Jul	Aug-Oct	Dec	Jan-Jul
URTICACEAE	Pourouma guianensis Aubl.	2	0.031	Z00	Oct-Nov	Nov		Oct-Nov	Nov		Oct-Nov	Nov	
VIOLACEAE	Rinorea guianensis Aubl.	17	0.209	ane	Sep-Oct	Oct-Dec	Aug			Jan-Apri			
VOCHYSIACEAE	Vochysiaceae sp.	1	0.020	ane				Sep-Dec	Dec	Jan-Feb	Nov-Dec	Jan	Jan-Mar

Table S2. Comparison of models with different fixed effects (models without or with lagged predictors) and random effects terms (with or without plot identity random effect term) by means of their AIC values for activity data on (a) leaf flush, (b) leaf fall, (c) flowering, (d) fruiting (green), and (e) fruiting (mature). Models are ranked according to their AIC values \triangle AIC represents the difference in AIC between each model and the model with the lowest AIC value for a given response.

Model	Df	AIC	ΔΑΙΟ
(a) Leaf flush			
No lagged predictors	7	12786.83	0
No lagged predictors + Plot identity as a random effect	8	12796.28	9.44
Predictors lagged 1 month	7	12812.35	25.52
Predictors lagged 1 month + Plot identity as a random effect	8	12821.79	34.96
Predictors lagged 3 months	7	12856.6	69.77
Predictors lagged 2 months	7	12860.93	74.1
Predictors lagged 2 months + Plot identity as a random effect	8	12878.15	91.32
Predictors lagged 3 months + Plot identity as a random effect	8	12880.98	94.14
(b) Leaf fall			
No lagged predictors	7	11585.22	0
No lagged predictors + Plot identity as a random effect	8	11631.67	46.45
Predictors lagged 1 month	7	11667.54	82.32
Predictors lagged 2 months	7	11686.23	101.01
Predictors lagged 1 month + Plot identity as a random effect	8	11725.19	139.97
Predictors lagged 3 months	7	11751.75	166.53
Predictors lagged 2 months + Plot identity as a random effect	8	11793.24	208.01
Predictors lagged 3 months + Plot identity as a random effect	8	11828.19	242.97
(c) Flowering			
No lagged predictors	7	2079.85	0
Predictors lagged 2 months	7	2081.89	2.03
Predictors lagged 3 months	7	2089.07	9.22
Predictors lagged 1 month	7	2095.63	15.78
No lagged predictors + Plot identity as a random effect	8	2103.77	23.92
Predictors lagged 2 months + Plot identity as a random effect	8	2107.59	27.73
Predictors lagged 3 months + Plot identity as a random effect	8	2112.97	33.12
Predictors lagged 1 month + Plot identity as a random effect	8	2122.74	42.89
(d) Fruiting (green)			
Predictors lagged 2 months	8	1913.7	0
No lagged predictors	8	1916.46	2.76
Predictors lagged 3 months	8	1918.83	5.12
Predictors lagged 1 month	8	1920.49	6.79
Predictors lagged 2 months + Plot identity as a random effect	8	1936.22	22.51
No lagged predictors + Plot identity as a random effect	8	1939.89	26.19
Predictors lagged 3 months + Plot identity as a random effect	8	1940.22	26.52
Predictors lagged 1 month + Plot identity as a random effect	8	1942.57	28.86
(e) Fruiting (mature)			
Predictors lagged 2 months	8	1474.33	0
Predictors lagged 1 month	8	1474.83	0.5
No lagged predictors	8	1475.81	1.48
Predictors lagged 3 months	8	1475.9	1.57
No lagged predictors + Plot identity as a random effect	8	1816.78	342.45
Predictors lagged 1 month + Plot identity as a random effect	8	1817.27	342.94
Predictors lagged 2 months + Plot identity as a random effect	8	1817.5	343.17
Predictors lagged 3 months + Plot identity as a random effect	8	1819.63	345.3

Table S3. Comparison of models with different fixed effects (models without or with
lagged predictors) and random effects terms (with or without plot identity random
effect term) by means of their AIC values for intensity data on (a) leaf flush, (b) leaf
fall, (c) flowering, (d) fruiting (green), and (e) fruiting (mature).

Model	Df	AIC	ΔΑΙΟ
(a) Leaf flush			
No lagged predictors	7	17143.65	0
No lagged predictors + Plot identity as a random effect	8	17162.32	18.67
Predictors lagged 1 month	7	17171.81	28.17
Predictors lagged 1 month + Plot identity as a random effect	8	17193.53	49.89
Predictors lagged 3 months	7	17267.48	123.84
Predictors lagged 2 months	7	17268.81	125.16
Predictors lagged 2 months + Plot identity as a random effect	8	17326.96	183.32
Predictors lagged 3 months + Plot identity as a random effect (b) Leaf fall	8	17334	190.36
No lagged predictors + Plot identity as a random effect	8	15766.03	0
No lagged predictors	7	15822.21	56.18
Predictors lagged 1 month + Plot identity as a random effect	8	15860.85	94.82
Predictors lagged 1 month	7	15899.32	133.29
Predictors lagged 2 months + Plot identity as a random effect	8	15904.68	138.65
Predictors lagged 2 months	7	15905.99	139.96
Predictors lagged 3 months + Plot identity as a random effect	8	16045.02	278.99
Predictors lagged 3 months	7	16051.92	285.89
(c) Flowering			
No lagged predictors	8	2434.66	0
Predictors lagged 2 months	8	2438.03	3.37
Predictors lagged 3 months	8	2445.32	10.67
Predictors lagged 1 month	8	2451.28	16.62
No lagged predictors + Plot identity as a random effect	9	2457.5	22.84
Predictors lagged 2 months + Plot identity as a random effect	9	2462.44	27.78
Predictors lagged 3 months + Plot identity as a random effect	9	2468.21	33.55
Predictors lagged 1 month + Plot identity as a random effect	9	2476.95	42.29
(d) Fruiting (green)			
Predictors lagged 2 months + Plot identity as a random effect	9	3140.93	0
No lagged predictors + Plot identity as a random effect	9	3145.65	4.71
Predictors lagged 2 months	9	3146.08	5.15
Predictors lagged 3 months + Plot identity as a random effect	9	3151.15	10.22
No lagged predictors	9	3151.78	10.85
Predictors lagged 1 month + Plot identity as a random effect	9	3153.09	12.16
Predictors lagged 3 months	9	3157.96	17.03
Predictors lagged 1 month	9	3158.82	17.89
(e) Fruiting (mature)	0	0000	0
Predictors lagged 2 months	8	2320	0
Predictors lagged 3 months	8	2322.99	2.99
Predictors lagged 1 month	8	2325.36	5.36
No lagged predictors	8	2325.4	5.4 2(0.20
Predictors lagged 3 months + Plot identity as a random effect	ð	2000.29	360.29
No logged productors Plot identity as a random effect	ð	2001.30	262.07
Prodictors lagged 2 months + Plot identity as a random effect	ð	2003.U/ 2686 E6	266 E6
τ reductors tagged 2 months τ r for identity as a random effect	0	2000.00	300.30

Models are ranked according to their AIC values; Δ AIC represents the difference in AIC between each model and the model with the lowest AIC value for a given response.

Lag in Predictors.		
in the Full Model (t– <i>n</i>)	AIC	ΔΑΙ
(a) Leaf flush		
Lag 0	8758.418	0
Lag 1	8784.553	26.134
Lag 3	8828.779	70.36
Lag 2	8833.166	74.747
(b) Leaf fall		
Lag 0	8264.373	0
Lag 1	8346.478	82.106
Lag 2	8365.087	100.714
Lag 3	8430.163	165.79
(c) Flowering		
Lag 0	1876.789	0
Lag 2	1877.919	1.13
Lag 3	1885.852	9.063
Lag 1	1891.985	15.196
(d) Fruiting (green)		
Lag 2	1724.219	0
Lag 0	1726.692	2.473
Lag 3	1729.682	5.463
Lag 1	1731.014	6.795
(e) Fruiting (mature)		
Lag 1	1238.759	0
Lag 2	1238.781	0.022
Lag 0	1239.839	1.08
Lag 3	1241.637	2.879

Table S4. Comparison among models containing predictors with different lags when analyzing data on phenological activity for (a) leaf flush, (b) leaf fall, (c) flowering, (d) fruiting (green), and (e) fruiting (mature).

For each response variable, we used the difference between the AIC values of each model and the lowest AIC value (Δ AIC) to select the appropriate lagged predictors to be used in the model selection approach. All models contained the lagged predictors photoperiod, growing degree-days, total precipitation, and rainfall days, and we included the lag by relating the response variable in time *t* to the value of that predictor on time *t* (lag 0), *t* – 1 (lag 1), *t* – 2 (lag 2), and *t* – 3 (lag 3). Across all response variables, models with the lowest AIC were chosen and submitted to the main model selection approach.

T 1 1 1				
Lag in predictors	AIC	ΔΑΙϹ		
in the full model (t – n)				
(a) Leaf flush				
Lag 0	11363.167	0		
Lag 1	11392.761	29.595		
Lag 3	11488.979	125.812		
Lag 2	11489.475	126.308		
(b) Leaf fall				
Lag 0	10749.978	0		
Lag 1	10826.999	77.021		
Lag 2	10834.327	84.349		
Lag 3	10981.229	231.251		
(c) Flowering				
Lag 0	3243.874	0		
Lag 3	3257.442	13.568		
Lag 2	3257.59	13.717		
Lag 1	3264.817	20.943		
(d) Fruiting (green)				
Lag 2	2636.519	0		
Lag 0	2639.691	3.172		
Lag 1	2648.588	12.069		
Lag 3	2648.744	12.225		
(e) Fruiting (mature)				
Lag 2	1960.423	0		
Lag 3	1961.774	1.351		
Lag 0	1963.798	3.375		
Lag 1	1965.123	4.7		

Table S5. Comparison among models containing predictors with different lags when analyzing data on phenological intensity for (a) leaf flush, (b) leaf fall, (c) flowering, (d) fruiting (green), and (e) fruiting (mature).

For each response variable, we used the difference between the AIC values of each model and the lowest AIC value (Δ AIC) to select the appropriate lagged predictors to be used in the model selection approach. All models contained the lagged predictors photoperiod, growing degree-days, total precipitation, and rainfall days, and we included the lag by relating the response variable in time *t* to the value of that predictor on time *t* (lag 0), *t* – 1 (lag 1), *t* – -2 (lag 2), and *t* – 3 (lag 3). Across all response variables, models with the lowest AIC were chosen and submitted to the main model selection approach.

Phenophase	Leaf fall	Leaf flush	Flowering	Fruiting (green)	Fruiting (mature)
(a) Activity					
Leaf fall	1	0.506	0.125	0.082	0.086
Leaf flush	0.506	1	0.199	0.197	0.158
Flowering	0.125	0.199	1	0.205	0.065
Fruiting (green)	0.082	0.197	0.205	1	0.547
Fruiting (mature)	0.086	0.158	0.065	0.547	1
(b) Intensity					
	Leaf fall	Leaf flush	Flowering	Fruiting (green)	Fruiting (mature)
Leaf fall	1	0.42	0.103	0.062	0.079
Leaf flush	0.42	1	0.221	0.179	0.147
Flowering	0.103	0.221	1	0.157	0.045
Fruiting (green)	0.062	0.179	0.157	1	0.549
Fruiting (mature)	0.079	0.147	0.045	0.549	1

Table S6. Pearson correlation coefficients between each of the five phenophases for (a) activity and (b) intensity data.

Table S7. Models that were better supported by the data according to the Akaike Information Criteria (AIC) for data on phenological intensity on (a) leaf flush, (b) leaf fall, (c) flowering, (d) fruiting (green), and (e) fruiting (mature).

Model	Lag (t – n)	df	logLik	AIC	ΔΑΙΟ	Wi
(a) Leaf flush						
~ Photoperiod + Growing degree-days + Rainfall days†	Lag 0	6	-5675.14	11362.27	0.00	0.61
~ Photoperiod + Growing degree-days + Rainfall days + Total precipitation	Lag 0	7	-5674.58	11363.17	0.90	0.39
(b) Leaf fall						
~ Photoperiod + Total precipitation†	Lag 0	5	-5369.73	10749.46	0.00	0.32
~ Photoperiod + Growing degree-days + Rainfall days + Total precipitation	Lag 0	7	-5367.99	10749.98	0.52	0.25
~ Photoperiod + Rainfall days + Total precipitation	Lag 0	6	-5369.09	10750.19	0.73	0.22
~ Photoperiod + Growing degree-days + Total precipitation	Lag 0	6	-5369.15	10750.30	0.84	0.21
(c) Flowering						
~ Photoperiod + Growing degree-days + Total precipitation†	Lag 0	7	-1614.42	3242.84	0.00	0.63
~ Photoperiod + Growing degree-days + Rainfall days + Total precipitation	Lag 0	8	-1613.94	3243.87	1.03	0.37
(d) Fruiting (green)						
~ Flowering + Rainfall days†	Lag 2	6	-1311.52	2635.04	0.00	0.30
~ Photoperiod + Growing degree-days + Flowering + Rainfall days	Lag 2	8	-1310.11	2636.23	1.19	0.16
~ Growing degree-days + Flowering + Rainfall days	Lag 2	7	-1311.20	2636.39	1.35	0.15
~ Photoperiod + Growing degree-days + Flowering + Rainfall days + Total	Lag 2	9	-1309.27	2636.53	1.49	0.14
~ Flowering + Rainfall days + Total precipitation	Lag 2	7	-1311.39	2636.77	1.73	0.12
~ Photoperiod + Flowering + Rainfall days	Lag 2	7	-1311.40	2636.80	1.76	0.12
(e) Fruiting (mature)						
~ Growing degree-days + Fruiting (green) †	Lag 2	5	-973.71	1957.42	0.00	0.36

~ Fruiting (green)	Lag 2	4	-975.32	1958.64	1.21	0.19
~ Growing degree-days + Fruiting (green) + Rainfall days	Lag 2	6	-973.41	1958.82	1.40	0.18
~ Photoperiod + Growing degree-days + Fruiting (green)	Lag 2	6	-973.64	1959.27	1.85	0.14
~ Growing degree-days + Fruiting (green) + Total precipitation	Lag 2	6	-973.70	1959.41	1.98	0.13

We used a mixed-effects model using a binomial distribution (link logit) for (a), (b), and (e), and a negative binomial distribution for (c) and (d). Following the model selection, we ranked models according to their AIC values, and selected the models within \triangle AIC ≤ 2 of the model with the lowest AIC value for inference. The Akaike weight for a given model, wi, represents the probability that a given model is the best model in the set, and the ratio of wi between models can indicate the strength of evidence in favor of one model over the other. The column 'Lag' refers to the selected lag used for the predictor variables photoperiod, growing degree-days, total precipitation, and rainfall days in the models. When "Flowering" and "Fruiting (green)" appear as predictors in a given model, they represent whether a given individual was in that phenophase in the previous month. The symbol "†" denotes the final model for data on each phenophase, which was selected based on the smallest number of predictors within \triangle AIC ≤ 2 .

Table S8. Intercept (β_0), Slopes, standard errors, z and p values, the lag used for each predictor included in the final models for data on phenological intensity on (a) leaf flush, (b) leaf fall, (c) flowering, (d) fruiting (green), and (e) fruiting (mature).

Predictor	Lag (t – n)	Slope	SE	Z	р
(a) Leaf flush					
βο		-1.79	0.02	-97.95	< 0.001
etaRainfall days	Lag 0	-0.19	0.02	-7.43	< 0.001
β GDD	Lag 0	0.17	0.04	4.72	< 0.001
etaPhotoperiod	Lag 0	0.26	0.04	7.45	< 0.001
(b) Leaf fall					
eta_0		-2.19	0.05	-48.14	< 0.001
etaTotal precipitation	Lag 0	-0.4	0.04	-10.29	< 0.001
etaPhotoperiod	Lag 0	-0.51	0.03	-15.27	< 0.001
(c) Flowering					
βο		-3.59	0.11	-33.58	< 0.001
etaPhotoperiod	Lag 0	1.64	0.26	6.36	< 0.001
$eta_{ ext{GDD}}$	Lag 0	-0.74	0.25	-2.93	0.003
etaTotal precipitation	Lag 0	-0.4	0.19	-2.03	0.042
(d) Fruiting (green)					
βο		-4.54	0.15	-29.77	< 0.001
etaRainfall days	Lag 2	-0.33	0.11	-3.1	0.002
etaFlowering	Lag 1	0.44	0.08	5.7	< 0.001
(e) Fruiting (mature)					
βο		-4.6	0.13	-34.97	< 0.001
$eta_{ ext{GDD}}$	Lag 2	-0.17	0.1	-1.79	0.073
etaFruiting (green)	Lag 1	1.29	0.07	18.96	< 0.001

In each case, we used the structure of the model with the smallest number of predictors within $\Delta AIC \leq 2$ units of the model with the lowest AIC for each response variable, as shown in Table 1. When "Flowering" and "Fruiting (green)" appear as predictors in a given model, they represent the proportional intensity of that phenophase for a given individual in the previous month.

Predictor	Lag (t – n)	Estimate	SE	Lower 95% CI	Upper 95% CI	z	р	Importance
(a) Leaf flush								
etaPhotoperiod	Lag 0	0.08	0.05	-0.01	0.18	1.772	0.076	1.00
β GDD	Lag 0	0.27	0.05	0.18	0.37	5.695	< 0.001	1.00
etaRainfall days	Lag 0	-0.22	0.04	-0.30	-0.14	5.537	< 0.001	0.50
etaTotal precipitation	Lag 0	0.04	0.05	-0.06	0.15	0.786	0.432	0.50
(b) Leaf fall								
etaPhotoperiod	Lag 0	-0.60	0.06	-0.72	-0.47	9.284	< 0.001	1.00
β GDD	Lag 0	0.09	0.05	-0.02	0.19	1.652	0.099	1.00
etaRainfall days	Lag 0	0.01	0.06	-0.10	0.12	0.250	0.802	0.67
etaTotal precipitation	Lag 0	-0.39	0.05	-0.49	-0.28	7.266	< 0.001	0.33
(c) Flowering								
etaPhotoperiod	Lag 0	1.44	0.19	1.07	1.81	7.652	< 0.001	1.00
β GDD	Lag 0	-0.61	0.16	-0.93	-0.30	3.833	< 0.001	1.00
etaRainfall days	Lag 0	0.17	0.17	-0.16	0.51	1.011	0.312	1.00
etaTotal precipitation	Lag 0	-0.71	0.20	-1.10	-0.31	3.520	< 0.001	0.50
(d) Fruiting (green)								
BPhotoperiod	Lag 2	-0.02	0.12	-0.25	0.20	0.201	0.841	1.00
βgdd	Lag 2	0.05	0.12	-0.17	0.28	0.469	0.639	1.00
β Flowering	Lag 1	1.48	0.27	0.95	2.01	5.483	< 0.001	0.25
β Rainfall days	Lag 2	-0.26	0.12	-0.48	-0.03	2.224	0.026	0.25
β Total precipitation	Lag 2	0.12	0.14	-0.16	0.40	0.842	0.400	0.25
(e) Fruiting (mature)	0							
β Photoperiod	Lag 1	-0.06	0.12	-0.31	0.18	0.486	0.627	1.00
βgdd	Lag 1	-0.10	0.13	-0.35	0.15	0.773	0.439	0.43
β Fruiting (green)	Lag 1	4.74	0.28	4.19	5.30	16.855	< 0.001	0.29
β Rainfall days	Lag 1	0.20	0.14	-0.08	0.47	1.373	0.170	0.29
etaTotal precipitation	Lag 1	-0.10	0.16	-0.41	0.22	0.586	0.558	0.14

Table S9. Standardized effect size estimates, standard errors, 95% confidence intervals, and z and p values for each predictor included in the averaged model for activity data on (a) leaf flush, (b) leaf fall, (c) flowering, (d) fruiting (green), and (e) fruiting (mature).

The importance of a predictor is given by the sum of Akaike weights (*wi*) over all models that included that predictor, and represents the probability of that predictor appearing the in the best model. Predictors included in the model averaging were those included in the confidence set containing all models within $\Delta AIC \le 2$ from the model with the lowest AIC.

Predictor	Lag (t – n)	Estimate	SE	Lower 95% CI	Upper 95% CI	Z	р	Importance
(a) Leaf flush	-							
etaPhotoperiod	Lag 0	0.27	0.04	0.19	0.35	6.567	< 0.001	1.0
βgdd	Lag 0	0.17	0.04	0.10	0.23	4.661	< 0.001	1.0
etaRainfall days	Lag 0	-0.17	0.03	-0.24	-0.11	5.054	< 0.001	1.0
etaTotal precipitation	Lag 0	-0.05	0.04	-0.13	0.04	1.050	0.294	0.5
(b) Leaf fall								
etaPhotoperiod	Lag 0	-0.48	0.06	-0.59	-0.37	8.571	< 0.001	1.0
β GDD	Lag 0	-0.06	0.04	-0.14	0.03	1.277	0.202	1.0
etaRainfall days	Lag 0	-0.42	0.06	-0.53	-0.31	7.622	< 0.001	0.5
etaTotal precipitation	Lag 0	0.06	0.04	-0.03	0.14	1.315	0.188	0.5
(c) Flowering								
etaPhotoperiod	Lag 0	1.69	0.28	1.15	2.24	6.077	< 0.001	1.0
$eta_{ ext{GDD}}$	Lag 0	-0.75	0.26	-1.25	-0.25	2.950	0.003	1.0
etaRainfall days	Lag 0	0.24	0.24	-0.23	0.71	0.984	0.325	1.0
etaTotal precipitation	Lag 0	-0.48	0.26	-0.98	0.03	1.854	0.064	0.5
(d) Fruiting (green)								
β Flowering	Lag 1	0.44	0.06	0.33	0.56	7.577	< 0.001	1.0
etaPhotoperiod	Lag 2	-0.26	0.23	-0.72	0.20	1.103	0.270	1.0
βgdd	Lag 2	0.23	0.18	-0.14	0.59	1.222	0.222	1.0
etaRainfall days	Lag 2	-0.38	0.13	-0.62	-0.13	3.028	0.002	0.5
β Total precipitation	Lag 2	0.17	0.17	-0.16	0.51	1.003	0.316	0.3
(e) Fruiting (mature)	0							
etaPhotoperiod	Lag 2	0.05	0.13	-0.21	0.31	0.388	0.698	1.0
β_{GDD}	Lag 2	-0.18	0.11	-0.39	0.03	1.674	0.094	0.8
β Fruiting (green)	Lag 1	1.29	0.07	1.15	1.42	18.836	< 0.001	0.2
etaRainfall days	Lag 2	0.07	0.09	-0.11	0.25	0.774	0.439	0.2
β Total precipitation	Lag 2	-0.01	0.10	-0.21	0.19	0.128	0.898	0.2

Table S10. Standardized effect size estimates, standard errors, 95% confidence intervals, and z and p values for each predictor included in the averaged model for intensity data on (a) leaf flush, (b) leaf fall, (c) flowering, (d) fruiting (green), and (e) fruiting (mature).

The importance of a predictor is given by the sum of Akaike weights (*wi*) over all models that included that predictor, and represents the probability of that predictor appearing the in the best model. Predictors included in the model averaging were those included in the confidence set containing all models within $\Delta AIC \leq 2$ from the model with the lowest AIC.

Figure S1. Location of the União Biological Reserve in the State of Rio de Janeiro, Brazil, and satellite image of the reserve during the study, showing the sampling plots. Where: GA2, GA3, and GA4 indicate plots located in the edges of a gas-pipeline clearing; RE1, RE3, and RE4 are plots in the edges of an electric transmission-line clearing; EC, GPT, and GLG are plots in the forest interior. Source: Google Earth 2010.

Figure S2. Satellite image of the União Biological Reserve after the enlargement of its area on June 5, 2017. Source: Google Earth 2017.

Figure S3. Species-specific deviation from the intercept for the model on the variation in the probability of leaf flushing using phonological activity data. The solid line represents the intercept estimate, while the dashed lines represents its 95% confidence interval. Species to the right of the upper 95% confidence interval are species with a greater probability of leaf flushing than predicted by the model, while species to the left of the lower 95% confidence interval represent the contrary. Values on the *x* axis can be back-transformed to probability values by exponentiation.

Figure S4. Species-specific deviation from the intercept for the model on the variation in the probability of leaf fall using phonological activity data. The solid line represents the intercept estimate, while the dashed lines represents its 95% confidence interval. Species to the right of the upper 95% confidence interval are species with a greater probability of leaf fall than predicted by the model, while species to the left of the lower 95% confidence interval represent the contrary. Values on the *x* axis can be back-transformed to probability values by exponentiation.

Figure S5. Species-specific deviation from the intercept for the model on the variation in the probability of flowering using phonological activity data. The solid line represents the intercept estimate, while the dashed lines represents its 95% confidence interval. Species to the right of the upper 95% confidence interval are species with a greater probability of flowering than predicted by the model, while species to the left of the lower 95% confidence interval represent the contrary. Values on the *x* axis can be back-transformed to probability values by exponentiation.

Figure S6. Species-specific deviation from the intercept for the model on the variation in the probability of fruiting (green) using phonological activity data. The solid line represents the intercept estimate, while the dashed lines represents its 95% confidence interval. Species to the right of the upper 95% confidence interval are species with a greater probability of exhibiting green fruits than predicted by the model, while species to the left of the lower 95% confidence interval represent the contrary. Values on the *x* axis can be back-transformed to probability values by exponentiation.

Figure S7. Species-specific deviation from the intercept for the model on the variation in the probability of fruiting (mature) using phonological activity data. The solid line represents the intercept estimate, while the dashed lines represents its 95% confidence interval. Species to the right of the upper 95% confidence interval are species with a greater probability of exhibiting mature fruits than predicted by the model, while species to the left of the lower 95% confidence interval represent the contrary. Values on the *x* axis can be back-transformed to probability values by exponentiation.