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Abstract: The purpose of this study was to evaluate the relationships between environmental factors
and the site index (SI) of trembling aspen, lodgepole pine, and white spruce based on the sampling of
temporary sample plots. LiDAR generated digital elevation models (DEM) and wet areas mapping
(WAM) provided data at a 1 m resolution for the study area in Alberta. Six different catchment
areas (CA), ranging from 0.5 ha to 10 ha, were tested to reveal optimal CA for calculation of the
depth-to-water (DTW) index from WAM. Using different modeling methods, species-specific SI
models were developed for three datasets: (1) topographic and wet area variables derived from
DEM and WAM, (2) only WAM variables, and (3) field measurements of soil and topography. DTW
was selected by each statistical method for each species and, in most cases, DTW was the strongest
predictor in the model. In addition, differences in strength of relationships were found between
species. Models based on remotely-sensed information predicted SI with a root mean squared error
(RMSE) of 1.6 m for aspen and lodgepole pine, and 2 m for white spruce. This approach appears to
adequately portray the variation in productivity at a fine scale and is potentially applicable to forest
growth and yield modeling and silviculture planning.
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1. Introduction

Site index (SI) is the most frequently used indicator of productivity in even-aged forests. SI is
defined as the average height of the dominant trees for an even-aged aggregation of trees at a given
reference age, and is assumed to be independent of competition, stocking, and time. Geocentric
approaches have been used as a basis for estimating SI or other measures of forest productivity and
involve relating SI to various direct and/or indirect environmental factors [1]. Many studies have
revealed environmental predictors of SI, using edaphic [2–5], topographic [6–8], and/or climatic [9–11]
variables. Geocentrically-based (biophysical) SI models are independent from stand age and structure,
usually have satisfactory prediction power and, therefore, provide tools that can effectively inform
forest management. In addition, biophysical SI models can be applied in stands where measurements
of height and age are unreliable or impossible (dominant trees of the relevant species have been
suppressed for part of their lives, or where stands are too young or very old), or where the target species
is not present. These predictive models are also potentially useful in species selection, by allowing
comparison of productivity between species.
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Biophysical SI models can also utilize remotely-sensed environmental data as a basis for SI
prediction. Growing availability and increasing resolution of spatial environmental information,
particularly digital elevation models (DEM), can support the detection of fine scale variability in site
productivity, resulting in increased accuracy of predictive models of forest productivity [12], while
dramatically reducing costs. In addition to topographic parameters that can be computed from a DEM,
several hydrological- and soil-related variables have been found to be useful in the prediction of SI.
Iverson et al. [13] used a DEM to derive a moisture index which explained 64% of the variation in white
oak SI. In addition to soil properties and chemistry, Berrill et al. [14] tested DEM-produced topographic
indices, including a topographic relative moisture index and topographic exposure scores, and found
them useful in predicting coast redwood SI. Cryptomeria japonica D.Don plantation SI was predicted
using a topographic wetness index and a solar radiation index with the models explaining 65% of
the variation in SI [15]. Laamrani et al. [16] found that topographic variables derived from a DEM
accounted for between 25% and 31% of the variation in black spruce SI in Canadian boreal forests.

Wet areas mapping (WAM) is used in Alberta to delineate flow channels, road-stream crossings,
and wet areas based on a DEM derived from LiDAR data [17]. It relies on the assumption that
topography controls water flow. The WAM process includes removing artificial depressions in the DEM,
determining flow direction, and producing stream accumulation networks based on predetermined
flow channel initialization [18]. The flow initiation area (catchment area) is an arbitrary threshold
which represents the upslope contributing area required to initiate a stream channel. A catchment
area (CA) of 4 ha has been applied across varying terrains in Alberta and is thought that associated
cartographic derived indices represent end-of-summer flow and soil conditions [17]. Once the flow
channel network is determined the depth-to-water (DTW) index is computed by assigning a value of
zero to flow channel cells and all other surface water features, and then applying the algorithm, which
calculates the sum of cell slopes along the least slope path to the nearest surface water feature for each
raster cell [19].

Several studies have demonstrated relationships between DTW and soil properties.
Murphy et al. [18] found that DTW could delineate patterns of soil moisture (hydric to subhygric soil
moisture regimes) in Central Alberta, and suggested usage of DTW for landscapes where belowground
flow patterns are driven by surface topography. In addition, detailed physical and chemical soil
properties, as well as soil, vegetation, and drainage type are found to be subject to topographic controls,
and DTW with a 4 ha CA effectively estimated these in the Foothills Natural Region of Alberta [19].
In the Swedish boreal landscape DTW has been shown to be a good predictor of soil wetness, and
while it was insensitive to the DEM scale, the optimal CA threshold varied by landform (from 1–2 ha
on slowly permeable till deposits to 8–16 ha on coarse-textured deposits where water would drain
quickly) [20]. The soil moisture regime, drainage class, and depth-to-mottles were strongly related
with DTW at a 2 ha catchment area in young aspen-dominated boreal plain forests [21]. Hiltz et al. [22]
tested DTW against vegetation index, which is based on moisture-regime classes from xeric to hydric,
and obtained coefficients of determination of 0.68–0.77 from two boreal sites in Alberta. DTW also
appeared to be an important predictor of distribution of 14 understory plant species related to grizzly
bear food supply [23]. DTW was considered to be an important moisture and productivity indicator in
boreal mixedwood forests in the prediction of forest cover type after variable retention harvesting [24],
and biomass growth rate [25].

In addition to DEM, the wet areas mapping initiative provides additional hydrological
information, and these maps provide valuable information in several areas of natural resource
planning, such as forestry, parks and recreation, the oil and gas sector, and land reclamation [17]. These
highly-accurate data, with a resolution of 1 m, may provide an excellent source of information for
efficient and cost-effective prediction of potential productivity. The main objectives of this study were
to: (1) identify the optimal catchment area to use in computing the DTW index; (2) explore different
modeling approaches suitable for fine-scale spatial biophysical SI prediction; and (3) evaluate the
use of parameters generated from WAM and DEM in estimating SI at an operational scale. While
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SI is usually predicted at a broad scale from environmental factors including climate as important
productivity drivers, there have been few fine-scale (across relatively uniform climate conditions) SI
prediction studies relying on mapped biophysical attributes. However, the few studies which have
explored fine-scale SI prediction have found either weak relationships with topographic parameters or
confounding effects of past forest management activities on productivity [14,16,26].

2. Materials and Methods

2.1. Study Site, Sample Plot, and Tree Selection Criteria

This study was conducted near Slave Lake in Central Alberta, Canada in the area of the 1968
Vega fire (Figure 1). This forested area is covered by mixed forests of trembling aspen, white spruce,
and lodgepole pine, with an intermix of balsam poplar, white birch, black spruce, and tamarack.
Topography is generally rolling, soils are predominantly Luvisols and Brunisols with gleyed variants
and organic soils in poorly-drained conditions. The mean annual temperature is 2.4 ◦C, the mean
temperature during the vegetation period (May–September) is 12.0 ◦C, there are 158 frost-free days,
and the mean annual precipitation is 600 mm with 450 mm falling during the vegetation period
(extracted from ClimateNA software for the period 1981–2010; [27]). The study area is relatively small
in size (approx. 10 km in radius), and is located at the edge of the Lower Foothills Natural Subregion
of Alberta [28]. This area has several advantages for a study designed to examine the relationships
between ecological site factors and SI. Firstly, the area has a limited range of stand ages present,
with most stands having originated after the 1968 fire, which places them close to the SI reference
age (50 years). All stands have regenerated naturally with no evidence of management activities.
The rolling topography provides a good range of site conditions and tree species. A case study in a
geographically-restricted area like this, where climate is relatively constant across sites, provides some
overall control of the macro-climate and allows us to focus on the effects of local topographic and soil
factors. Finally, the ability to sample three major commercial tree species in the region—trembling
aspen (Populus tremuloides Michx.), lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.), and
white spruce (Picea glauca (Moench) Voss)—make this study of practical value.

Plot selection and tree selection criteria recommended in the SIBEC (Site Index Estimates by
Biogeoclimatic Ecosystem Classification Site Series) Sampling and Data Standards [29] were followed.
Based on these standards, areas selected for sampling were: even-aged stands; had moderate stand
density; no management activities—natural stand conditions (e.g., no partial cuttings, fertilization,
site preparation, pruning); not affected by major disturbances; appropriate ages (the closer to SI
reference age of 50 years, the better); and contained suitable top height trees of target species. SIBEC
selection criteria for top height trees were also used: the largest diameter dominant or co-dominant
tree per 100 m2 was selected, provided it was vigorous, had a full crown, a straight, disease-free,
undamaged stem (minor damage is allowed, but not which significantly affects tree growth), was free
of suppression, and was not a wolf, open-grown, or veteran tree. In this region spruce regenerate
and often grow in the understory; to verify that sampled spruce had not experienced suppression we
checked the ring width close to the pith (early ages) and found no evidence of suppression and could,
therefore, assume that these spruce trees satisfy the assumptions for SI estimation.

Aspen and lodgepole pine stands were selected for sampling based on: (1) dominant species;
and (2) the range of DTW. Plot centres were then located randomly along predetermined transects
within the selected areas to ensure sampling of the full range of DTW conditions available for each
species. The center of measurement plots was adjusted from the point on the transect in order to
ensure that site conditions were uniform within and around each plot, as required to meet plot and
tree selection criteria. A buffer area of at least 50 m was left between sample plots and any disturbance
or object (e.g., wellsite, road) to avoid edge effects. Neighbouring plots were located a minimum of
150–200 m apart and were situated in different site conditions (different slope, slope position, aspect,
DTW, and/or SMR) in order to minimize correlations due to adjacency and ensure independence of
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plots. Due to restricted availability of white spruce stands we sampled all stands where we were able
to select three unsuppressed top height trees while maintaining a minimum distance of 50 m from
other sample plots and edges.
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Figure 1. Study site location and Natural subregions (forested) of Alberta (upper right map). Sample
plot locations and ecosite map of the study site (lower map). Final sample size of 97, 50, and 45 plots
were for trembling aspen, lodgepole pine, and white spruce, respectively. Ecosite (Lower Foothlls
Natural Subregion [28]) abbreviations: d—Labrador tea-mesic; e—low-bush cranberry; f—bracted
honeysuckle; g—meadow; h—Labrador tea-subhygric; i—horsetail; j—Labrador tea/horsetail; k—bog;
l—poor fen; and m—rich fen.



Forests 2018, 9, 113 5 of 23

2.2. Data Collection and Variable Estimation

Data were collected within 300 m2 circular sample plots during 2014. Field sampling in each
sample plot consisted of the determination of ecological data (topography parameters, soil properties,
and stand density) and top height tree measurements to determine SI. A handheld Trimble GeoExplorer
6000 series GPS receiver (Trimble Inc., Sunnyvale, CA, USA) was used to ensure that ground plots
accurately corresponded to remotely-sensed data sample plots. From the original dataset, aspen plots
not affected (older than) by the recent fire, aspen in mixed stands, and spruce and pine plots with
extreme DTW values (resulting in a large gap in the DTW range) were excluded from further analysis.
This resulted in 97, 50, and 45 sample plots for trembling aspen, lodgepole pine, and white spruce,
respectively. Table 1 shows the descriptive statistics for variables used in the analysis, while a summary
of all stand and site attributes, including levels of categorical variables, are provided in Tables S1–S3
and Figures S1–S6.

2.2.1. Field Sampling Data

Top height tree measurements included diameter at breast height (DBH) and total height, while
“bark-to-pith” increment cores were taken at breast height (1.3 m) for age determination. SI (height at
a base age of 50 years total age for all species) was estimated for each selected top height tree using
species-specific top height sub-models (height-age curves) of the GYPSY (Growth and Yield Projection
System) forest growth and yield model [30], which is currently in use in Alberta. Given that GYPSY
requires total age, the number of years for each tree to grow to breast height was first estimated using
the same growth projections, and then added to ring counts from increment cores. SI at the plot level
was calculated as the average of the values obtained from the top height trees in the plot, and used in
subsequent analysis.

Determination of soil and topographic variables followed methods described in the Field Guide
to Ecosites of West-central Alberta [28]. We transformed (“folded”) the aspect, so the coolest site has a
value of zero and the warmest site has a value of 180. Following McCune and Keon [31] two methods
were applied: (1) the folded aspect for incident radiation on the north–south line; and (2) the folded
aspect for heat load using a northeast–southwest line. In each plot a soil pit was excavated at the plot
centre to represent the average soil conditions in the plot, followed by field determination of major
soil properties. Classification of soil characteristics consists of five levels for humus form, 14 levels for
soil texture, four levels for effective soil texture, seven levels for drainage, nine levels for soil moisture
regime, five levels for soil nutrient regime, and six levels for slope position.
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Table 1. Descriptive statistics for variables used in analysis. Digital elevation model (DEM) and wet areas mapping (WAM) variables are derived from airborne
LiDAR data. Ecological field surveys followed [28].

Trembling Aspen
(n = 97)

Lodgepole Pine
(n = 50)

White Spruce
(n = 45)

Trembling Aspen
(n = 97)

Lodgepole Pine
(n = 50)

White Spruce
(n = 45)

Variable Abbrev. Mean (S.D.) Mean (S.D.) Mean (S.D.) Variable Abbrev. Mean (S.D.) Mean (S.D.) Mean (S.D.)

Map-based (remote sensing) variables Field survey-based (ground-based) variables

Depth-to-water at 0.5 ha CA (m) DTW_0.5 4.51
(5.76)

1.00
(1.13)

1.97
(2.08) Site Index (base 50 years) SI 20.97

(2.78)
14.93
(3.02)

17.40
(2.67)

Depth-to-water at 1 ha CA (m) DTW_1 5.80
(7.65)

1.14
(1.33)

2.35
(2.47) Soil organic thickness (cm) SOT 45.6

(0.7)
43.4
(3.0)

83.2
(13.8)

Depth-to-water at 2 ha CA (m) DTW_2 7.47
(8.97)

1.22
(1.47)

2.67
(2.66) Coarse fragments (%) CF 10.8

(5.3)
11.8

(14.0)
15.9

(10.7)

Depth-to-water at 4 ha CA (m) DTW_4 10.01
(10.78)

1.56
(1.85)

2.82
(2.82) Humus form HUM 7.1

(13.0)
11.1

(15.2)
5.4

(12.7)

Depth-to-water at 6 ha CA (m) DTW_6 11.35
(11.92)

1.86
(2.31)

3.28
(3.29) Texture TEXT 8.01

(1.96)
7.92

(1.70)
8.93

(1.60)

Depth-to-water at 10 ha CA (m) DTW_10 12.68
(12.57)

1.96
(2.37)

3.51
(3.33) Effective texture class ETEXT 3.69

(0.68)
3.76

(0.59)
3.82

(0.44)

Flow accumulation FA 15.7 *
(169.1)

12.3 *
(393.2)

42.7 *
(21,994.9) Drainage DRN 3.57

(0.90)
3.58

(1.05)
3.89

(1.13)

Altitude (m) ALT 810.9
(38.5)

840.6
(42.9)

802.3
(43.1) Soil moisture regime SMR 4.97

(0.73)
4.98

(0.94)
5.44

(0.84)

Aspect index N-S folded AI0 95.1
(37.5)

96.7
(34.1)

84.4
(41.5) Soil nutrient regime SNR 3.14

(0.58)
2.48

(0.58)
3.47

(0.55)

Aspect index NE-SW folded AI45 88.9
(40.2)

86.0
(36.7)

72.0
(40.1) Altitude (m) ALTT 797.2

(38.2)
824.5
(42.8)

786.5
(43.5)

Slope (%) SLO 18.1
(13.5)

4.5
(9.8)

16.2
(9.0) Aspect index N-S folded AI0K 96.5

(49.1)
50.0

(104.0)
92.2

(50.7)

Mean curvature MCUR 0.9
(1.64)

0.64
(0.84)

0.14
(1.25) Aspect index NE-SW folded AI45K 86.1

(52.8)
89.9

(53.7)
80.3

(56.0)

Profile curvature PRCUR −0.59
(1.10)

−0.39
(0.46)

0.06
(0.84) Slope (%) SLOV 18.5

(17.6)
9.6

(6.3)
15.8

(11.9)

Plan curvature PLCUR 0.30
(0.68)

0.25
(0.49)

0.20
(0.79) Slope Position SPI 4.12

(1.36)
4.2

(1.48)
3.47

(1.16)

Topographic Wetness Index TWI 70.1 *
(2288.9)

97.7 *
(2704.8)

69.5 *
(529.5)

Slope Position Index (15 m) SPI15 3.90
(1.13)

3.32
(1.25)

3.51
(1.20)

Slope Position Index (20 m) SPI20 4.12
(1.33)

3.38
(1.32)

3.56
(1.29)

* Median; S.D.: standard deviation; CA: catchment area.
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2.2.2. Mapped Data

All digital environmental covariates were obtained from the high-resolution (1 m pixel size)
bare-ground digital elevation model (DEM) and wet areas mapping (WAM). Both datasets were
derived from airborne LiDAR point clouds obtained from flights during August–September 2008,
with a mean return density of 1.7 points/m2 (ranging from 0.3 to 4.8 points/m2), acquired from the
Alberta Ministry of Agriculture and Forestry. The depth-to-water (DTW) index and flow accumulation
(FA) index provided by WAM were applied in the analysis. We used DTW rasters created from 0.5 ha,
1 ha, 2 ha, 4 ha, 6 ha, and 10 ha catchment areas (CA), which represents the size of the upslope
contributing area required to initiate a stream flow. A DTW index integrates both slope and distance,
which means landscape points further from open water bodies, both horizontally and vertically, have
higher DTW values and drier soils [18], while FA is calculated as the upslope drainage area contributing
to the point of interest and is expressed as the number contributing of cells (m2).

Built-in tools from the Spatial Analyst toolbox and Topography toolbox [32] in ArcGIS 10.1 were
used to create corresponding surfaces. Two different indices were computed from the polar aspect, as
explained above. The Topographic Wetness Index (TWI) is a widely-used topographically-based soil
wetness model and represents the natural logarithm of the ratio of upslope flow accumulation area
and slope [33]. The Discrete Slope Position Index (SPI) is classified based on the Topographic Position
Index (TPI) and slope [34,35]. TPI compares the elevation of the standing (central) point and average
elevation of the surrounding neighborhood, hence, it is scale-dependent. For this study we tested
circular neighbourhood areas with seven different radiuses (from 5 to 100 m). The method classifies
TPI into six slope position categories (crest, upper slope, middle slope, lower slope, flat, depression)
based on standard deviation of the elevation and threshold (5◦) of the slope to distinguish between
midslope or flat areas. This approach to classifying slope position corresponds to the classification used
in [28] for field surveys in Alberta, and allows a comparison between SPI maps derived from DEM
data with field observations. Buffer areas of 15 and 20 m best corresponded to the field observations
and, therefore, were selected as the most appropriate for the moderate (hilly) relief of the study area.
Except for the Slope Position Index (SPI), which uses a buffer area in its calculation, all remotely-sensed
variables were calculated at the plot level (averages at 300 m2 circular sample plot, but retaining
original raster resolution), which corresponds to plot level values of the response, as suggested for
the area-based approach to wall-to-wall prediction of forest inventory attributes [36]. Maps of the
predicted SI were produced using the raster package [37] at 1 m resolution with plot level values
assigned as grid cell values.

2.3. Statistical Analysis

We developed species-specific SI models (trembling aspen, lodgepole pine, and white spruce) from
three different sets of explanatory variables: (1) all remotely-sensed variables; (2) only WAM variables;
and (3) ground-based measured variables. Statistical analysis involved two major steps in terms of
building SI prediction models: (1) correlation analysis was used in the selection of potential explanatory
variables; and (2) variables most closely related to SI were used in modeling SI variation by applying
four statistical approaches. Model optimization and comparison was based on absolute and relative
measures of fit [38]: root mean squared error (RMSE), relative RMSE, coefficient of determination
(R2), adjusted R2 (R2

adj), Akaike information criteria (AIC), and Bayesian information criteria (BIC).
The general rule for model selection (in the backward selection procedure) for all modeling methods
was that a simpler model (with fewer parameters) was accepted if differences in R2

adj were less than
2%. Regression diagnostic plots, such as residual plots and plots of measured versus predicted SI,
were also examined. Due to this study having a spatially-clustered sampling design, model residuals
were evaluated using a global Mantel test and correlogram [39] using the vegan package [40], which
revealed no significant spatial autocorrelation issues (Figures S7–S9). Partial response curves were
examined to evaluate the behaviour of each covariate included in the model in terms of ecological
interpretability. All statistical analysis was completed using the R statistical software [41].
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Correlation analysis was performed to explore the strength of the relationship between SI and
environmental variables as the first step in variable selection for modeling. Variables that were
significantly (p < 0.05) correlated with SI were selected for modeling. In addition, correlation analysis
was used to select between collinear variables (τ > |0.7|). Kendall’s rank correlation coefficient (τ)
was applied in correlation analysis for the majority of bivariate relationships, a quadratic relationship
was also tested in cases where a non-monotonic relationship was observed among variables, while an
optimal DTW index was selected based on Linear regression and generalized additive model fits.

A variety of different prediction techniques have been employed in the fine resolution
extrapolation of point-based field observations of forest inventory attributes [42]. Methods
used in modeling SI variation in response to environmental factors range from parametric to
non-parametric [5,6,43–46]. We selected four statistical methods that have been successfully applied in
SI-environment studies: (1) parametric—multiple linear regression; (2) semi-parametric—generalized
additive models; (3) non-parametric (single regression tree-based method)—classification and
regression trees; and (4) non-parametric (multiple regression tree-based method)—Random Forest.

Multiple linear regression (MLR) with backward selection was used to retain only variables
with a significant slope parameter (p < 0.05). Best-subsets regression from the leaps package [47] was
used in the backward selection procedure to screen the model and associated explanatory variables
in order to determine the most important and optimal number of variables in the model. Selected
environmental variables were linearized in cases when non-linear relationships with SI were evident.
Interactions between the selected variables were also tested to evaluate their behaviour in the models.
Multicollinearity and potential overfitting were assessed using variance inflation factors (VIF) assuming
VIF < 5 overcomes the issues. Assumptions of normality and homogeneity of variance were tested on
residuals, graphically, and using the Shapiro-Wilk test.

Generalized additive models (GAM) characterize the nature of the relationship between the
response and predictors using multiple smoothing (non-linear) curve fits and, consequently, increases
our understanding of ecological relationships [48]. However, the complexity of fitting the GAM model
is in the selection of the optimal amount of smoothness. GAM modeling was done using the mgcv
package [49]. We used generalized cross-validation techniques to optimize the smoothing level and
the resulting smoothing (penalized) spline [50]. The following smoothness determination was applied:
scatter plots with smoothing splines were examined for all variables to distinguish between linear and
non-linear trends with SI; different smoothing functions and associated basis dimensions were then
selected in order to achieve optimal fitting of the data; a penalized cubic regression spline function
with shrinkage [50] was chosen with an upper limit of degrees of freedom was then applied to guard
against over-smoothing, but still capture non-linear trends in the data; and, finally, smooth terms
resulting in straight lines were switched to linear terms. Backward variable selection was used: poor
predictors, and non-significant (p > 0.05) variables were dropped simultaneously; and then R2

adj and
BIC were used to select the optimal model.

Regression trees (RT) are descriptive and predictive models effective for discovering complex
hierarchical interactions among predictors and non-linear relationships between predictor and response
variables. With the predicted value as the mean of the observations in the terminal node [38],
RT actually predicts classes because it is not fitted with a continuous smooth function. To grow
regression trees we used the rpart package [51] with the splitting criteria and stopping criteria
(minimum observations for each split attempt, minimum observations in any terminal node) and
cross-validation set to default. Overall, splits were selected based on the predictor that resulted in
maximizing between groups’ sum-of squares, accepted if overall R2 was improved by at least 1%, and
the binary partitioning process was repeated for each new group (node) until the stopping criteria
was reached. Pruning was applied to avoid overfitting based on a 10-fold cross-validation technique
minimizing the cross-validation error [52].

Random Forest (RF) is a machine learning technique appropriate for multiple nonlinear regression
analysis with accurate prediction power, the ability to detect variable interaction, the ability to
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measure variable importance, internal cross-validation, insensitivity to outliers, the ability to overcome
collinearity, and a low tendency of overfitting as its advantages [53]. The randomForest package [54]
was used, retaining defaults for random bootstrapping of the samples and variables. Hence, for each
decision tree, about two-thirds of the samples were randomly selected as the training dataset, while the
remaining samples were the ‘out-of-bag’ (OOB) samples used to calculate the mean squared prediction
error (OOB error). After preliminary analysis the number of regression trees to grow was fixed to
3000 trees to ensure minimizing the OOB error. RMSE and the explained variance (pseudo R2) was
computed based on averaged OOB error for all trees. We computed the variable importance measure
of each predictor as given as the average percent change (before and after permutation) in the OOB
error when the variable is permuted, while all others are retained unchanged. For model optimization,
the backward variable selection approach [10] was applied minimizing the RMSE and maximizing the
pseudo R2.

3. Results

3.1. Optimizing Size of Catchment Areas (CA) for Estimating SI

In order to determine optimal CA for use of the DTW index for modeling SI, six different CA
(0.5, 1, 2, 4, 6, and 10 ha) were tested using two statistical methods, linear regression (LR) and
generalized additive models (GAM), for the three investigated species. DTW for pine and spruce
were log transformed prior to LR analysis, while GAM models were fitted with an upper limit of
three degrees of freedom for aspen and spruce, and four for pine. Evaluation (using R2 for LR, and
pseudo-R2 for GAM) of both modeling approaches (Figure 2) suggested that the resulting models
showed very similar results and confirmed the strength and nature of the relationships between SI
and DTW. Additionally, both methods provided similar inferences for each species in terms of the
predictive capacity of DTW with different CA. Firstly, 0.5 ha had a smaller R2 than 1 ha CA for all
species. Secondly, trends in R2 between 1 ha to 10 ha CA varied between species. For aspen, model
performance peaked at 1 ha CA; for spruce, increasing the CA resulted in model improvement; while
pine SI was insensitive to changes in the CA.
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The non-linear trend for aspen (using the GAM model) peaks at around 1.95 m DTW_1 with SI
of 22.2 m. Pine SI prediction models using DTW calculated at a 2 ha CA worked best for both GAM
(R2 = 0.60) and LR (R2 = 0.63) models, with a sharp decrease at wet sites (DTW < 0.6 m) evident in the
general logarithmic SI trend (Figure 3). Spruce SI was found to be best estimated using DTW at the
largest tested catchment area of 10 ha, which accounted for 27% and 26% of the variation in SI based
on a LR and GAM, respectively. Both fitted curves showed a positive relationship, but with different
patterns, however, with the rise in SI being rapid from 0 to 2 m DTW_10 (Figure 3).
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3.2. SI-Environment Relationship

Results from the correlation analysis (Tables S4–S7) were used to exclude variables having
negligible effects on SI. TWI was dropped from further analysis due to its strong correlation with
slope. Remotely-sensed topographic variables, except aspect, had moderate correlations with aspen
SI with correlation coefficients ranging between 0.32 and 0.43. Declines in SI were associated with
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increases in DTW, altitude, slope, curvature, and slope position, and decreases in FA and TWI. Among
the ground-based (field, GB) measured variables, only soil organic thickness was not significantly
correlated with aspen SI. SMR and SNR were the most important soil variables (τ = 0.42 and 0.31,
respectively), with SI being positively related to increases in SMR and SNR.

Pine SI was correlated with all remotely-sensed variables, but the strongest correlation was with
DTW, warm aspects, steeper slope, convex surface, higher DTW, and topographic position, while lower
altitude, FA, and TWI were associated with the most productive pine sites. Soil characteristics which
significantly explained pine productivity were SNR and humus type. Pine growth was insensitive
to soil texture, coarse fragment content, and soil organic layer thickness. The correlation between SI
and SMR was not significant for pine due to the high variability of SI within well-drained mesic and
submesic SMRs.

The strongest remotely-sensed variables correlated with spruce SI were DTW and altitude. While
the positive trend in DTW might be plausible, increasing SI with altitude was unexpected. Weaker,
but significant, nonlinear relationships were also detected for FA, aspect, slope, and slope position,
with SI reaching a maximum at moderate conditions. Surface curvature indicators and TWI was not
significantly related to spruce SI. Only four soil variables were significantly associated with spruce SI.
Humus form appeared as the strongest (τ = −0.54), then DRN (τ = −0.24), while SMR, which peaked
at mesic moisture conditions, was dropped due to its being strongly related to DRN. In addition,
effective texture was a weak, but significant, explanatory variable, while SOT, CF, and SNR were
uncorrelated with spruce SI.

Species-specific SI models were developed using four statistical methods. In addition, models
were built using three sources of data: (1) remotely-sensed variables (RS), (2) only WAM variables,
and (3) ground survey-based variables (GB). Selected models (Table 2) differ in explanatory variables,
as well as in the number of variables for different species, data sources, and modeling methods.
Aertsen et al. [6,44] also found differences in variables selected by five different modeling techniques
applied to three species in two contrasting ecoregions, one where topographic factors control
productivity, and one where soil properties control productivity. However, in our study DTW was the
only variable selected by all statistical methods for each of the studied species (Table 2) and was also
the most influential variable (Figure S10). In addition, the predominance of topographic parameters
over field-determined soil variables is noticeable. Only the spruce GB SI model included, exclusively,
soil variables (humus form and drainage), but topographic DTW and FA were also able to account for
comparable amounts of the variation in spruce SI.

Biologically-plausible behaviour of each variable selected in the final models was evaluated based
on relationships with SI and based on partial response curves (summarized in Table S8), confirming
that the studied species respond differently to environmental factors. For instance, regression tree
models (Figure S11), in addition to detecting complex interactions between environmental variables,
revealed that the most productive sites for aspen (23.7 m SI) were found in sites with DTW below
10.9 m, convex surface curvature (<0.5), and lower altitude (<774 m). The most productive pine sites
(SI = 16.8 m) had DTW above 0.8 m; and the most productive spruce stands (SI = 20.1 m) were at higher
altitude (>830 m) with flat to midslope slope positions. Generally, for moisture-related variables (DTW,
FA, slope, slope position, curvature, SMR, drainage), aspen SI increases with increasing moisture,
but declines under conditions of excess water, pine SI declines with increasing moisture, while spruce
SI reaches an optimum under moderate conditions (mesic SMR, midslope, etc.). These findings are
also consistent with the close association between topographic features and soil moisture. Elevation
was negatively related to aspen and pine SI, while it was positively related to spruce SI. Finally,
higher nutrient availability (SNR and humus form) was associated with increases in productivity of all
three species.
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Table 2. Variables included and model performance measures of selected models by species, data sources and modeling techniques. Abbreviations: RMSE—root mean
squared error; rRMSE—normalized RMSE to the mean of measured data; Variance explained—R2 adjusted for the sample size and the number of variables included
in the model; BIC—Bayesian information criteria. AIC—Akaike information criteria; RS—remotely sensed; GB—ground survey-based. Note: performance measures
of Random Forest models were computed from cross-validation (OOB) samples.

Species Data Source Mod. Method No. Par. Variables RMSE (m) rRMSE (%) Variance Explained AIC BIC

Aspen

RS

MLR 5 DTW_1, FA, ALT, AI45, PLCUR 1.63 7.77 0.64 104.8 117.7
GAM 4 DTW_1, FA, AI45, SPI20 1.54 7.34 0.66 91.8 102.1

RT 5 DTW_1, FA, ALT, SLO, PLCUR 1.47 7.01 0.70 84.7 97.6
RF 3 DTW_1, FA, SPI20 1.74 8.30 0.59 113.5 121.2

WAM

MLR 2 DTW_1, FA 1.91 9.11 0.51 129.5 134.7
GAM 2 DTW_1, FA 1.70 8.11 0.60 106.9 112.1

RT 2 DTW_1, FA 1.55 7.39 0.68 89.0 94.2
RF 2 DTW_1, FA 1.82 8.68 0.56 120.2 125.3

GB

MLR 5 SNR, ALTT, AI45K, SLOV, SP 1.59 7.58 0.65 100.0 117.4
GAM 5 SNR, ALTT, AI45K, SLOV, SP 1.59 7.58 0.65 100.0 112.8

RT 4 ALTT, AI45K, SLOV, SP 1.65 7.87 0.63 105.2 115.4
RF 4 SMR, ALTT, SLOV, SP 1.83 8.73 0.55 125.2 135.5

L. pine

RS

MLR 2 DTW_2, ALT 1.54 10.31 0.72 47.2 51.0
GAM 2 DTW_2, ALT 1.59 10.65 0.69 50.4 54.2

RT 2 DTW_2, ALT 1.52 10.18 0.73 45.9 49.7
RF 3 DTW_2, ALT, SLO 1.77 11.86 0.63 63.1 68.8

WAM

MLR 2 DTW_2, FA 1.73 11.59 0.65 58.8 62.6
GAM 2 DTW_2, FA 1.80 12.06 0.60 62.8 66.6

RT 1 DTW_2 1.77 11.86 0.65 59.1 64.9
RF 2 DTW_2, FA 2.26 15.14 0.42 85.5 89.4

GB

MLR 3 SNR, ALTT, SP 1.69 11.32 0.66 58.5 64.2
GAM 3 SNR, ALTT, SP 1.68 11.25 0.66 57.9 63.6

RT 3 SNR, ALTT, SP 1.71 11.45 0.66 59.6 65.4
RF 4 SNR, ALTT, SLOV, SP 1.73 11.59 0.64 62.8 70.5

W. spruce

RS

MLR 2 DTW_10, FA 2.01 11.55 0.39 66.8 70.4
GAM 2 DTW_10, FA 2.06 11.84 0.34 69.0 72.7

RT 3 DTW_10, ALT, SPI20 1.91 10.98 0.44 64.2 69.7
RF 3 DTW_10, FA, ALT 2.14 12.30 0.31 74.5 79.9

WAM

MLR 2 DTW_10, FA 2.01 11.55 0.39 66.8 70.4
GAM 2 DTW_10, FA 2.06 11.84 0.34 69.0 72.6

RT 2 DTW_10, FA 1.90 10.92 0.47 61.8 65.4
RF 2 DTW_10, FA 2.33 13.39 0.20 80.1 83.7

GB

MLR 2 HUM, DRN 1.84 10.57 0.49 58.9 62.5
GAM 2 HUM, DRN 1.82 10.46 0.50 57.9 61.5

RT 2 HUM, DRN 1.91 10.98 0.46 62.2 65.9
RF 2 HUM, DRN 2.03 11.67 0.39 67.7 71.3
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Differences in model prediction accuracy are evident between species, data sources, and statistical
methods (Table 2). The best models accounted for between 63% and 70% of the variation in aspen
SI (55–59% after bootstrapping for the Random Forest method), 66–73% of the variation in pine
SI (63–64% for the RF method), and 34–50% of spruce SI variation (31–39% for the RF method). In terms
of normalized RMSE, aspen models show higher predictive power than models for pine and spruce.
No significant differences in variation explained were observed between models using remotely-sensed
(average R2

adj = 0.57) and ground-based variables (average R2
adj = 0.58), while WAM data by itself

(average R2
adj = 0.51) explained most of the variation (Figure 4). Reported prediction accuracy for

Random Forest was lower than that obtained using other methods, but this results from the use of fit
statistics in RF that are calculated using cross-validation data.
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4. Discussion

Divergence in the optimal CA for modeling different soil and vegetation characteristics using
DTW is indicated by the range of values reported in the literature [19–21,24,55]. In this the foothills
landscape is dominated by the fine textured glacial till parent material, and the strength of the
relationship between SI and DTW differs with different CA for all three species (Figure 2). DTW based
on smaller CA was better in estimating aspen SI, and the largest size (10 ha) of CA was the best for
spruce, while the size of CA does not appear to have an influence for pine SI estimation. This is similar
to findings of Oltean et al. [56] for aspen and spruce height in relation to DTW. Aspen SI appeared
moisture-sensitive, with SMR (τ = 0.42) being the strongest ground-based SI predictor. Pine SI is not
significantly correlated to SMR and DRN, but is strongly associated to SNR (τ = 0.51), which is, in turn,
not related to DTW. Consequently, CA size was irrelevant for pine productivity estimation. For spruce
SI, soil parameters, with HUM having the strongest correlation (τ = −0.54), were more important than
topography. The results suggest that HUM is predicted better at larger CA, hence, 10 ha was the best
CA for SI prediction. Generally, the results indicate that if the response is moisture-sensitive, then a
lower CA is optimal, but when other factors drive the response, the optimal CA will vary. The optimal
size of CA was also dependent on the response variable (application) [24]. Murphy et al. [19] found
that the strongest relationship between soil properties and DTW was at the lowest tested CA. Different
strengths of relationships between SI and the DTW index was found for different species (Figure 3).
A weaker relationship for white spruce in our study is in line with the findings of Ung et al. [57]:
SI models based on site factors were less accurate for shade-tolerant than for shade-intolerant species.
However, different strengths of the relationship for aspen and pine likely result from limitations in
field sampling, such as the captured ranges of the DTW index, the lack of full coverage of all ecosites,
and the limited availability of areas to sample in extreme parts of the ranges of independent variables.
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Aspen productivity depended strongly on environmental factors, as indicated by strong
correlations between SI and almost all tested soil and topographic factors (Table S5). Other studies
report similar relationships between aspen SI and soil moisture [56–61]. Excess water and conditions
with poor soil aeration limit aspen growth [59,62,63], as also shown in our results. The maximum SI
of aspen was found on sites with a subhygric soil moisture regime, flat to lower slope topographic
position, and around 3 m DTW at 1 ha CA. Since it is a nutrient-demanding species, aspen growth
was positively related to increasing SNR, as shown by other studies [58,59,61]. Higher aspen SI
was found at lower altitudes and north aspects, which is also consistent with findings from other
studies [58–60]. In our study, up to 70% of the variation in aspen SI was explained by environmental
factors, similar to results from other studies in boreal forests. Chen et al. [58] reported strong
relationships between SI and topographic indices (R2

adj = 0.60), SMR, and SNR (R2
adj = 0.63), and

detailed soil physical and chemical properties (R2
adj = 0.69) for northern British Columbia. Even

stronger models were obtained for sites in the B.C. interior based on geographic position, elevation,
SMR, and SNR (R2

adj = 0.61), while the variance explained was 82% when biogeoclimatic zones were
included in the model [59]. Stand characteristics and soil physical and chemical variables were found
to improve parent material-specific aspen SI models with R2

adj of 0.63 and 0.88 in Quebec [60] and
R2

adj from 0.45 to 0.54 in Saskatchewan [63].
Lodgepole pine SI was significantly correlated with several topographic variables and only with

SNR and humus form among the soil variables. Although a dramatic decline in SI was noticed as
the soil moisture increased from subhygric to subhydric, SMR and other soil physical properties
were not significant in the models. This is likely due to pine being able to tolerate both very low
and very high soil moisture levels, as well as a range of other site conditions, leading to substantial
variability and a lack of a consistent general relationship between SI and SMR. A lack of samples
at the extremes of SMR and a preponderance of plots in the submesic and mesic range may also be
causing a weak relationship between SI and SMR. However, the significance of the slope position
and DTW in the models using RS and WAM data may indicate issues relating to the subjective
determination of SMR in the field. The results are consistent with findings by Wang et al. [8] that
pine SI was negatively related to elevation, weakly associated with SNR, and not related to SMR.
Additionally, Szwaluk et al. [4] reported that SNR and humus form were good SI predictors, and that
soil physical variables were weaker in terms of explaining variance than soil chemical, understory
plants, and humus form variables. In addition to climate factors, increasing fertility [64] and decreasing
altitude [43] contributed significantly to explaining the variation in pine SI. Our results indicate that
pine productivity was lowest at sites with poor nutrient regimes, higher altitude, lower topographic
position (depression, level and lower slope), slight slope, low DTW, and high FA values. This is
consistent with observations that good productivity of pine can be achieved on rocky soil, and steep
slopes and ridges [62]. Up to 73% of the variation in pine SI was explained in this study. In a similar
study in Southwestern Alberta, physical and chemical properties and understory vegetation explained
up to 67% of the variation in SI [4]. Wang et al. [43] developed SI models for West-central Alberta,
explaining up to 75% of the variation in SI using climate, topography, and soil sand content.

For white spruce, major factors influencing productivity were soil moisture (drainage and SMR),
soil nutrient availability (humus form and SNR), DTW, and altitude. Slope position and FA were
selected in final models, but they were weak predictors of SI. Humus form, in contrast to aspen and
pine, was found to be the variable most closely related to SI. In terms of drainage and DTW_10 ha
CA, decreases in moisture availability positively influenced spruce productivity. Interestingly, spruce
grew best in sites with mesic SMR, and growth was lower in submesic and hygric sites, but inferences
are limited because only two observations were sampled for submesic and hygric sites. SI was also
highest on midslope sites and declined with increasing slope. Spruce SI also increased with increasing
FA, but levelled off at high values. A non-monotonic relationship between SI and DTW calculated at
lower CAs was also found. White spruce has a wide ecological amplitude, with limited growth in sites
with stagnant water or under very dry conditions, and good productivity in sites with well-balanced



Forests 2018, 9, 113 15 of 23

water-aeration conditions [62]. While spruce is considered to be a nutrient-demanding species, SNR
was not significant in our models due to the limited range of nutrient regimes sampled. Similar
results were reported for sub-boreal white spruce where SMR was the strongest factor, with moderate
moisture conditions having the highest SI, while SNR was less important [65]. Wang [66] found that
soil physical properties were much better predictors of spruce SI than soil nutrient properties. Altitude
was significant and was positively related to spruce SI. While other studies indicate that white spruce
SI is insensitive to climate [65,67], interactions between elevation and the soil moisture regime may
reflect the influence of climate on water availability and drought stress. Stand attributes, including
composition and age effects, have been found to be important in SI predictions for shade-tolerant
species [57], such as white spruce, leading to increases in variability in SI under different environmental
conditions. An age trend for spruce SI indicates a possible violation of assumptions for SI determination.
This could be due to competition effects in young stands which are common for shade-tolerant white
spruce, or to a poor fit of the height age curves used for these particular stands. This has been noted as
a potential issue in several other similar studies [61,68–70] with changes in climate and fertility over
time often being given as an explanation for this violation of the assumption of time independence for
SI estimates.

Models developed in this study accounted for up to 73%, 70%, and 50% of the variation in SI for
pine, aspen, and spruce, respectively. Generally, SI prediction models explain between 50% and 80% of
the SI variation in models built from local site factors [12]. The results from our study fall within this
range, but with pine and aspen reaching the upper limit, and spruce approaching the lower end of this
range (Figure 4, left plot). Site factors important for spruce growth not included in the study, or issues
relating to stand ages and sampling design, might cause poorer results for spruce than for aspen
and pine. Comparing results from different modeling approaches across all species, average R2

adj
values were very similar between RS and GB variables (Figure 4, middle plot). In addition, although
it provided lower R2

adj, WAM data by itself was able to explain most of the variation in SI. In terms
of best predictors, among RS variables DTW was selected by each statistical method for each species
and, in most cases, it is the strongest predictor in the model, while, for GB data, different variables
appeared as the most important for each species according to species silvics. For DTW, GAM provided
a more plausible fit for aspen and MLR was able to better detect logarithmic trends for pine.

Several different methods for developing SI prediction models have been suggested in the
literature. Although RT models tended to overfit when only two WAM variables were used, little
difference is apparent between MLR, GAM, and RT methods in terms of the explained variance
(Figure 4, right plot). RF gave poorer results due to different statistics being used for comparison, but
the results are still comparable. Non-parametric models show some bias in terms of predicting higher
values for less productive sites and lower values in more productive sites (Figures S12–S14). A slightly
different fit was found as a result of differences in the representation of nonlinearity between MLR
and GAM models, however, similarity in covariate behaviour in the models from different methods
was confirmed by the form of relationships for each of the three species. Our findings are consistent
with recommendations that the preference for SI prediction be given to GAM in terms of predictive
performance [43], as well as to GAM and non-parametric Boosted Regression Trees in terms of fit
statistics and ecological interpretability [6,44]. When spatial autocorrelation issues arise, a sequential
autoregressive spatial regression modeling approach may be superior to other methods [71,72].

Maps of SI for each species are shown in Figures 5–7. Despite some differences in predictions due
to model specifics, relationships between terrain attributes and patterns of low and high predicted
productivity are generally apparent. However, some issues related to spatial predictions exist. Firstly,
extrapolating outside the range of training data, as well as outside of the study area, is risky and can
result in unreliable estimates [73]. Nonparametric regression tree-based methods used in our study
are data-driven and provide categorical outcomes, so when applied outside of the range of training
data they predict the same classes as found in the training dataset [73]. Another difference between
MLR and GAM models for the aspen SI maps is evident for predictions along streams (out of range for
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low DTW and high FA) where MLR tends to overpredict SI due to a negative linear fit for DTW and a
positive logarithmic fit for FA, while the GAM model exhibits a more plausible decrease in SI at low
DTW and high FA values. A similar pattern in spruce SI prediction is evident at higher elevations (and
higher DTW) with the GAM method producing much larger values and larger areas of high SI (>20 m)
due to the positive relationship between SI and DTW. In order to develop biologically-sound SI models
predicted from contemporary and future climate projections Antón-Fernández et al. [9] applied a
modeling technique based on the potential modifier functional form which bounds the response
within a specified observed range. Further, spatial SI predictions illustrate fine differences when
using different types (discrete/categorical vs. continuous) and the numbers of explanatory variables.
MLR and GAM provide a continuous fit throughout the range of response and ecologically-plausible
mapping. For RT, a drawback is that the estimates represent classes which result in spatial prediction
being fragmented [43]. Where there are a small number of classes with unequal differences between
classes, resulting predictions may not be realistic, as observed for the aspen RT model where the
application of a DTW threshold of 10.9 m assigns SI values of 18 m and 22 m to neighbouring cells.
However, RT might be appropriate for SI predictions at large scales with large datasets [73].
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are computed at the 10 ha catchment area (CA). The map resolution is 1 m.



Forests 2018, 9, 113 18 of 23Forests 2018, 9, x FOR PEER REVIEW  17 of 23 

 

 

 
Figure 7. Hillshade (upper left), DTW (lower left), and mapped lodgepole pine SI generated based on 
the selected: (A) MLR model, (B) GAM model, (C) RT model, and (D) RF model. DTW and flow 
channels are computed at the 2 ha catchment area (CA). The map resolution is 1 m. 

5. Conclusions 

We demonstrate the usefulness of WAM variables for accurate and high-resolution estimation 
of SI, revealing that the DTW index is the strongest DEM-derived SI predictor and that the FA index 
can explain the influence of other important soil properties in our study area. Models developed in 
this study accounted for up to 73%, 70%, and 50% of variation in SI for pine, aspen, and spruce, 
respectively. Poorer results for spruce result from the wide range in ages of sampled spruce stands, 
the lack of spruce stands across a full range of sites, and the small number of spruce stands where 
top height trees free of suppression could be sampled. No differences in the explained variation 

Figure 7. Hillshade (upper left), DTW (lower left), and mapped lodgepole pine SI generated based
on the selected: (A) MLR model, (B) GAM model, (C) RT model, and (D) RF model. DTW and flow
channels are computed at the 2 ha catchment area (CA). The map resolution is 1 m.

Forest productivity is affected by complex interactions between site factors, species autecology,
genetic variability, and management practices and, as a result, it is often difficult to assess [74].
Biophysical SI models usually have moderate accuracy and rarely explain more than 80% of the
variance. However, computation of SI is subject to errors in height and age determination. In addition,
applying provincial or regional SI curves might not account for regional differences in growth. Growth
factors not accounted for in the models include detailed soil attributes and extreme abiotic or biotic
factors, including diseases, insects, and genetics [75]. Adding explanatory variables obtained from
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more detailed ecological surveys and laboratory analysis of soil and foliage might improve productivity
predictions, but would involve increases in sampling costs and decreases in model effectiveness.

5. Conclusions

We demonstrate the usefulness of WAM variables for accurate and high-resolution estimation of
SI, revealing that the DTW index is the strongest DEM-derived SI predictor and that the FA index can
explain the influence of other important soil properties in our study area. Models developed in this
study accounted for up to 73%, 70%, and 50% of variation in SI for pine, aspen, and spruce, respectively.
Poorer results for spruce result from the wide range in ages of sampled spruce stands, the lack of spruce
stands across a full range of sites, and the small number of spruce stands where top height trees free
of suppression could be sampled. No differences in the explained variation were observed between
models based on data from remote sensing or field assessment, while WAM data by itself explained
most of the variation in SI. High-resolution SI maps for all species were produced and, despite some
general issues, show plausible relationships between terrain attributes and productivity and, hence,
are potentially applicable for operational-scale forest growth and yield modeling. However, further
refinements in SI prediction models might be possible by utilizing first-return LiDAR metrics [45] and
optical imagery.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/9/3/113/s1;
Table S1: Summary of stand attributes for the three studied tree species; Table S2: Summary of remotely-sensed
variables considered in modeling SI by the studied tree species; Table S3: Summary of the ground-measured
variables considered in modeling SI by the studied tree species; Table S4: Kendall’s rank correlation coefficient
(τ) matrix between remotely-sensed environmental and soil attributes (N = 201). Bolded numbers indicate the
significance of relationship at p < 0.05; Table S5: Kendall’s rank correlation coefficient (τ) matrix between aspen
SI and environmental variables (N = 97). Bolded numbers indicate the significance of the relationship at p <
0.05. Italicized numbers indicate the coefficient of determination from quadratic regression; Table S6: Kendall’s
rank correlation coefficient (τ) matrix between lodgepole pine SI and environmental variables (N = 50). Bolded
numbers indicate the significance of the relationship at p < 0.05 (* p = 0.06). Italicized numbers indicate the
coefficient of determination from quadratic regression; Table S7: Kendall’s rank correlation coefficient (τ) matrix
between white spruce SI and environmental variables (N = 45). Bolded numbers indicate the significance of the
relationship at p < 0.05. Italicized numbers indicate the coefficient of determination from quadratic regression
(* exponential transformation); Table S8: Summary by species of responses in SI on site factors included in the
final models;
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SI and environmental (remotely-sensed and ground-based measured) variables for aspen. Black dots represent
the mean; Figure S2: Box plots with jitter plots of SI and environmental (remotely-sensed and ground-based
measured) variables for lodgepole pine. The black dot represents the mean; Figure S3: Box plots with jitter plots
of SI and environmental (remotely-sensed and ground-based measured) variables for white spruce. Black dots
represent the mean; Figure S4: Scatter plots with penalized regression spline (three degrees of freedom) between
environmental (remotely-sensed and ground-based measured) variables and SI for aspen; Figure S5: Scatter
plots with penalized regression spline (three degrees of freedom) between environmental (remotely-sensed and
ground-based measured) variables and SI for lodgepole pine; Figure S6: Scatter plots with penalized regression
spline (three degrees of freedom) between environmental (remotely-sensed and ground-based measured) variables
and SI for white spruce; Figure S7; Spatial correlation structure for aspen presented using Mantel correlograms
on model residuals based on the Euclidian distance method. Black squares indicate significant (p < 0.05) spatial
correlation at corresponding distance classes; Figure S8: Spatial correlation structure for lodgepole pine presented
using Mantel correlograms on model residuals based on the Euclidian distance method. Black squares indicate
significant (p < 0.05) spatial correlation at corresponding distance classes; Figure S9: Spatial correlation structure
for white spruce presented using Mantel correlograms on model residuals based on the Euclidian distance method.
Black squares indicate significant (p < 0.05) spatial correlation at corresponding distance classes; Figure S10:
Variable importance plots for aspen (A,B), pine (C,D), and spruce (E,F) SI Random Forest models built with all
potential remotely-sensed (A,C,E) and ground-based measured (B,D,F) variables. %IncMSE—variable importance
measure indicating the average percent change in the mean square error when the particular variable is removed
while all others are retained unchanged. Important variables should cause relatively large %IncMSE; Figure S11:
Regression Tree SI models based on remotely-sensed data; (A) aspen, (B) lodgepole pine, and (C) white spruce;
Figure S12: Residual and measured vs. predicted plots for aspen by data sources and modeling techniques.
The 1:1 line is shown in red; Figure S13: Residual and measured vs. predicted plots for pine by data sources and
modeling techniques. The 1:1 line is shown in red; Figure S14: Residual and measured vs. predicted plots for
spruce by data sources and modeling techniques. The 1:1 line is shown in red.
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